Application of a Protein Hydrolysate-Based Biostimulant Obtained from Slaughterhouse Sludge on Pepper Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biostimulant Characteristics
2.2. Experimental Procedure
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacon, M.C.; De Pasacale, S. Foliar applications of a legume-derived protein-hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Ain, N.V.; Naveed, M.; Hussain, A.; Mumtaz, M.Z.; Rafique, M.; Bashir, M.A.; Alamri, S.; Siddiqui, M.M. Impact of coating of urea with Bacillus-augmented zinc oxide on wheat grown under salinity stress. Plants 2020, 9, 1375. [Google Scholar] [CrossRef] [PubMed]
- Antón-Herrero, R.; García-Delgado, C.; Antón-Herrero, G.; Mayans, B.; Delgado-Moreno, L.; Eymar, E. Design of a hydroponic test to evaluate the biostimulant potential of new organic and organomineral products. Sci. Hortic. 2023, 310, 111753. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef]
- Ávila-Pozo, P.; Parrado, J.; Caballero, P.; Tejada, M. Use of a biostimulant obtained from slaughterhouse sludge in a greenhouse tomato crop. Horticulturae 2022, 8, 622. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant action of a plant-derived Protein hydrolyzates produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef]
- Tejada, M.; Caballero, P.; Parrado, J. Effects of foliar fertilization of biostimulants obtained from sewage sludge on olive yield. Cogent Food Agric. 2022, 8, 2124702. [Google Scholar] [CrossRef]
- Mandal, S.; Anand, U.; López-Bucio, J.; Radha; Kumar, M.; Lal, M.K.; Tiwari, R.K.; Dey, A. Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change. Environ. Res. 2023, 233, 116357. [Google Scholar] [CrossRef]
- Tejada, M.; Rodríguez-Morgado, B.; Gómez, I.; Franco-Andreu, L.; Benítez, C.; Parrado, J. Use of biofertilizers obtained from sewage sludges on maize yield. Eur. J. Agron. 2016, 78, 13–19. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application; A low input cropping management tool for sustainable farming of vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef]
- Ahmad, A.; Navarro-León, E.; Izquierdo-Ramos, M.J.; Rios, J.J.; Blasco, B.; Navarro-Morillo, I.; Ruiz, J.M. Analysis of RAZORMIN® as a biostimulant and its effect on the phytotoxicity mitigation caused by fungicide Azoxystrobin in pepper. Agronomy 2022, 12, 1418. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Mikula, K.; Skrzypczak, D.; Witek-Krowiak, A.; Mironiuk, M.; Furman, K.; Gramza, M.; Moustakas, K.; Chojnacka, K. Valorization of poultry slaughterhouse waste for fertilizer purposes as an alternative for thermal methods. J. Hazard. Mater. 2022, 424, 127328. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Aguilar, H.; Lacruz-Asaro, M.; Ruzafa-Silvestre, C.; Arán-Ais, F. Protein recovery from wastewater animal processing by-products of rendering plants for biostimulant applications in agriculture. Sustain. Chem. Pharm. 2023, 32, 101009. [Google Scholar] [CrossRef]
- Barrajón-Catalán, E.; Álvarez-Martínez, F.J.; Borrás, F.; Pérez, D.; Herrero, N.; Ruíz, J.J.; Micol, V. Metabolomic analysis of the effects of a comercial complex biostimulant on pepper crops. Food Chem. 2020, 31, 125818. [Google Scholar] [CrossRef]
- Rosa-Martínez, E.; García-Martínez, M.C.; Adalid-Martínez, A.M.; Pereira-Dias, C.; Casanova, C.; Soler, E.; Figas, M.R.; Plazas, M.; Soler, S.; Prohens, J. Fruit composition profile of pepper, tomato and eggplant varieties grow under uniform conditions. Food Res. Int. 2021, 147, 110531. [Google Scholar] [CrossRef]
- Parađiković, N.; Vinković, T.; Vrček, I.V.; Žuntr, I.; Bojić, M.; Medić-Šaric, M. Effect of natural biostimulant on yield and nutritional quality: An example of sweet yellow pepper (Capsicum annum, L.) plants. J. Sci. Food Agric. 2011, 91, 2146–2152. [Google Scholar] [CrossRef]
- Mwebi, N.O.; Ogendi, B.M.O. Effect of boiling, steaming, stir-frying and microwave cooking on the antioxidant potential of peppers of varying pungency. Cogent Food Agric. 2020, 6, 1834661. [Google Scholar] [CrossRef]
- Rodríguez-Morgado, B.; Gómez, I.; Parrado, J.; García-Martínez, A.M.; Aragón, C.; Tejada, M. Obtaining edaphic bioestilants/biofertilizers from different sewage sludges. Effects on soil biological properties. Environ. Technol. 2015, 36, 2217–2226. [Google Scholar] [CrossRef]
- Hochmuth, G.; Maynard, D.; Vavrina, C.; Hanlon, E.; Simonne, E. Plant tissue analysis and interpretation for vegetable crops in Florida. UF/IFAS Ext. 2018, 964, 1–48. [Google Scholar] [CrossRef]
- Madejón, P.; Xiong, J.; Cabrera, F.; Madejón, E. Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortune plantation. J. Environ. Manag. 2014, 144, 176–185. [Google Scholar] [CrossRef]
- Herse, P.R. A Textbook of Soil Chemical Análisis; Chemical Publishing Company: New York, NY, USA, 1971. [Google Scholar]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 1, 591–592. [Google Scholar] [CrossRef]
- Benderitter, M.; Maupoil, V.; Vergely, C.; Dalloz, F.; Briot, F.; Rochette, L. Studies by electron paramagnetic resonance of the importance of iron in the hydroxyl scavenging properties of ascorbic acid in plasma: Effects of iron chelator. Fund. Clin. Pharmacol. 1998, 12, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar application of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Carillo, P.; Colla, G.; Fusco, G.M.; Del’Aversana, E.; El-Nakhel, C.; Giordano, M.; Pannico, A.; Cozzolino, E.; Mori, M.; Reynaud, H.; et al. Morphological and physiological responses induced by protein hydrolysate-based biostimulants and nitrogen rates in greenhouse spinach. Agronomy 2019, 9, 450. [Google Scholar] [CrossRef]
- Agliassa, C.; Mannino, G.; Molino, D.; Caralletto, V.; Bertea, C.M.; Secchi, F. A new protein hydrolysate-based biostimulant applied by fertigation promotes relief from drought stress in Capsicum annuum L. Plant Physiol. Biochem. 2021, 166, 1076–1086. [Google Scholar] [CrossRef]
- Francesca, S.; Cirillo, V.; Raimondi, G.; Maggio, A.; Barone, A.; Rigano, M.M. A novel protein hydrolysate-based biostimulant improves tomato performances under drought stress. Plants 2021, 10, 783. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, W.; Lv, H.; Liang, B.; Jin, S.; Li, J.; Zhou, W. Animal-derived plant biostimulant alleviates drought stress by regulating photosynthesis, osmotic adjustment and antioxidant systems in tomato plants. Sci. Hortic. 2022, 305, 111365. [Google Scholar] [CrossRef]
- Rouphael, Y.; Carillo, P.; Cristofano, F.; Cardarelli, M.; Colla, G. Effect of vegetal-versus animal-derived protein hydrolysate on sweet basil morpho-physiological and metabolic traits. Sci. Hortic. 2021, 284, 110123. [Google Scholar] [CrossRef]
- Thomas, C.L.; Acqnath, G.E.; Whitmore, A.P.; McGrath, S.P.; Haefele, S.M. The effect of different organic fertilizers on yield and soil and crops nutrient concentrations. Agronomy 2019, 9, 776. [Google Scholar] [CrossRef]
- Iqbal, A.; Qiung, D.; Zhung, W.; Xiangru, W.; Huiping, G.; Hengheng, Z.; Nianchang, P.; Xiling, Z.; Meizhen, S. Growth and nitrogen metabolism are associated with nitrogen-use efficiency in cotton genotypes. Plant Physiol. Biochem. 2020, 149, 61–74. [Google Scholar] [CrossRef]
- De Bang, T.C.; Husted, S.; Laursen, K.H.; Person, D.P.; Schejoerring, J.K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 2021, 229, 2446–2469. [Google Scholar] [CrossRef] [PubMed]
- Colla, G.; Rouphael, Y. Biostimulants in agriculture. Sci. Hortic. 2015, 196, 1–2. [Google Scholar] [CrossRef]
- Cristofano, F.; El-Nakhel, C.; Rouphael, Y. Biostimulant substances for sustainable agriculture: Origin, operating mechanisms and effects on cucurbits, leafy greens, and nightshade vegetables species. Biomolecules 2021, 11, 1103. [Google Scholar] [CrossRef] [PubMed]
- Pecha, J.; Furst, T.; Kolomaznik, K.; Fiebrova, V.; Svoboda, P. Protein biostimulant foliar uptake modeling: The impact of climatic conditions. AIChE J. 2022, 58, 2010–2019. [Google Scholar] [CrossRef]
Chemical Composition | |
---|---|
Organic matter (g kg−1) | 745 ± 22 |
N (g kg−1) | 57.7 ± 7.7 |
P (g kg−1) | 19.4 ± 2.4 |
K (g kg−1) | 4.8 ± 1.0 |
S (g kg−1) | 17.8 ± 1.6 |
Ca (g kg−1) | 47.1 ± 6.3 |
Mg (g kg−1) | 4.9 ± 0.9 |
Fe (g kg−1) | 6.3 ± 1.5 |
Cu (mg kg−1) | 77.5 ± 7.3 |
Mn (mg kg−1) | 93.0 ± 10.2 |
Zn (mg kg−1) | 377 ± 46 |
Pb (mg kg−1) | 18.6 ± 1.4 |
Ni (mg kg−1) | 9.1 ± 1.3 |
Mo (mg kg−1) | 1.6 ± 0.2 |
Cd (mg kg−1) | ≤0.1 ± 0.01 |
Cr (mg kg−1) | ≤0.1 ± 0.01 |
Chemical Composition | |
---|---|
Dry matter (%) | 14.8 ± 1.7 |
Organic matter (g kg−1) | 664 ± 49 |
N (g kg−1) | 4.8 ± 1.7 |
P (g kg−1) | 7.5 ± 1.5 |
K (g kg−1) | 10.4 ± 1.6 |
S (g kg−1) | 10.9 ± 3.1 |
Ca (g kg−1) | 8.9 ± 1.7 |
Mg (g kg−1) | 1.1 ± 0.3 |
Fe (g kg−1) | 2.9 ± 1.1 |
Cu (mg kg−1) | 28.4 ± 1.5 |
Mn (mg kg−1) | 35.4 ± 8.6 |
Zn (mg kg−1) | 172 ± 21 |
Pb (mg kg−1) | 5.1 ± 1.1 |
Ni (mg kg−1) | 4.3 ± 1.6 |
Mo (mg kg−1) | 1.4 ± 0.6 |
Cd (mg kg−1) | ≤0.1 ± 0.01 |
Cr (mg kg−1) | ≤0.1 ± 0.01 |
Protein molecular weight distribution (Da) | |
>10,000 | 39.6 ± 2.3 |
10,000–5000 | 3.8 ± 1.4 |
5000–3000 | 1.9 ± 0.5 |
3000–1000 | 6.2 ± 1.6 |
1000–300 | 8.8 ± 1.9 |
<300 | 39.7 ± 2.1 |
pH (CaCl2) = 5.4–6.2 Electric conductivity = 80 mS cm−1 N (mg L−1) = 210 P (mg L−1) = 150 K (mg L−1) = 270 |
1. Biostimulant applied via the roots |
CA treatment: Control. The pepper plants were not fertilized with the biostimulant |
A1 treatment: The pepper plants were treated with the biostimulant at a dose of 0.7 g L−1 |
A2 treatment: The pepper plants were treated with the biostimulant at a dose of 1.4 g L−1 |
2. Foliar application of the biostimulant |
CB treatment: Control. The pepper plants were not fertilized with the biostimulant |
B1 treatment: The pepper plants were treated with the biostimulant at a dose of 0.7 g L−1 |
B2 treatment: The pepper plants were treated with the biostimulant at a dose of 1.4 g L−1 |
Crop Tyme (Days) | Plant Height (cm) | |||||
---|---|---|---|---|---|---|
CA treatment | A1 treatment | A2 treatment | CB treatment | B1 treatment | B2 treatment | |
35 | 39.2 ± 1.3 a | 41.8 ± 1.8 a | 42.5 ± 1.5 a | 40.1 ± 1.2 a | 42.3 ± 2.0 a | 44.0 ± 1.7 a |
55 | 53.8 ± 3.5 a | 62.7 ± 3.3 b | 65.9 ± 2.3 b | 52.9 ± 3.1 a | 60.3 ± 2.6 b | 61.8 ± 2.1 b |
75 | 58.7 ± 3.1 a | 71.4 ± 3.1 b | 75.2 ± 3.5 b | 60.1 ± 4.3 b | 66.2 ± 3.0 b | 66.8 ± 3.2 b |
95 | 63.8 ±3.9 a | 75.6 ± 2.9 b | 79.4 ± 3.7 b | 64.2 ± 3.8 b | 69.3 ± 3.5 b | 72.8 ± 2.9 b |
140 | 64.9 ± 2.2 a | 76.9 ± 3.6 b | 81.2 ± 3.1 c | 65.3 ± 3.0 b | 70.4 ± 3.6 b | 73.7 ± 3.6 b |
Number of flowers per plant | ||||||
35 | 1.4 ± 0.2 a | 1.5 ± 0.2 | 1.5 ± 0.1 a | 1.3 ± 0.2 a | 1.5 ± 0.2 a | 1.5 ± 0.2 a |
55 | 3.7 ± 1.1 a | 6.4 ± 1.7 | 8.7 ± 2.1 | 3.4 ± 1.3 a | 5.3 ± 1.3 b | 7.9 ± 1.6 b |
75 | Nd | Nd | Nd | Nd | Nd | Nd |
95 | 3.3 ± 1.0 a | 3.9 ± 1.3 a | 4.3 ± 1.3 | 2.9 ± 1.1 a | 3.4 ± 1.0 a | 3.8 ± 1.2 a |
140 | 1.1 ± 0.2 a | 1.3 ± 0.3 a | 1.3 ± 0.4 a | 1.0 ± 0.2 a | 14 ± 0.3 a | 1.5 ± 0.2 a |
Number of fruits per plant | ||||||
35 | - | - | - | - | - | - |
55 | 4.1 ± 0.8 a | 5.7 ± 1.1 b | 6.4 ± 1.0 c | 3.8 ± 0.6 a | 5.0 ± 1.0 b | 5.5 ± 0.9 b |
75 | 3.8 ± 0.8 a | 6.0 ± 0.9 b | 6.9 ± 0.6 c | 3.6± 0.3 a | 5.5 ± 0.9 b | 6.0 ± 1.0 b |
95 | 2.1 ± 0.3 a | 3.4 ± 0.7 b | 4.5 ± 0.8 c | 1.9 ± 0.8 a | 2.7 ± 0.4 b | 3.9 ± 0.7 c |
140 | 1.7 ± 0.2 a | 1.7 ± 0.3 a | 1.9 ± 0.3 a | 1.3 ± 0.2 a | 1.6 ± 0.4 a | 1.2 ± 0.3 a |
Parameter (Unit) | CA Treatment | A1 Treatment | A2 Treatment | CB Treatment | B1 Treatment | B2 Treatment |
---|---|---|---|---|---|---|
N ↑ (%) | 1.9 ± 0.3 a | 2.8b ± 0.5 b | 3.6 ± 0.3 c | 1.7 ± 0.2 a | 2.6 ± 0.4 b | 3.0 ± 0.4 b |
P (%) | 0.45 ± 0.11 a | 0.66 ± 0.19 b | 0.74 ± 0.15 c | 0.47 ± 0.12 a | 0.58 ± 0.11 b | 0.64 ± 0.13 b |
K (%) | 5.6 ± 1.3 a | 6.7 ± 1.2 b | 7.7 ± 1.4 c | 5.5 ± 1.0 a | 6.7 ± 1.1 b | 6.9 ± 1.0 b |
S (%) | 0.29 ± 0.07 a | 0.41 ± 0.10 b | 0.55 ± 0.08 c | 0.30 ± 0.09 a | 0.36 ± 0.13 ab | 0.41 ± 0.11 b |
Ca (%) | 2.0 ± 0.3 a | 5.1 ± 0.4 b | 6.6 ± 0.7 c | 2.1 ± 0.3 a | 3.9 ± 0.9 b | 4.8 ± 0.7 b |
Mg (%) | 0.48 ± 0.11 a | 0.52 ± 0.10 b | 0.54 ± 0.08 b | 0.46 ± 0.11 a | 0.49 ± 0.14 b | 0.47 ± 0.12 b |
Fe (mg kg−1) | 102.5 ± 7.6 a | 134.7 ± 8.6 b | 148.9 ± 7.9 c | 103.2 ± 9.7 a | 114.7 ± 10.2 b | 128.3 ± 9.9 b |
Mn (mg kg−1) | 100.2 ± 8.4 a | 127 ± 7.5 b | 132.2 ± 8.3 b | 98.6 ± 8.1 a | 112.1 ± 10.6 b | 129.1 ± 13.5 b |
Zn (mg kg−1) | 92.9 ± 7.6 a | 128.3 ± 5.9 b | 139.5 ± 6.9 c | 94.3 ± 7.6 a | 116.2 ± 9.7 b | 129.1 ± 11.6 b |
Cu (mg kg−1) | 6.2 ± 1.1 a | 7.9 ± 1.3 b | 8.8 ± 1.6 c | 6.0 ± 1.0 a | 6.9 ± 1.4 b | 7.6 ± 1.6 b |
Treatments | Chlorophyll a (g kg−1, FW) | Chlorophyll b (g kg−1, FW) | Total Carotenoids (g kg−1, FW) |
---|---|---|---|
CA treatment | 1.2 ± 0.2 a | 0.63 ± 0.09 a | 0.32 ± 0.06 a |
A1 treatment | 1.6 ± 0.2 b | 0.77 ± 0.12 b | 0.50 ± 0.08 b |
A2 treatment | 2.1 ± 0.2 c | 0.88 ± 0.13 b | 0.60 ± 0.11 c |
CB treatment | 1.1 ± 0.2 a | 0.62 ± 0.11 a | 0.31 ± 0.08 a |
B1 treatment | 1.6 ± 0.2 b | 0.78 ± 0.10 b | 0.49 ± 0.10 b |
B2 treatment | 1.9 ± 0.3 b | 0.84 ± 0.12 b | 0.54 ± 0.10 b |
Treatments | Fruit Number (n. plant−1) | Average Fruit Weight (g) |
---|---|---|
CA treatment | 12.5 ± 1.2 a | 259.3 ± 10.2 a |
A1 treatment | 15.0 ± 1.5 b | 295.7 ± 9.9 b |
A2 treatment | 18.8 ± 1.2 c | 324.7 ± 11.3 c |
CB treatment | 12.1 ± 1.3 a | 258.4 ± 10.1 a |
B1 treatment | 14.3 ± 1.7 b | 289.6 ± 11.4 b |
B2 treatment | 16.7 ± 1.5 b | 312.6c ± 10.0 bc |
Parameter (Unit) | CA Treatment | A1 Treatment | A2 Treatment | CB Treatment | B1 Treatment | B2 Treatment |
---|---|---|---|---|---|---|
N ↑ (%) | 1.6 ± 0.2 a | 2.2 ± 0.4 b | 2.8 ± 0.3 c | 1.4 ± 0.2 a | 1.9 ± 0.3 b | 2.4 ± 0.3 b |
P (%) | 0.29 ± 0.07 a | 0.35 ± 0.11 b | 0.40 ± 0.10 c | 0.30 ± 0.13 a | 0.34 ± 0.15 ab | 0.3 ± 0.12 b |
K (%) | 2.4 ± 0.8 a | 3.5 ± 1.0 b | 4.3 ± 1.2 c | 2.5 ± 0.6 a | 3.2 ± 1.3 b | 3.8 ± 1.3 b |
S (%) | 0.20 ± 0.04 a | 0.25 ± 0.07 b | 0.28 ± 0.03 b | 0.20 ± 0.05 a | 0.25 ± 0.06 b | 0.27 ± 0.04 b |
Ca (%) | 0.12 ± 0.06 a | 0.19 ± 0.03 a | 0.22 ± 0.05 b | 0.12 ± 0.06 a | 0.18 ± 0.03 a | 0.20 ± 0.06 b |
Mg (%) | 0.11 ± 0.03 a | 0.18 ± 0.05 ab | 0.25 ± 0.07 b | 0.13 ± 0.02 a | 0.17 ± 0.04 ab | 0.22 ± 0.05 b |
Fe (mg kg−1) | 37.6 ± 2.3 a | 45.2 ± 3.0 b | 53.6 ± 3.8 c | 37.1 ± 1.6 a | 43.4 ± 2.7 b | 49.8 ± 3.0 b |
Mn (mg kg−1) | 10.4 ± 1.5 a | 13.8 ± 1.1 b | 15.2 ± 1.4 c | 10.1 ± 1.2 a | 12.9 ± 1.6 b | 14.6 ± 1.3 bc |
Zn (mg kg−1) | 18.7 ± 1.6 a | 21.4 ± 1.9 b | 24.7 ± 2.1 c | 19.3 ± 1.5 a | 20.3 ± 1.3 b | 22.9 ± 2.0 bc |
Cu (mg kg−1) | 4.0 ± 1.3 a | 5.6 ± 1.5 b | 6.6 ± 1.1 c | 4.0 ± 1.1 a | 5.2 ± 1.2 b | 6.0 ± 1.7 b |
Parameter (Unit) | CA Treatment | A1 Treatment | A2 Treatment | CB Treatment | B1 Treatment | B2 Treatment |
---|---|---|---|---|---|---|
Vitamin C (g kg−1, FW) | 3.1 ± 0.2 a | 3.9 ± 0.42 a | 4.8 ± 0.7 a | 3.0 ± 0.3 a | 3.07 ± 0.3 a | 4.1 ± 0.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila-Pozo, P.; Parrado, J.; Martin-Presas, L.; Orts, J.M.; Tejada, M. Application of a Protein Hydrolysate-Based Biostimulant Obtained from Slaughterhouse Sludge on Pepper Crops. Horticulturae 2023, 9, 1147. https://doi.org/10.3390/horticulturae9101147
Ávila-Pozo P, Parrado J, Martin-Presas L, Orts JM, Tejada M. Application of a Protein Hydrolysate-Based Biostimulant Obtained from Slaughterhouse Sludge on Pepper Crops. Horticulturae. 2023; 9(10):1147. https://doi.org/10.3390/horticulturae9101147
Chicago/Turabian StyleÁvila-Pozo, Paloma, Juan Parrado, Luis Martin-Presas, José M. Orts, and Manuel Tejada. 2023. "Application of a Protein Hydrolysate-Based Biostimulant Obtained from Slaughterhouse Sludge on Pepper Crops" Horticulturae 9, no. 10: 1147. https://doi.org/10.3390/horticulturae9101147
APA StyleÁvila-Pozo, P., Parrado, J., Martin-Presas, L., Orts, J. M., & Tejada, M. (2023). Application of a Protein Hydrolysate-Based Biostimulant Obtained from Slaughterhouse Sludge on Pepper Crops. Horticulturae, 9(10), 1147. https://doi.org/10.3390/horticulturae9101147