Microbial and Plant-Based Compounds as Alternatives for the Control of Phytopathogenic Bacteria
Abstract
:1. Introduction
2. Antagonistic Microorganisms and Microbial Biopesticides
2.1. Potential of Some Antagonistic Fungal Strains against Phytopathogenic Bacteria
2.2. Potential of Some Antagonistic Bacterial Strains and Bacteriophages against Phytopathogenic Bacteria
2.3. Advantages and Disadvantages of Antagonistic Microorganisms in Plant Protection
3. Antibacterial Activity of Some Plant Waste Products
3.1. Importance of Management of Agricultural Byproducts and Wastes
3.2. Antibacterial Properties of Olive Mill Wastewater
Antibacterial Properties of Phenolic Compound Hydroxytyrosol
3.3. Other Agricultural and Agro-Industrial By-Products and Wastes Showing Antibacterial Properties
4. Antibacterial Activity of Essential Oils and Plants Extracts
4.1. Antibacterial Potential of Essential Oils and Essential Oil Compounds
4.1.1. Plant Species from the Lamiaceae Family
4.1.2. Plant Species Other Than Lamiaceae
4.2. Antibacterial Properties of Plant Extracts
4.3. Mechanism of Action of Plant-Based Compounds against Gram-Positive and Gram-Negative Bacterial Species
Reference | Source | Bacterial Species | Plant Species | MIC | Determination Method | Mode of Action |
---|---|---|---|---|---|---|
[100] | Tarakanov and Dzhalilov | Pseudomonas savastanoi pv. glycinea Curtobacterium flaccumfaciens pv. flaccumfaciens | EOs Cinnamomum cassia (L.) J. Presl Thymus vulgaris L. Origanum vulgare L. Mentha longifolia (L.) Huds. Mentha piperita L. Syzygium aromaticum (L.) Merr. & L.M.Perry Lavandula angustifolia Chaix ex Vill. Mill. Achillea millefolium L. Allium sativum L. Citrus aurantiifolia (Christm.) Swingle Elettarria cardamomum (L.) Maton Citrus reticulata Hort. Pimpinella anisum L. Foeniculum vulgare Mill. Salvia officinalis L. Extracts Bergenia crassifolia (L.) Fritsch-ethanol Mellisa officinalis L.-ethanol Capsicum annuum L.-ethanol Sambucus nigra L.-ethanol Phytolacca americana L.-ethanol C. annuum-water Galega officinalis L.-water Arthemisia absinhtium L.-ethanol Phellodendron amurense Rupr.-ethanol Rosa pendulina L.-ethanol Chelidonium majus L.-ethanol Morus nigra L.-ethanol Spiraea salicifolia L.-water | 0.200–>3200 µg/mL 1000–100,000 µg/mL | Disc diffusion Broth microdilution | n.t. |
[98] | Bozkurt et al. | Rhizobium radiobacter P. savastanoi pv. savastanoi P. savastanoi pv. nerii | Thymus sipyleus Boiss. Rosmarinus officinalis (L.) Schleid. Mentha spicata L. Laurus nobilis L. Origanum majorana Boiss. L. Ocimum basilicum L. M. officinalis Salvia officinalis L. Thymbra spicata var. spicata L. Lavandula stoechas L. subsp. stoechas Origanum syriacum L. Thymus Serpyllum L. Foeniculum vulgare Mill. EOs | undiluted | Disc diffusion | n.t. |
[123] | Hsouna et al. | R. radiobacter | Mentha piperita L. EO | 10–12,500 µg/mL | Disc diffusion Broth microdilution | Disruption of cell membrane |
[119] | Al-Baharwee et al. | R. radiobacter | Annona atemoya Mabb. | 15.6–31.3 µg/mL | Agar well diffusion Broth microdilution | Damage to cell membrane |
[2] | Muthee-Gakuubi et al. | Xanthomonas axonopodis pv. phaseolicola X. axonopodis pv. manihotis P. savastanoi pv. phaseolicola | Tagetes minuta L. EO | 12,000–48,000 µg/mL | Disc diffusion Broth dilution | n.t. |
[87] | Benali et al. | Clavibacter michiganensis subsp. michiganensis P. savastanoi pv. savastanoi | Mentha suaveolens L., Cistus ladanifer L. EOs and methanolic and ethanolic extracts | 190–780 µg/mL | Disc diffusion Broth microdilution | n.t. |
[111] | Janaćković et al. | X. campestris pv. campestris Erwinia amylovora P. syringae pv. syringae X. arboricola pv. juglandis | Ambrosia artemisiifolia Michx. L.EO | 4–1,500,000 µg/mL | Broth microdilution | n.t. |
[120] | Morales-Ubaldo et al. | C. michiganensis subsp. michiganensis P. syringae X. campestris | Hydroalcoholic extract Larrea tridentata (DC.) Coville | 3120–8000 µg/mL | Disc diffusion Broth microdilution | Affect proteins of the ATP binding cassette transport system |
[112] | Bouchekouk et al. | E. amylovora P. carotovorum subsp. carotovorum P. savastanoi pv. savastanoi | Pteridium aquilinum (L.) Kuhn EO | 0.625–5.00 µL/mL | Disc diffusion Agar diffusion | n.t. |
[99] | Grul’ová et al. | C. michiganensis P. syringae pv. phaseolicola P. savastanoi X. campestris | Origanum vulgare L. EO | 100–10,000 µL/mL | Disc diffusion | n.t. |
[93] | Caparrotta et al. | R. radiobacter P. savastanoi pv. savastanoi | Boswellia papyrifera (Delile ex Caill.) Hochst. B. frereana Birdw. B. dalzielli Hutch. B. rivae Engl. B. neglecta S.Moore Canarium madagascariensis Engl. C. schweinfurtii Engl. Bursera bipinnata (DC.) Engl. B. microphylla A.Gray Commiphora guidotti Chiov. C. wildii Merxm. Hymenaea verrucosa Gaertn. EOs | 0.2% (v/v) | Overnight incubation in liquid medium without dilution | n.t. |
[97] | Brentini Santiago et al. | Xyllela fastidiosa | Pogostemon patchouli Pellet. Amyris balsamifera L. | 125 µg/mL | Broth microdilution Microtitration plate assay | n.t. |
Cinnamomum zeylanicum Blume Cedrus atlântica (Endl.) G.Manetti ex Carriere Commiphora myrha (T.Nees) Engl. Cupressus sempervirens L. Citrus paradisi Macfad. Boswellia carterri Flueck. Citrus aurantium L. Salvia sclarea L. Thymus vulgaris | 500 µg/mL | |||||
Citrus bergamia Risso & Poit. Eucalyptus globulus Labill. Zingiber officinale Roscoe Cinnamomum camphora (L.) J.Presl Abies sibirica Ledeb. Melaleuca alternifolia (Maiden & Betche) Cheel | 1000 µg/mL | . | ||||
[96] | Vasinauskiene et al. | E. carotovora subsp. carotovora X. vesicatoria P. marginalis pv. marginalis P. syringae pv. syringae P. syringae pv. tomato Bacillus sp. | Origanum vulgare Acorus calamus L. Achillea millefolium L. Achillea filipendulina Lam. Achillea cartilaginea Petri Carum carvi L. Mentha piperita | Undiluted | Disc diffusion | n.t. |
[104] | Gormez et al. | R. radiobacter Bacillus pumilus C. michiganensis subsp. michiganensis Enterobacter intermedius Erwinia carotovora subsp. carotovora E. chrysanthemi P. cichorii P. corrugate P. fluorescens P. syringae pv. syringae P. syringae pv. phaseolicola P. syringae pv. pisi P. syringae pv. tabaci P. syringae pv. tomato Ralstonia solanacearum X. campestris pv. campestris X. vesicatoria | Calamintha nepeta (L.) Kuntze Satureja hortensis L. | 7.81–31.25 µg/mL | Disc diffusion Broth dilution | n.t. |
[116] | Feizi et al. | P. syringae pv. syringae | Carum capticum Ziziphora clinopodioides Lam. | Undiluted | Disc diffusion Well diffusion Vapor phase test | n.t. |
[110] | Mamoucha et al. | P. syringae pv. phaseolicola | Laurus nobilis L. | Undiluted and 1.25% (v/v) | Disc diffusion Well diffusion | n.t. |
[102] | Patel et al. | P. cichorii P. syringae X. perforans | Nepeta cataria L. Origanum vulgare | 2.5–5.0 % (v/v) | Agar well diffusion | n.t. |
[103] | Todorović et al. | P. tolaasii C. michiganensis subsp. nichiganensis X. campestris pv. phaseoli | Illicum verum Hooker Juniperus oxycedrus L. Eucalyptus globulus Labilardie Lavandula angustifolia Mill. Citrus lemon L. Cymbopogon flexuosus Stapf. Mentha piperita Origanum vulgare Pinus nigra L. Pinus pinaster Aiton Pinus silvestris L. Rosmarinus officinalis L. Salvia officinalis L. Abies alba Mill. Gaultheria procumbens L. | 0.02–>32 µg/mL of air | Well diffusion (volatiles) | n.t. |
[109] | Sánchez-Hernández et al. | C. michiganensis subsp. michiganensis P. cichorii P. syringae pv. pisi P. syringae pv. syringae P. syringae pv. tomato X. vesicatoria | Hydroalcoholic extract: Ginko biloba L. | 500 µL/mL 750 µL/mL 750 µL/mL 750 µL/mL 750 µL/mL 1000 µL/mL | Agar dilution | n.t. |
[115] | Badawy and Abdelgaleil | R. radiobacter E. carotovora subsp. carotovora | Artemisia Judaica L. Artemisia monosperma Delile Callistemon viminalis (Sol. ex Gaertn.) G.Don Citrus aurantifolia (Christm.) Swingle Citrus lemon Citrus paradisi Citrus sinensis (L.) Osbeck Cupressus macrocarpa Hartw. ex Gordon Cupressus sempervirens L. Myrtus communis L. Origanum vulgare Pelargonium graveolens L.’Her. Rosmarinus officinalis (L.) Schleid. Syzygium cumini (L.) Skeels Schinus molle L. Schinus terebinthifolius Raddi Thuja occidentalis L. Vitex agnus-castus L. | 350–>1000 µg/mL | Broth dilution | n.t. |
[94] | Sauer et al. | X. citri subsp. citri | Citrus aurantium L. Cymbopogon winterianus Jowitt Foeniculum vulgare Gaertn Pinus eillottii Engelm Ocimum gratissimum L. | 0.121–7.81 µL/mL | Broth microdilution | n.t. |
4.4. Future Aspects of Potential Biopesticides in Agriculture
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schloss, P.D.; Handelsman, J. Status of the microbial census. Microbiol. Mol. Biol. Rev. 2004, 68, 686–691. [Google Scholar] [CrossRef]
- Muthee Gakuubi, M.; Wagacha, J.M.; Dossaji, S.F.; Wanzala, W. Chemical Composition and Antibacterial Activity of Essential Oils of Tagetes minuta (Asteraceae) against Selected Plant Pathogenic Bacteria. Int. J. Microbiol. 2016, 2016, 7352509. [Google Scholar] [CrossRef]
- Strange, R.N.; Scott, P.R. Plant Disease: A Threat to Global Food Security. Annu. Rev. Phytopathol. 2005, 43, 83–116. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.M.M.; Merfa, M.V.; Takita, M.A.; De Souza, A.A. Persistence in phytopathogenic bacteria: Do we know enough? Front. Microbiol. 2018, 9, 1099. [Google Scholar] [CrossRef] [PubMed]
- Leyns, F.; De Cleene, M.; Swings, J.-G.; Deley, J. The host range of the genus Xanthomonas. Bot. Rev. 1984, 50, 308–356. [Google Scholar] [CrossRef]
- Timilsina, S.; Potnis, N.; Newberry, E.A.; Liyanapathiranage, P.; Iruegas-Bocardo, F.; White, F.F.; Goss, E.M.; Jones, J.B. Xanthomonas diversity, virulence and plant-pathogen interactions. Nat. Rev. 2020, 18, 415–427. [Google Scholar] [CrossRef]
- Catara, V.; Cubero, J.; Pothier, J.F.; Bosis, E.; Bragard, C.; Đermić, E.; Holeva, M.C.; Jacques, M.-A.; Petter, F.; Pruvost, O.; et al. Trends in Molecular Diagnosis and Diversity Studies for Phytosanitary Regulated Xanthomonas. Microorganisms 2021, 9, 862. [Google Scholar] [CrossRef]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.A.X.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Coulthurst, S.J.; Pritchard, L.; Hedley, P.E.; Ravensdale, M.; Humphris, S.; Burr, T.; Takle, G.; Brurberg, M.B.; Birch, P.R.; et al. Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog. 2008, 4, e1000093. [Google Scholar] [CrossRef]
- Quesada, J.M.; Penyalver, R.; Pérez-Panadés, J.; Salcedo, C.I.; Carbonell, E.A.; López, M.M. Dissemination of Pseudomonas savastanoi pv. savastanoi populations and subsequent appearance of olive knot disease. Plant Pathol. 2010, 59, 262–269. [Google Scholar] [CrossRef]
- Arrebola, E.; Cazorla, F.M.; Perez-García, A.; de Vicente, A. Chemical and metabolic aspects of antimetabolite toxins produced by Pseudomonas syringae pathovars. Toxins 2011, 3, 1089–1110. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Mole, B.M.; Baltrus, D.A.; Dangl, J.L.; Grant, S.R. Global virulence regulation networks in phytopathogenic. Trends Microbiol. 2007, 15, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Kraepiel, Y.; Barny, M.A. Gram-negative phytopathogenic bacteria, all hemibiotrophs after all? Mol. Plant Pathol. 2016, 17, 313–316. [Google Scholar] [CrossRef]
- Cerboneschi, M.; Decorosi, F.; Biancalani, C.; Ortenzi, M.V.; Macconi, S.; Giovannetti, L.; Viti, C.; Campanella, B.; Onor, M.; Bramanti, E.; et al. Indole-3-acetic acid in plant-pathogen interactions: A key molecule for in planta bacterial virulence and fitness. Res. Microbiol. 2016, 167, 774–778. [Google Scholar] [CrossRef]
- Lovelace, A.H.; Dorhmi, S.; Hulin, M.T.; Li, Y.; Mansfield, J.W.; Ma, W. Effectors Identification in Plant Pathogens. Phytopathology 2023, 113, 637–650. [Google Scholar] [CrossRef]
- Zheng, X.; Weaver Spivey, N.; Zeng, W.; Liu, P.-P.; Qing Fu, Z.; Klessig, D.F.; Yang He, S.; Dong, X. Coronatine Promotes Pseudomonas syringae Virulence in Plants by Activating a Signaling Cascade that Inhibits Salicylic Acid Accumulation. Cell Host Microbe 2012, 11, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Bhardwaj, M.; Phan Tran, L.-S. Jasmonic Acid at the Crossroads of Plant Immunity and Pseudomonas syringae Virulence. Int. J. Mol. Sci. 2020, 21, 7482. [Google Scholar] [CrossRef] [PubMed]
- Buonaurio, R.; Moretti, C.; da Silva, D.P.; Cortese, C.; Ramos, C.; Venturi, V. The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease. Front. Plant Sci. 2015, 6, 434. [Google Scholar] [CrossRef] [PubMed]
- Mina, D.; Pereira, J.A.; Lino-Neto, T.; Baptista, P. Screening the Olive Tree Phyllosphere: Search and Find Potential Antagonists Against Pseudomonas savastanoi pv. savastanoi. Front. Microbiol. 2020, 11, 2051. [Google Scholar] [CrossRef]
- Parsek, M.R.; Greenberg, E.P. Sociomicrobiology: The connections between quorum sensing and biofilms. Trends Microbiol. 2005, 13, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Varympopi, A.; Dimopoulou, A.; Theologidis, I.; Karamanidou, T.; Kaldeli Kerou, A.; Vlachou, A.; Karfaridis, D.; Papafotis, D.; Hatzinikolaou, D.G.; Tsouknidas, A.; et al. Bactericides Based on Copper Nanoparticles Restrain Growth of Important Plant Pathogens. Pathogens 2020, 9, 1024. [Google Scholar] [CrossRef] [PubMed]
- Verhaegen, M.; Bergot, T.; Liebana, E.; Stancanelli, G.; Streissl, F.; Mingeot-Leclercq, M.-P.; Mahillon, J.; Bragard, C. On the use ofantibiotics to control plant pathogenic bacteria:a genetic and genomic perspective. Front. Microbiol. 2023, 14, 1221478. [Google Scholar] [CrossRef] [PubMed]
- Fenibo, E.O.; Ijoma, G.N.; Matambo, T. Bipesticides in Sustainable Agriculture: A Critical Sustainable Development Driver Governed by Green Chemistry Principles. Front. Susutain Food Syst. 2021, 5, 619058. [Google Scholar] [CrossRef]
- Warrior, P. Living system as natural crop-protection agents. Pest. Manag. Sci. 2000, 56, 681–687. [Google Scholar] [CrossRef]
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef] [PubMed]
- Hahlbrock, K.; Scheel, D. Physiology and molecular biology of phenylpropanoid metabolism. Ann. Rev. Plant Physiol. Plant Mol. Biology 1989, 40, 347–369. [Google Scholar] [CrossRef]
- Fleming, H.P.; Walter, W.M., Jr.; Etchells, J.L. Antimicrobial properties of oleuropein and products of its hydrolysis from green olives. Appl. Microbiol. 1973, 26, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef]
- Gonçalves, L.A.; Lorenzo, J.M.; Trindade, M.A. Fruit and Agro-Industrial Waste Extracts as Potential Antimicrobials in Meat Products: A Brief Review. Foods 2021, 10, 1469. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J.; Baptista, P. Filamentous fungi as biocontrol agents in olive (Olea europaea L.) diseases: Mycorrhizial and endophytic fungi. Crop Prot. 2021, 146, 105672. [Google Scholar] [CrossRef]
- Ma, J.T.; Dong, X.Y.; Li, Z.H.; Yan, H.; He, J.; Liu, J.K.; Feng, T. Antibacterial Metabolites from Kiwi Endophytic Fungus Fusarium tricinctum, a Potential Biocontrol Strain for Kiwi Canker Disease. J. Agric. Food Chem. 2023, 71, 7679–7688. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Z.; Duan, F.; Chen, Y.; Qiu, K.; Xiong, Q.; Lin, H.; Zhang, J.; Tan, H. Isolation, identification, and antibacterial evaluation of endophytic fungi from Gannan navel orange. Front. Microb. 2023, 14, 1172629. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Kumar, A.; de los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.d.C.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases—A Review. Plants 2023, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Song, X.-Y.; Shen, Q.-T.; Xie, S.-T.; Chen, X.-L.; Sun, C.-Y.; Zhong, Y.-Z. Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol. Lett. 2006, 260, 119–125. [Google Scholar] [CrossRef]
- Sivasakthi, S.; Usharani, G.; Saranraj, P. Biocontrol potentiality of plant growth promoting bacteria (PGPR)—Pseudomonas fluorescens and Bacillus subtilis: A review. Afr. J. Agric. Res. 2014, 9, 1265–1277. [Google Scholar]
- Chet, I.; Ordentlich, A.; Shapira, R.; Oppenheim, A. Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant Soil. 1990, 129, 85–92. [Google Scholar] [CrossRef]
- van Loon, L.C.; Bakker, P.A.H.M.; Pieterse, C.M.J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 1998, 36, 453–483. [Google Scholar] [CrossRef] [PubMed]
- Barea, J.M.; Pozo, M.J.; Azcón-Aguilar, C. Microbial co-operation in the rhizosphere. J. Exp. Bot. 2005, 56, 1761–1778. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Duffy, B.; Nowak, J.; Clément, C.; Barka, E.A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 2005, 71, 4951–5959. [Google Scholar] [CrossRef]
- Chang, W.T.; Chen, Y.C.; Jao, C.L. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresour. Technol. 2007, 98, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Kaymak, H.C. Potential of PGPR in Agricultural Inovations. In Plant Growth and Health Promoting Bacteria; Springer: Berlin/Heidelberg, Germany, 2010; pp. 45–79. [Google Scholar]
- Shen, X.; Hu, H.; Peng, H.; Wang, W.; Zhang, X. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genom. 2013, 14, 271. [Google Scholar] [CrossRef] [PubMed]
- Bukhat, S.; Imran, A.; Javaid, S.; Shadid, M.; Majeed, A.; Naqqash, T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol. Res. 2020, 238, 126486. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, R.; You, M.P.; Barbetti, M.J.; Chen, Y. Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms 2021, 9, 1988. [Google Scholar] [CrossRef] [PubMed]
- Aćimović, S.G.; Zeng, Q.; McGhee, G.; Sundin, G.W.; Wise, J.C. Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes. Front. Plant Sci. 2015, 6, 16. [Google Scholar] [CrossRef]
- Ali, A.O.; Rashid, T.S. Biocontrol Activities of Olive Endophytic Bacteria Isolates against Pseudomonas savastanoi. Polytech. J. 2022, 12, 114–120. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, S.; Wei, C.; Zhao, J. Bacterium strain 1-1-4 Pseudomonas fluorescens for biocontrol of peach crown gall disease. Acta Agric. Shanghai 1991, 7, 65–69. [Google Scholar]
- Mondal, K.K.; Singh, R.P.; Dureja, P.; Verma, J.P. Secondary metabolites of cotton rhizobacteria in the suppression of bacterial blight of cotton. Indian. Phytopathol. 2000, 53, 22–27. [Google Scholar]
- Stockwell, V.O.; Johnson, K.B.; Sugar, D.; Loper, J. Control of fire blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1 applied as single strains and mixed inocula. Phytopathology 2010, 100, 1330–1339. [Google Scholar] [CrossRef]
- Elsayed, T.R.; Grosch, R.; Smalla, K. Potato plant spheres and to a lesser extent the soil type influence the proportion and diversity of bacterial isolates with in vitro antagonistic activity towards Ralstonia solanacearum. FEMS Microbioly Ecol. 2021, 97, fiab038. [Google Scholar] [CrossRef] [PubMed]
- Bouaichi, A.; Benkirane, R.; El-kinany, S.; Habbadi, K.; Lougraimzi, H.; Sadik, S.; Benbouazza, A.; Achbani, E.H. Potential effect of antagonistic bacteria in the management of olive knot disease caused by Pseudomonas savastanoi pv. savastanoi. J. Microbiol. Biotech. Food Sci. 2019, 4, 1035–1040. [Google Scholar] [CrossRef]
- Krid, S.; Triki, M.A.; Gargouri, A.; Rhouma, A. Biocontrol of olive knot disease by Bacillus subtilis isolated from olive leaves. Ann. Microbiol. 2012, 62, 149–154. [Google Scholar] [CrossRef]
- Doksöz, S.; Bozkurt, I.A. Biological control of Pseudomonas savastanoi pv. savastanoi causing the olive knot disease with epiphytic and endophytic bacteria. J. Plant Pathol. 2022, 104, 65–78. [Google Scholar] [CrossRef]
- Broniarek-Niemiec, A.; Børve, J.; Puławska, J. Control of Bacterial Canker in Stone Fruit Trees by Chemical and Biological Products. Agronomy 2023, 13, 1166. [Google Scholar] [CrossRef]
- Vero, S.; Garmendia, G.; Allori, E.; Sanz, J.M.; Gonda, M.; Alconada, T.; Cavello, I.; Dib, J.R.; Diaz, M.A.; Nally, C.; et al. Microbial Biopesticides: Diversity, Scope, and Mechanisms Involved in Plant Disease Control. Diversity 2023, 15, 457. [Google Scholar] [CrossRef]
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and Bacterial Plant Diseases. Front. Microbiol. 2017, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Bragard, C.; Dehnen-Schmutz, K.; Di Seiro, F.; Gonthier, P.; Jacques, M.-A.; Jacques Miret, J.A.; Fejer Justesen, A.; MacLeod, A.; Magnusson, C.S.; Guzzo, M.; et al. Effectivness of in planta control measures of Xylella fastidiosa. EFSA J. 2019, 17, 5666. [Google Scholar] [CrossRef]
- Carlsson, G.; Palmborg, C.; Huss-Danell, K. Discrimination against 15N in three N2-fixing Trifolium species as influenced by Rhizobium strain and plant age. Acta Agric. Scanda 2006, 56, 31–38. [Google Scholar] [CrossRef]
- Ahmed, A.; Hasnain, S. Auxin producing Bacillus sp.: Auxin quantification and effect on the growth Solanum tuberosum. Pure Appl. Chem. 2010, 82, 313–319. [Google Scholar] [CrossRef]
- Caballo-Ponce, E.; Meng, X.; Uzelac, G.; Halliday, N.; Cámara, M.; Licastro, D.; da Silva, D.P.; Ramos, C.; Venturi, V. Quorum Sensing in Pseudomonas savastanoi pv. savastanoi and Erwinia toletana: Role in Virulence and Interspecies Interactions in the Olive Knot. Appl. Environ. Microbiol. 2018, 84, e00950-18. [Google Scholar] [CrossRef] [PubMed]
- Vuletin Selak, G.; Raboteg Božiković, M.; Abrouk, D.; Bolčić, M.; Žanić, K.; Perica, S.; Normand, P.; Pujić, P. Pseudomonas ST1 and Pantoea Paga Strains Cohabit in Olive Knots. Microorganisms 2022, 10, 1528. [Google Scholar] [CrossRef] [PubMed]
- Pandit, M.A.; Kumar, J.; Gulati, S.; Bhandari, N.; Mehta, P.; Katyal, R.; Rawat, C.D.; Mishra, V.; Kaur, J. Major Biological Control Strategies for Plant Pathogens. Pathogens 2022, 11, 273. [Google Scholar] [CrossRef] [PubMed]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef] [PubMed]
- Nath, P.C.; Ojha, A.; Debnath, S.; Sharma, M.; Sridhar, K.; Nayak, P.K.; Inbaraj, B.S. Biogeneration of Valuable Nanomaterials from Agro-Wastes: A Comprehensive Review. Agronomy 2023, 13, 561. [Google Scholar] [CrossRef]
- Bouaziz, M.; Grayer, R.J.; Simmonds, M.S.J.; Damak, M.; Sayadi, S. Identification and antioxidant potential of flavonoids and low molecular weight phenols in olive cultivar Chemlali growing in Tunisia. J. Agric. Food Chem. 2005, 53, 236–241. [Google Scholar] [CrossRef]
- Obied, H.K.; Allen, M.S.; Bedgood, D.R.; Prenzler, P.D.; Robards, K. Bioactivity and analysis of biophenols recovered from olive mill waste. J. Agricult Food Chem. 2005, 53, 823–837. [Google Scholar] [CrossRef]
- Yakhlef, W.; Arhab, R.; Romero, C.; Brenes, M.; de Castro, A.; Medina, E. Phenolic composition and antimicrobial activity of Algerian olive products and by-products. LWT Food Sci. Technol. 2018, 93, 323–328. [Google Scholar] [CrossRef]
- Feki, M.; Allouche, N.; Bouaziz, M.; Gargoubi, A.; Sayadi, S. Effect of storage of olive mill wastewaters on hydroxytyrosol concentration. Eur. J. Lipid Sci. Tech. 2006, 108, 1021–1027. [Google Scholar] [CrossRef]
- Obied, H.K.; Bedgood, D.R., Jr.; Prenzler, P.D.; Robards, K. Bioscreening of Australian olive mill waste extracts: Biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food Chem. Toxicol. 2007, 45, 1238–1248. [Google Scholar] [CrossRef]
- Krid, S.; Bouaziz, M.; Triki, M.A.; Gargouri, A.; Rhouma, A. Inhibition of olive knot disease by polyphenols extracted from olive mill waste waters. J. Plant Pathol. 2011, 93, 561–568. [Google Scholar]
- Capasso, R.; Evidente, A.; Schivo, L.; Orru’, G.; Marcialis, M.A.; Cristinzio, G. Antibacterial polyphenols from olive oil mill waste waters. J. Appl. Bacteriol. 1995, 79, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Ciafardini, G.; Zullo, B.A. Antimicrobial activity od oil-mill waste water polyphenols on the phytopathogen Xanthomonas campestris spp. Ann. Microbiol. 2003, 53, 283–290. [Google Scholar]
- Caballero-Guerrero, B.; Garrido-Fernández, A.; Fermoso, F.G.; Rodríguez-Gutierrez, G.; Fernández-Prior, M.A.; Reinhard, C.; Nyström, L.; Benítez-Cabello, A.; Nóe Arroyo-López, F. Antimicrobial effects of treated olive mill waste on foodborne pathogens. LWT Food Sci. Tech. 2022, 164, 113628. [Google Scholar] [CrossRef]
- Russo, E.; Spallarossa, A.; Comite, A.; Pagliero, M.; Guida, P.; Belotti, V.; Caviglia, D.; Schito, A.M. Valorization and Potential Antimicrobial Use of Olive Mill Wastewater (OMW) from Italian Olive oil Production. Antioxidants 2022, 11, 903. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; Romero, C.; de los Santos, B.; de Castro, A.; García, A.; Romero, F.; Brenes, M. Antimicrobial Activity of Olive Solutions from Stored Alpeorujo against Plant Pathogenic Microorganisms. J. Agric. Food Chem. 2011, 59, 6927–6932. [Google Scholar] [CrossRef] [PubMed]
- Pannucci, E.; Caracciolo, R.; Romani, A.; Cacciola, F.; Dugo, P.; Bernini, R.; Varvaro, L.; Santi, L. An hydroxytyrosol enriched extract from olive mill wastewaters exerts antioxidant activity and antimicrobial activity on Pseudomonas savastanoi pv. savastanoi and Agrobacterium tumefaciens. Nat. Product. Res. 2019, 35, 2677–2684. [Google Scholar] [CrossRef]
- Ditsawanon, T.; Roytrakul, S.; Phaonakrop, N.; Charoenlappanit, S.; Thaisakun, S.; Parinthawong, N. Novel Small Antimicrobial Peptides Extracted from Agricultural Wastes Act against Phytopathogens but Not Rhizobacteria. Agronomy 2022, 12, 1841. [Google Scholar] [CrossRef]
- Chiocchio, I.; Mandrone, M.; Tacchini, M.; Guerrini, A.; Poli, F. Phytochemical Profile and In Vitro Bioactivities of Plant-Based By-Products in View of a Potential Reuse and Valorization. Plants 2023, 12, 795. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Saeed, M.T. Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. J. King Saud. Univ. Sci. 2020, 32, 805–810. [Google Scholar] [CrossRef]
- Terea, H.; Selloum, D.; Rebiai, A.; Bouafia, A.; Mya, O.B. Preparation and characterization of cellulose/ZnO nanoparticles extracted from peanut shells: Effects on antibacterial and antifungal activities. Biomass Convers. Biorefin. 2023, 1–12. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Alhajaim, W.; Fatima, A.; Yasir, S.; Kamal, T.; Abbas, Y.; Khan, S.; Khan, A.H.; Manan, S.; Ullah, M.W.; et al. Development of low-cost bacterial cellulose-pomegranate peel extract-based antibacterial composite for potential biomedical applications. Int. Jo Biol. Macromol. 2023, 231, 123269. [Google Scholar] [CrossRef] [PubMed]
- Hyun Lee, K.; Chun, Y.; Hyun Lee, J.; Uk Lee, J.; Lee, T.; Young Yoo, H. Sustainable Utilization Strategy of Organic Waste via Fabrication of Bioelastomer with Antibacterial and Antioxidant Activities Using Mandarin Peel Extracts. Agriculture 2023, 13, 161. [Google Scholar] [CrossRef]
- D’agostino, M.; Tesse, N.; Frippiat, J.P.; Machouart, M.; Debourgogne, A. Essential Oils and Their Natural Active Compounds Presenting Antifungal Properties. Molecules 2019, 24, 3713. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, J.M.; Crippa, B.L.; Martins Alencar de Souza, V.V.; Perez Alonso, V.P.; da Motta Santos Júnior, E.; Picone, C.F.S.; Prata, A.S.; Silva, N.C.C. Antimicrobial action of Oregano, Thyme, Clove, Cinnamon and Black pepper essential oils free and encapsulated against foodborne pathogens. Food Control 2023, 144, 109356. [Google Scholar] [CrossRef]
- Najmi, Z.; Calogero Scalia, A.; De Giglio, E.; Cometa, S.; Cochis, A.; Colasanto, A.; Locatelli, M.; Coisson, J.D.; Iriti, M.; Vallone, L.; et al. Screening of Different Essential Oils Based on Their Physicochemical and Microbiological Properties to Preserve Red Fruits and Improve Their Shelf Life. Foods 2023, 12, 332. [Google Scholar] [CrossRef]
- Benali, T.; Bouyahya, A.; Habbadi, K.; Zengin, G.; Khabbach, A.; Achbani, E.H.; Hammani, K. Chemical composition and antibacterial activity of the essential oil and extracts of Cistus ladaniferus subsp. ladanifer and Mentha suaveolens against phytopathogenic bacteria and their ecofriendly management of phytopathogenic bacteria. Biocat Agric. Biotech. 2020, 28, 101696. [Google Scholar] [CrossRef]
- Rossi, P.-G.; Berti, L.; Panighi, J.; Luciani, A.; Maury, J.; Muselli, A.; Serra, D.R.; Gonny, M.; Bolla, J.M. Antibacterial action of essential oils from Corsica. J. Essent. Oil Res. 2007, 19, 176–182. [Google Scholar] [CrossRef]
- Amensour, M.; Sendra, E.; Perez-Alvarez, J.A.; Skali-Senhaji, N.; Abrini, J.; Fernández-López, J. Antioxidant activity and chemical content of methanol and ethanol extracts from leaves of rockrose (Cistus ladaniferus). Plant Foods Hum. Nutr. 2010, 65, 170–178. [Google Scholar] [CrossRef]
- de Sousa Barros, A.; de Morais, S.M.; Ferreira, P.A.T.; Vieira, I.G.P.; Craveiro, A.A.; Fontenelle, R.O.S.; de Menezes, J.E.S.A.; da Silva, F.W.F.; de Sousa, H.A. Chemical composition and functional properties of essential oils from Mentha species. Ind. Crop Prod. 2015, 76, 557–564. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, H.A.H.; El-Ghorab, A.H.; Takayuki, S. Bioactivity of essential oils and their volatile aroma components: Review. J. Essent. Oil Res. 2012, 24, 203–2012. [Google Scholar] [CrossRef]
- Caparrotta, S.; Comparini, D.; Marone, E.; Kimmenfield, R.; Luzzietti, L.; Taiti, C.; Mancuso, S. Correlation between VOC fingerprinting and antimicrobial activity of several essential oils extracted by plant resins against A. tumefaciens and P. savastanoi. Flavour. Fragr. J. 2019, 5, 377–387. [Google Scholar] [CrossRef]
- Sauer, A.V.; Santos, E.M.; Gonçalves-Zuliani, A.M.O.; Nocchi, P.T.R.; Nunes, W.M.C.; Bonato, C.M. Bacteriostatic and Bactericidal Activity In Vitro of Different Essential Oils as Alternative Treatments to Control Xanthomonas citri subsp. citri. Acta Hortic. 2015, 1065, 931–936. [Google Scholar] [CrossRef]
- Rathod, T.; Padalia, H.; Chand, S. Chemical constituents of Mentha piperita and Pongamia pinnata essential oils and their synergistic anticandidal activity with some antibiotics against multidrug resistant clinical isolates of Candida. J. Pharm. Phytochem. 2017, 6, 579–589. [Google Scholar]
- Vasinauskiene, M.; Radušiene, J.; Zitikaite, I.; Surviliene, E. Antibacterial activities of essential oils from aromatic and medicinal plants against growth of phytopathogenic bacteria. Agron. Res. 2006, 4, 437–440. [Google Scholar]
- Brentini Santiago, M.; da Silva Moraes, T.; Massuco, J.E.; Silva, L.O.; Lucarini, R.; da Silva, D.F.; Manzini Vieira, T.; Miller Crotti, A.E.; Gomes Martins, C.H. In vitro evaluation of essential oils for potential antibacterial effects against Xyllela fastidiosa. J. Phytopathol. 2018, 166, 790–798. [Google Scholar] [CrossRef]
- Bozkurt, I.A.; Soylu, S.; Kara, M.; Soylu, E.M. Chemical Composition and Antibacterial Activity of Essential Oils Isolated from Medicinal Plants against Gall Forming Plant Pathogenic Bacterial Disease Agents. KSU J. Agric. Nat. 2020, 23, 1474–1482. [Google Scholar] [CrossRef]
- Grul’ová, D.; Caputo, L.; Elshafie, H.S.; Baranová, B.; De Martino, L.; Sedlák, V.; Gogal’ová, Z.; Poráčová, B.; Camele, I.; De Feo, V. Thymol Chemotype Origanum vulgare L. Essential Oil as a Potential Selective Bio-Based Herbicide on Monocot Plant Species. Molecules 2020, 25, 595. [Google Scholar] [CrossRef] [PubMed]
- Tarakanov, R.I.; Dzhalilov, F.S.U. Using of Essential Oils and Plant Extracts against Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens on Soybean. Plants 2022, 11, 2989. [Google Scholar] [CrossRef] [PubMed]
- György, É.; Laslo, É.; Salamon, B. Antimicrobial impacts of selected Lamiaceae plants on bacteria isolated from vegetables and their application in edible films. Food Biosci. 2023, 51, 102280. [Google Scholar] [CrossRef]
- Patel, H.K.; Gomes, E.N.; Wu, Q.; Patel, N.; Kobayashi, D.Y.; Wang, C.; Simon, J.E. Volatile metabolites from new cultivars of catnip and oregano as potential antibacterial and insect repellent agents. Front. Plant Sci. 2023, 14, 1124305. [Google Scholar] [CrossRef] [PubMed]
- Todorović, B.; Potočnik, I.; Rekanović, E.; Stepanović, M.; Kostić, M.; Ristić, M.; Milijašević-Marčić, S. Toxicity of twenty-two plant essential oils against pathogenic bacteria of vegetables and mashrooms. J. Environ. Sci. Health B 2016, 51, 832–839. [Google Scholar] [CrossRef]
- Gormez, A.; Bozari, S.; Yanmis, D.; Gulluce, M.; Sahin, F.; Agar, G. Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic bacteria. Pol. J. Microbiol. 2015, 64, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Tardugno, R.; Serio, A.; Pellati, F.; D’Amato, S.; Chaves López, C.; Bellardi, M.G.; Di Vito, M.; Savini, V.; Paparella, A.; Benvenuti, S. Lavandula × intermedia and Lavandula angustifolia essential oils: Phytochemical composition and antimicrobial activity against foodborne pathogens. Nat. Prod. Res. 2019, 33, 3330–3335. [Google Scholar] [CrossRef]
- Verdeguer, M.; Sánchez-Moreiras, A.M.; Araniti, F. Phytotoxic Effects and Mechanism of Action of Essential Oils and Terpenoids. Plants 2020, 9, 1571. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.K.; Dwivedi, P.; Ahmad, S. Screening of Antibacterial Activity of Six Plant Essential Oils against Pathogenic Bacterial Strains. Asian J. MedSci. 2010, 2, 152–158. [Google Scholar]
- Sánchez-Hernández, E.; González-García, V.; Palacio-Bielsa, A.; Lorenzo-Vidal, B.; Buzón-Durán, L.; Martín-Gil, J.; Martín-Ramos, P. Antibacterial Activity of Ginko biloba Extracts against Clavibacter michiganensis subsp. michiganensis, Pseudomonas spp., and Xanthomonas vesicatoria. Horticulturae 2023, 9, 461. [Google Scholar] [CrossRef]
- Mamoucha, S.; Prombona, A.; Galeou, A. Evaluation of the antibacterial activity of essential oil of Laurus nobilis against Pseudomonas syringae pv. phaseolicola and potential biocidal action. Hell. Plant Prot. J. 2023, 16, 29–39. [Google Scholar] [CrossRef]
- Janaćković, P.; Rajčević, N.; Gavrilović, M.; Novaković, J.; Radulović, M.; Miletić, M.; Janakiev, T.; Dimkić, I.; Marin, P.D. Essential Oil Composition of Ambrosia artemisiifolia and Its Antibacterial Activity against Phytopathogens. Biol. Life Sci. Forum 2022, 15, 22. [Google Scholar] [CrossRef]
- Bouchekouk, C.; Zohra Kara, F.; Tail, G.; Saidi, F.; Benabdelkader, T. Essential oil composition and antibacterial activity of Pteridium aquilinum (L.) Kuhn. Biol. Futur. 2019, 70, 56–61. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Hyldgaard, M.; Mygind, M.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Abdelgaleil, S.A.M. Composition and antimicrobial activity of essential oils isolated from Egyptian plants against plant pathogenic bacteria and fungi. Ind. Crops Prod. 2014, 52, 776–782. [Google Scholar] [CrossRef]
- Feizi, H.; Tahan, V.; Kariman, K. In vitro antibacterial activity of essential oils from Carum copticum and Ziziphora clinopodioides plants against the phytopathogen Pseudomonas syringae pv. syringae. Plant Biosyst. 2023, 157, 487–492. [Google Scholar] [CrossRef]
- Shukal, S.; Chen, X.; Zhang, C. Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli. Metab. Eng. 2019, 55, 170–178. [Google Scholar] [CrossRef]
- Fontana, R.; Macchi, G.; Caproni, A.; Sicurella, M.; Buratto, M.; Salvatori, F.; Pappadà, M.; Manfredini, S.; Baldisserotto, A.; Marconi, P. Control of Erwinia amylovora Growth by Moringa oleifera Leaf Extracts: In Vitro and in Planta Effects. Plants 2022, 11, 957. [Google Scholar] [CrossRef]
- Al-Baharwee, N.I.K.; Qasim, W.S.; Abdlla, Y.A. Phytochemical analysis of Annona atemoya seed extract by HPLC and their ability to inhibit the growth of Agrobacterium tumefaciens. Biodiversitas 2023, 24, 603–608. [Google Scholar] [CrossRef]
- Morales-Ubaldo, A.L.; Rivero-Perez, N.; Avila-Ramos, F.; Aquino-Torres, E.; Prieto-Méndez, J.; Hetta, H.F.; El-Saber Batiha, G.; Zaragoza-Bastida, A. Bactericidal Activity of Larrea tridentata Hydroalcoholic Extract against Phytopathogenic bacteria. Agronomy 2021, 11, 957. [Google Scholar] [CrossRef]
- Diao, W.R.; Hua, Q.P.; Zhang, H.; Xu, J.G. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control 2014, 35, 109–116. [Google Scholar] [CrossRef]
- Barut, M.; Tansi, L.S.; Akyuz, A.M.; Karaman, S. Quality and yield of different basil (Ocimum basilicum L.) cultivars with various planting and cutting times under hot Mediterranean climate. Appl. Ecol. Environ. Res. 2021, 19, 3115–3136. [Google Scholar] [CrossRef]
- Hsouna, A.B.; Touj, N.; Hammami, I.; Dridi, K.; Al-Ayed, A.S.; Hamdi, N. Chemical Composition and in vivo Efficacy of the Essential Oil of Mentha piperita L. in the Suppression of Crown Gall Disease on Tomato Plants. J. Oleo Sci. 2019, 68, 419–426. [Google Scholar] [CrossRef]
- Vinceković, M.; Maslov Bandić, L.; Jurić, S.; Jalšenjak, N.; Čaić, A.; Živičnjak, E.; Đermić, E.; Karoglan, M.; Osrečak, M.; Topolovec-Pintarić, S. The enhancement of bioactive potential in Vitis vinifera leaves by application of microspheres loaded with biological and chemical agents. J. Plant Nutr. 2019, 42, 543–558. [Google Scholar] [CrossRef]
- Jurić, S.; Sopko Stracenski, K.; Król-Kilińska, Ż.; Žutić, I.; Uher, S.F.; Đermić, E.; Vinceković, M. The enhancement of plant secondary metabolites content in Lactuca sativa L. by encapsulated bioactive agents. Sci. Rep. 2020, 10, 3737. [Google Scholar] [CrossRef] [PubMed]
- Melchionna Albuquerque, P.; Gomes Azevedo, S.; Pereira de Andrade, C.; Corrêa de Souza D’Ambros, N.; Martins Pérez, M.T.; Manzato, L. Biotechnological Applications of Nanoencapsulated Essential Oils: A Review. Polymers 2022, 14, 5495. [Google Scholar] [CrossRef]
Reference | Source | Bacterial Species | Plant Waste/By-Products | MIC | Determination Method | Mode of Action |
---|---|---|---|---|---|---|
[73] | Ciafardini and Zullo | Xanthomonas campestris | OMWW phenols–cv. Leccino | 2500 µg/mL | Agar diffusion | protein cross-linking and protein-denaturation |
[72] | Capasso et al. | Pseudomonas. syringae pv. savastanoi Clavibacter michiganensis | OMWW polyphenols and related compounds | 5 × 10−4 mol/L | Broth dilution | damage to cell membrane |
[76] | Medina et al. | Erwinia uredovora E. toletana E. amylovora P. savastanoi P. syringae C. michiganensis | Olive wastewater of stored semisolid olive residue | 10–20% (v/v) | Broth dilution | n.t. |
[77] | Pannucci et al. | P. savastanoi pv. savastanoi Rhizobium radiobacter | Hydroxytyrosol–HTyr Hydroxytyrosol enriched extract of OMWW-HTE | 100–300 300–500 µg/mL | Disc diffusion Subculture method | n.t. |
[79] | Chicchio et al. | P. syringae pv. syringae C. michiganensis subsp. nebraskense | Methanolic extracts of wastes/by-products: Abutilon theophrasti Medik. Achillea millefolium L. Allium cepa L. Artemisia absinthium L. Beta vulgaris L. Camelina sativa (L.) Crantz Castnea sativa Mill. Cicer arietinum L. Cichorium intybus L. Cucurbita pepo L. Cupressus sempervirens L. Echinochloa crus-galli (L.) P. Beauv. Erigeron canadensis L. Helianthis annus L. Laurus nobilis L. Lavandula angustifolia Mill. Melissa officinalis L. Origanum vulgare L. Phaseolus vulgaris L. Prunus amygdalus Batsch Rosa damascena Solanum lycopersicum L. Solanum tuberosum L. Sorghum bicolor (L.) Moench Thymus vulgaris L. Triticum aestivum L. Vitis vinifera L. | >1000 µg/mL | Broth microdilution | n.t. |
Helichrysum italicum (Roth) G. Don | 125–>1000 µg/mL | n.t. | ||||
Salvia officinalis L. Salvia rosmarinus Schleid. | 500–>1000 µg/mL | n.t | ||||
Salvia sclarea L. | 1000–>1000 µg/mL | n.t. | ||||
[78] | Ditsawanon et al. | X. oryzae pv. oryzae X. citri Pectobacterium carotovorum R. rhizogenes | Agricultural waste (rice, corn, sugarcane, bagasse) Agro-industrial waste (soybean, peanut, coconut, coffee, fish) | § | Broth dilution | Disruption of cell wall membrane and intercellular biological processes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Košćak, L.; Lamovšek, J.; Đermić, E.; Prgomet, I.; Godena, S. Microbial and Plant-Based Compounds as Alternatives for the Control of Phytopathogenic Bacteria. Horticulturae 2023, 9, 1124. https://doi.org/10.3390/horticulturae9101124
Košćak L, Lamovšek J, Đermić E, Prgomet I, Godena S. Microbial and Plant-Based Compounds as Alternatives for the Control of Phytopathogenic Bacteria. Horticulturae. 2023; 9(10):1124. https://doi.org/10.3390/horticulturae9101124
Chicago/Turabian StyleKošćak, Laura, Janja Lamovšek, Edyta Đermić, Iva Prgomet, and Sara Godena. 2023. "Microbial and Plant-Based Compounds as Alternatives for the Control of Phytopathogenic Bacteria" Horticulturae 9, no. 10: 1124. https://doi.org/10.3390/horticulturae9101124
APA StyleKošćak, L., Lamovšek, J., Đermić, E., Prgomet, I., & Godena, S. (2023). Microbial and Plant-Based Compounds as Alternatives for the Control of Phytopathogenic Bacteria. Horticulturae, 9(10), 1124. https://doi.org/10.3390/horticulturae9101124