Exogenous Application of Coconut Water to Promote Growth and Increase the Yield, Bioactive Compounds, and Antioxidant Activity for Hericium erinaceus Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Analyses of the Physicochemical Properties and Nutrient Content of H. erinaceus Substrate before Cultivation
2.3. Substrate Preparation and Mushroom Cultivation
2.4. Study of Growth and Yield of H. erinaceus with Coconut Water
2.5. Nutritional Composition of H. erinaceus
2.6. Preparation of H. erinaceus Ethanol Extract
2.7. Total Triterpenoid Content Analyses of H. erinaceus
2.8. Total Phenolic Contents Analyses of H. erinaceus
2.9. Radical Scavenging Activity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Analyses of the Physicochemical Properties and Nutrient Content of H. erinaceus Substrate before Cultivation
3.2. Phytohormones of Coconut Water
3.3. Study on Growth and Yield of H. erinaceus
3.4. Nutritional Composition of H. erinaceus
3.5. Analysis of Total Triterpenoid Content of H. erinaceus
3.6. Analyses of Total Phenolic Content of H. erinaceus
3.7. DPPH Radical Scavenging Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, S.T.; Wasser, S.P. The Cultivation and Environmental Impact of Mushrooms. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Gong, W.; Wang, Y.; Xie, C.; Zhou, Y.; Zhu, Z.; Peng, Y. Whole genome sequence of an edible and medicinal mushroom, Hericium erinaceus (Basidiomycota, Fungi). Genomics 2020, 112, 2393–2399. [Google Scholar] [CrossRef]
- Kalač, P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 2009, 113, 9–16. [Google Scholar] [CrossRef]
- Heleno, S.A.; Barros, L.; Sousa, M.J.; Martins, A.; Ferreira, I.C.F.R. Study and characterization of selected nutrients in wild mushrooms from Portugal by gas chromatography and high performance liquid chromatography. Microchem. J. 2009, 93, 195–199. [Google Scholar] [CrossRef]
- Heleno, S.A.; Barros, L.; Martins, A.; Queiroz, M.J.R.P.; Morales, P.; Fernández-Ruiz, V.; Ferreira, I.C.F.R. Chemical composition, antioxidant activity and bioaccessibility studies in phenolic extracts of two Hericium wild edible species. LWT-Food Sci. Technol. 2015, 63, 475–481. [Google Scholar] [CrossRef]
- Preeti, A.; Pushpa, S.; Sakshi, S.; Jyoti, A. Antioxidant Mushrooms: A Review. Int. Res. J. Pharm. 2012, 3, 65–70. [Google Scholar]
- Dulay, R.; Vicente, J.; Cruz, A.; Gagarin, J.; Fernando, W.; Kalaw, S.; Reyes, R. Antioxidant Activity and Total Phenolic Content of Volvariella volvacea and Schizophyllum commune Mycelia Cultured in Indigenous Liquid Media. Mycosphere 2016, 7, 131–138. [Google Scholar] [CrossRef]
- Sabaratnam, V.; Kah-Hui, W.; Naidu, M.; Rosie David, P. Neuronal health—Can culinary and medicinal mushrooms help? J. Tradit. Complement. Med. 2013, 3, 62–68. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry, Nutrition, and Health-Promoting Properties of Hericium erinaceus (Lion’s Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds. J. Agric. Food Chem. 2015, 63, 7108–7123. [Google Scholar] [CrossRef]
- Wang, M.; Gao, Y.; Xu, D.; Konishi, T.; Gao, Q. Hericium erinaceus (Yamabushitake): A unique resource for developing functional foods and medicines. Food Funct. 2014, 5, 3055–3064. [Google Scholar] [CrossRef]
- Liu, J.-y.; Hou, X.-X.; Li, Z.-Y.; Shan, S.-H.; Chang, M.-C.; Feng, C.-P.; Wei, Y. Isolation and structural characterization of a novel polysaccharide from Hericium erinaceus fruiting bodies and its arrest of cell cycle at S-phage in colon cancer cells. Int. J. Biol. Macromol. 2020, 157, 288–295. [Google Scholar] [CrossRef]
- Zeng, X.; Ling, H.; Yang, J.; Chen, J.; Guo, S. Proteome analysis provides insight into the regulation of bioactive metabolites in Hericium erinaceus. Gene 2018, 666, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.W.; Shizuki, K.; Hosokawa, S.; Suzuki, M.; Suganuma, H.; Inakuma, T.; Li, J.; Ohnishi-Kameyama, M.; Nagata, T.; Furukawa, S.; et al. Two Novel Diterpenoids, Erinacines H and I from the Mycelia of Hericium erinaceum. Biosci. Biotechnol. Biochem. 2000, 64, 2402–2405. [Google Scholar] [CrossRef] [PubMed]
- Kenmoku, H.; Tanaka, K.; Okada, K.; Kato, N.; Sassa, T. Erinacol (Cyatha-3,12-dien-14β-ol) and 11-O-Acetylcyathin A3, New Cyathane Metabolites from an Erinacine Q-Producing Hericium erinaceum. Biosci. Biotechnol. Biochem. 2004, 68, 1786–1789. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wu, P.R.; Shen, Z.Y.; Chen, X.D. Chemical analysis of Hericium erinaceum polysaccharides and effect of the polysaccharides on derma antioxidant enzymes, MMP-1 and TIMP-1 activities. Int. J. Biol. Macromol. 2010, 47, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.-Y.; Abdulla, M.; Raman, J.; Phan, C.-W.; Kuppusamy, U.R.; Golbabapour, S.; Sabaratnam, V. Gastroprotective effects of Lion’s Mane Mushroom Hericium erinaceus (Bull.:Fr.) Pers. (Aphyllophoromycetideae) extract against ethanol-induced ulcer in rats. Evid.-Based Complement. Altern. Med. 2013, 2013, 492976. [Google Scholar] [CrossRef] [PubMed]
- Phan, C.-W.; Guan-Serm, L.; Hong, S.L.; Wong, Y.-T.; Brkljača, R.; Urban, S.; Abd Malek, S.N.; Sabaratnam, V. Hericium erinaceus (Bull.:Fr) Pers. cultivated in tropical conditions: Isolation of hericenones and demonstration of NGF-mediated neurite outgrowth in PC12 cells via MEK/ERK and PI3K-Akt signaling pathways. Food Funct. 2014, 5, 3160–3169. [Google Scholar] [CrossRef]
- Lu, L.; Li, J.; Cang, Y. PCR-Based Sensitive Detection of Medicinal Fungi Hericium Species from Ribosomal Internal Transcribed Spacer (ITS) Sequences. Biol. Pharm. Bull. 2002, 25, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-D.; Ko, H.G.; Kim, S.H.; Park, W.M. Molecular identification of Asian isolates of medicinal mushroom Hericium erinaceum by phylogenetic analysis of nuclear ITS rDNA. J. Microbiol. Biotechnol. 2004, 14, 816–821. [Google Scholar]
- Darmasiwi, S.; Aramsirirujiwet, Y.; Kimkong, I. Evaluation of the nutritional value, mycochemicals, and antioxidant activities of Hericium erinaceus cultivated using jasmine rice. Asian J. Agric. Biol. 2022, 1–11. [Google Scholar] [CrossRef]
- Kabel, M.A.; Jurak, E.; Mäkelä, M.R.; de Vries, R.P. Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation. Appl. Microbiol. Biotechnol. 2017, 101, 4363–4369. [Google Scholar] [CrossRef]
- Dulay, R.M.R.; Cabrera, E.C.; Kalaw, S.P.; Reyes, R.G. Optimization of submerged culture conditions for mycelial biomass production of fourteen Lentinus isolates from Luzon Island, Philippines. Biocatal. Agric. Biotechnol. 2021, 38, 102226. [Google Scholar] [CrossRef]
- Yong, J.W.H.; Ge, L.; Ng, Y.F.; Tan, S.N. The Chemical Composition and Biological Properties of Coconut (Cocos nucifera L.) Water. Molecules 2009, 14, 5144–5164. [Google Scholar] [CrossRef] [PubMed]
- Hérivaux, A.; Bernonville, T.D.d.; Roux, C.; Clastre, M.; Courdavault, V.; Gastebois, A.; Bouchara, J.-P.; James, T.Y.; Latgé, J.-P.; Martin, F.; et al. The Identification of Phytohormone Receptor Homologs in Early Diverging Fungi Suggests a Role for Plant Sensing in Land Colonization by Fungi. mBio 2017, 8, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W.; International, A. Official Methods of Analysis of AOAC International, 17th ed.; current through revision ed.; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Chutimanukul, P.; Phatthanamas, W.; Thepsilvisut, O.; Chantarachot, T.; Thongtip, A.; Chutimanukul, P. Commercial scale production of Yamabushitake mushroom (Hericium erinaceus (Bull.) Pers. 1797) using rubber and bamboo sawdust substrates in tropical regions. Sci. Rep. 2023, 13, 13316. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.N.; Yong, J.W.H.; Ge, L. Analyses of Phytohormones in Coconut (Cocos nucifera L.) Water Using Capillary Electrophoresis-Tandem Mass Spectrometry. Chromatography 2014, 1, 211–226. [Google Scholar] [CrossRef]
- Ni, Q.; Xu, G.; Wang, Z.; Gao, Q.; Wang, S.; Zhang, Y. Seasonal Variations of the Antioxidant Composition in Ground Bamboo Sasa argenteastriatus Leaves. Int. J. Mol. Sci. 2012, 13, 2249–2262. [Google Scholar] [CrossRef]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Seephonkai, P.; Samchai, S.; Thongsom, A.; Sunaart, S.; Kiemsanmuang, B.; Chakuton, K. DPPH Radical Scavenging Activity and Total Phenolics of Phellinus Mushroom Extracts Collected from Northeast of Thailand. Chin. J. Nat. Med. 2011, 9, 441–445. [Google Scholar]
- Imtiaj, A.; Jayasinghe, C.; Lee, G.; Shim, M.; Ro, H.-S.; Lee, H.S.; Hur, H.; Lee, M.; Lee, U.Y.; Lee, T.-S. Vegetative Growth of Four Strains of Hericium erinaceus Collected from Different Habitats. Mycobiology 2008, 36, 88–92. [Google Scholar] [CrossRef]
- Pardo Giménez, A.; Pardo-González, J.E. Evaluation of casing materials made from spent mushroom substrate and coconut fibre pith for use in production of Agaricus bisporus (Lange) Imbach. Span. J. Agric. Res. 2008, 6, 683–690. [Google Scholar] [CrossRef]
- Chutimanukul, P.; Sukdee, S.; Prajuabjinda, O.; Thepsilvisut, O.; Panthong, S.; Athinuwat, D.; Chuaboon, W.; Poomipan, P.; Vachirayagorn, V. The Effects of Soybean Meal on Growth, Bioactive Compounds, and Antioxidant Activity of Hericium erinaceus. Horticulturae 2023, 9, 693. [Google Scholar] [CrossRef]
- Lin, E.-S.; Chen, Y.-H. Factors affecting mycelial biomass and exopolysaccharide production in submerged cultivation of Antrodia cinnamomea using complex media. Bioresour. Technol. 2007, 98, 2511–2517. [Google Scholar] [CrossRef] [PubMed]
- Zied, D.; Savoie, J.-M.; Pardo-Giménez, A. Soybean the Main Nitrogen Source in Cultivation Substrates of Edible and Medicinal Mushrooms. Soybean Nutr. 2011, 22, 433–452. [Google Scholar]
- Bahram, M.; Netherway, T. Fungi as mediators linking organisms and ecosystems. FEMS Microbiol. Rev. 2022, 46, fuab058. [Google Scholar] [CrossRef]
- Kende, H.; Zeevaart, J. The Five “Classical” Plant Hormones. Plant Cell 1997, 9, 1197–1210. [Google Scholar] [CrossRef]
- Zdarska, M.; Dobisová, T.; Gelová, Z.; Pernisová, M.; Dabravolski, S.; Hejátko, J. Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development. J. Exp. Bot. 2015, 66, 4913–4931. [Google Scholar] [CrossRef]
- Mustafa, F.A.; Kandar, M.; Aryantha, I. Enhancing Lovastatin Biosynthesis in Oyster Mushrooms (Pleurotus ostreatus) using Phytohormones. Makara J. Sci. 2023, 27, 7. [Google Scholar]
- Unkles, S.E.; Wang, R.; Wang, Y.; Glass, A.D.M.; Crawford, N.M.; Kinghorn, J.R. Nitrate Reductase Activity Is Required for Nitrate Uptake into Fungal but Not Plant Cells. J. Biol. Chem. 2004, 279, 28182–28186. [Google Scholar] [CrossRef]
- Sánchez, C. Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl. Microbiol. Biotechnol. 2010, 85, 1321–1337. [Google Scholar] [CrossRef]
- Sharma, V.K.; Canditelli, M.; Fortuna, F.; Cornacchia, G. Processing of urban and agro-industrial residues by aerobic composting: Review. Energy Convers. Manag. 1997, 38, 453–478. [Google Scholar] [CrossRef]
- Romanov, G.; Schmülling, T. On the biological activity of cytokinin free bases and their ribosides. Planta 2022, 255, 27. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Ahmed, S.; Telang, S.; Mmv, B. The nutritional value of Pleurotus ostreatus (JACQ.:FR.) Kumm cultivated on different lignocellulosic agrowastes. Innov. Rom. Food Biotechnol. 2010, 7, 66–76. [Google Scholar]
- Xu, X.; Zhang, X.; Chen, C. Stimulated production of triterpenoids of Inonotus obliquus using methyl jasmonate and fatty acids. Ind. Crops Prod. 2016, 85, 49–57. [Google Scholar] [CrossRef]
- Alsoufi, A.S.M.; Staśkiewicz, K.; Markowski, M. Alterations in oleanolic acid and sterol content in marigold (Calendula officinalis) hairy root cultures in response to stimulation by selected phytohormones. Acta Physiol. Plant. 2021, 43, 44. [Google Scholar] [CrossRef]
- Abe, I.; Rohmer, M.; Prestwich, G.D. Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem. Rev. 1993, 93, 2189–2206. [Google Scholar] [CrossRef]
- Sawai, S.; Saito, K. Triterpenoid biosynthesis and engineering in plants. Front. Plant Sci. 2011, 2, 25. [Google Scholar] [CrossRef]
- Moses, T.; Pollier, J.; Shen, Q.; Soetaert, S.; Reed, J.; Erffelinck, M.-L.; Nieuwerburgh, F.; Bossche, R.; Osbourn, A.; Thevelein, J.; et al. OSC2 and CYP716A14v2 Catalyze the Biosynthesis of Triterpenoids for the Cuticle of Aerial Organs of Artemisia annua. Plant Cell 2015, 27, 286–301. [Google Scholar] [CrossRef]
- Chaurasia, A.; Biswas, S.; Lal, K.; Husain, A.; Kumar, S. Changes of Phenolic Compound in Pleurotus florida (Mont.) Singer due to Effect of Plant Growth Hormones and its Effect on Crop Growth and Yield. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1026–1035. [Google Scholar] [CrossRef]
- Piasecka, A.; Jedrzejczak-Rey, N.; Bednarek, P. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. New Phytol. 2015, 206, 948–964. [Google Scholar] [CrossRef]
- Rohlfs, M. Fungal secondary metabolite dynamics in fungus–grazer interactions: Novel insights and unanswered questions. Front. Microbiol. 2015, 5, 788. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Yuan, W.; Zhou, R.; Lv, G.; Sun, M.; Zhao, Y.; Zheng, W. Production of hispidin polyphenols from medicinal mushroom Sanghuangporus vaninii in submerged cultures. Chin. Herb. Med. 2023. [Google Scholar] [CrossRef]
- Farmer, E.E.; Alméras, E.; Krishnamurthy, V. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol. 2003, 6, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Wasternack, C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 2007, 100, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Vamanu, E. In vitro antioxidant and antimicrobial activities of two edible mushroom mycelia obtained in the presence of different nitrogen sources. J. Med. Food 2013, 16, 155–166. [Google Scholar] [CrossRef]
- Halliwell, B.; Rafter, J.; Jenner, A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: Direct or indirect effects? Antioxidant or not? Am. J. Clin. Nutr. 2005, 81, 268S–276S. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Mwangi, R.W.; Macharia, J.M.; Wagara, I.N.; Bence, R.L. The antioxidant potential of different edible and medicinal mushrooms. Biomed. Pharmacother. 2022, 147, 112621. [Google Scholar] [CrossRef]
- Chirinos, R.; Campos, D.; Costa, N.; Arbizu, C.; Pedreschi, R.; Larondelle, Y. Phenolic profiles of andean mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers: Identification by HPLC-DAD and evaluation of their antioxidant activity. Food Chem. 2008, 106, 1285–1298. [Google Scholar] [CrossRef]
- Gülçin, İ. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
- Jaberian, H.; Piri, K.; Nazari, J. Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chem. 2013, 136, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Aremu, A.; Moyo, M.; Amoo, S.; Gruz, J.; Šubrtová, M.; Plíhalová, L.; Doležal, K.; van Staden, J. Effect of a novel aromatic cytokinin derivative on phytochemical levels and antioxidant potential in greenhouse grown Merwilla plumbea. Plant Cell Tissue Organ Cult. PCTOC 2014, 119, 501–509. [Google Scholar] [CrossRef]
Constituents of Substrate | Contents |
---|---|
pH | 6.77 |
EC (dS m−1) | 1.39 |
Moisture content (%) | 69.2 |
Organic matter (%) | 79.30 |
Organic carbon (%) | 46.00 |
Total nitrogen (%) | 1.16 |
Total phosphorus (%) | 0.10 |
Total potassium (%) | 0.61 |
C:N ratio | 39.66 |
Phytohormones Type | Contents in Coconut Water (µg mL−1) | |
---|---|---|
Auxin | indole-3-acetic acid | 138.9 |
Cytokinin | dihydrozeatin O-glucoside | 40.2 |
trans-zeatin O-glucoside | 42.8 | |
trans-zeatin riboside | 68.9 | |
trans-zeatin riboside-5′-monophosphate | 9.1 | |
Gibberellins | gibberellin 1 | 13.9 |
gibberellin 3 | 33.4 |
Concentration (%v/v) | Number of Cap (Cap) | Diameter of Cap (cm) | Fresh Weight (g) | Dry Weight (g) | Biological Efficiency (%) |
---|---|---|---|---|---|
0 (control) | 3.8 ± 0.45 c | 8.42 ± 0.14 c | 72.79 ± 3.05 d | 8.26 ± 0.27 c | 31.51 ± 1.32 d |
20 | 5.6 ± 0.74 a | 9.83 ± 0.21 a | 88.86 ± 2.90 a | 10.07 ± 0.73 a | 38.47 ± 1.26 a |
40 | 4.5 ± 0.35 b | 9.64 ± 0.50 a | 78.40 ± 1.78 c | 9.02 ± 0.10 b | 33.94 ± 0.77 c |
60 | 4.6 ± 0.42 b | 9.45 ± 0.74 ab | 82.99 ± 3.09 bc | 9.18 ± 0.53 b | 36.14 ± 1.34 bc |
80 | 4.8 ± 0.57 b | 9.03 ± 0.18 b | 83.47 ± 5.03 b | 9.49 ± 0.40 ab | 35.92 ± 2.18 bc |
100 | 4.8 ± 0.57 b | 9.02 ± 0.39 b | 86.84 ± 4.50 ab | 9.94 ± 0.65 a | 38.11 ± 2.54 ab |
F-test | ** | ** | ** | ** | ** |
C.V.% | 10.95 | 3.83 | 4.11 | 6.91 | 4.36 |
Concentration (%v/v) | Nutritional Composition (%) | Energy (kcal) | |||||
---|---|---|---|---|---|---|---|
Moisture Content | Ash Content | Crude Protein | Crude Fat | Total Carbohydrate | Dietary Fiber | ||
0 | 6.29 ± 0.04 | 9.58 ± 0.35 c | 23.48 ± 0.82 c | 2.53 ± 0.31 b | 50.40 ± 0.85 a | 11.09 ± 0.96 a | 318.30 ± 3.16 a |
20 | 6.07 ± 0.10 | 12.33 ± 0.45 ab | 27.74 ± 0.41 a | 3.04 ± 0.54 a | 40.98 ± 1.31 c | 7.95 ± 0.17 c | 301.65 ± 3.94 c |
40 | 6.12 ± 0.19 | 11.71 ± 0.29 b | 25.89 ± 0.36 b | 3.40 ± 0.25 a | 44.28 ± 1.19 b | 8.34 ± 0.64 c | 312.46 ± 3.61 b |
60 | 6.07 ± 0.09 | 12.68 ± 0.39 a | 25.53 ± 1.04 b | 3.22 ± 0.43 a | 43.98 ± 2.31 b | 8.85 ± 1.04 bc | 312.22 ± 2.51 b |
80 | 6.14 ± 0.10 | 12.88 ± 0.86 a | 25.03 ± 0.34 b | 3.17 ± 0.46 a | 45.59 ± 1.85 b | 9.03 ± 0.52 bc | 309.08 ± 3.32 b |
100 | 6.17 ± 0.15 | 12.76 ± 0.62 a | 24.99 ± 0.52 b | 3.03 ± 0.59 a | 46.10 ± 2.24 b | 9.67 ± 0.50 b | 311.96 ± 2.94 b |
F-test | ns | ** | ** | * | ** | ** | ** |
C.V.% | 1.82 | 3.22 | 4.06 | 2.28 | 3.62 | 6.87 | 1.05 |
Concentration (%v/v) | Total Phenolic Content (mg GAE/g DW) | DPPH Scavenging Activity (IC50, mg/mL) |
---|---|---|
0 | 14.42 ± 5.26 c | 0.77 ± 0.10 c |
20 | 17.07 ± 9.57 a | 0.60 ± 0.03 a |
40 | 15.90 ± 9.98 b | 0.69 ± 0.05 b |
60 | 16.62 ± 9.86 ab | 0.64 ± 0.01 ab |
80 | 16.80 ± 3.84 ab | 0.64 ± 0.04 ab |
100 | 17.39 ± 4.55 a | 0.58 ± 0.01 a |
F-test | ** | ** |
C.V.% | 7.27 | 5.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chutimanukul, P.; Sukdee, S.; Prajuabjinda, O.; Thepsilvisut, O.; Panthong, S.; Ehara, H.; Chutimanukul, P. Exogenous Application of Coconut Water to Promote Growth and Increase the Yield, Bioactive Compounds, and Antioxidant Activity for Hericium erinaceus Cultivation. Horticulturae 2023, 9, 1131. https://doi.org/10.3390/horticulturae9101131
Chutimanukul P, Sukdee S, Prajuabjinda O, Thepsilvisut O, Panthong S, Ehara H, Chutimanukul P. Exogenous Application of Coconut Water to Promote Growth and Increase the Yield, Bioactive Compounds, and Antioxidant Activity for Hericium erinaceus Cultivation. Horticulturae. 2023; 9(10):1131. https://doi.org/10.3390/horticulturae9101131
Chicago/Turabian StyleChutimanukul, Preuk, Siripong Sukdee, Onmanee Prajuabjinda, Ornprapa Thepsilvisut, Sumalee Panthong, Hiroshi Ehara, and Panita Chutimanukul. 2023. "Exogenous Application of Coconut Water to Promote Growth and Increase the Yield, Bioactive Compounds, and Antioxidant Activity for Hericium erinaceus Cultivation" Horticulturae 9, no. 10: 1131. https://doi.org/10.3390/horticulturae9101131
APA StyleChutimanukul, P., Sukdee, S., Prajuabjinda, O., Thepsilvisut, O., Panthong, S., Ehara, H., & Chutimanukul, P. (2023). Exogenous Application of Coconut Water to Promote Growth and Increase the Yield, Bioactive Compounds, and Antioxidant Activity for Hericium erinaceus Cultivation. Horticulturae, 9(10), 1131. https://doi.org/10.3390/horticulturae9101131