Trick of the Trade: Unveiling the Importance of Feedstock Chemistry in Trichoderma-Organic Amendments-Based Bio-Stimulants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organic Feedstock and Trichoderma harzianum Strain
2.2. Trichoderma-Organic Amendment Mixture Preparation
2.3. Trichoderma-Organic Amendment Chemical Characterization
2.4. Trichoderma-Organic Amendment Bioassay
2.5. Data Analyses and Visualization
3. Results
3.1. Organic Feedstock and Mixture Chemical Characterization
3.2. Effect of Organic Feedstock and Their Mixture on Crop Growth
3.3. Effect of Trichoderma and Organic Feedstock on Crop Growth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Zhang, H.; Godana, E.A.; Sui, Y.; Yang, Q.; Zhang, X.; Zhao, L. Biological control as an alternative to synthetic fungicides for the management of grey and blue mould diseases of table grapes: A review. Crit. Rev. Microbiol. 2020, 46, 450–462. [Google Scholar] [CrossRef]
- Randive, K.; Raut, T.; Jawadand, S. An overview of the global fertilizer trends and India’s position in 2020. Miner. Econ. 2021, 34, 371–384. [Google Scholar] [CrossRef]
- Xu, L.; Geelen, D. Developing biostimulants from agro-food and industrial by-products. Front. Plant Sci. 2018, 9, 1567. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Biostimulants in agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- López-Bucio, J.; Pelagio-Flores, R.; Herrera-Estrella, A. Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 2015, 196, 109–123. [Google Scholar] [CrossRef]
- Woo, S.L.; Ruocco, M.; Vinale, F.; Nigro, M.; Marra, R.; Lombardi, N.; Pascale, A.; Lanzuise, S.; Manganiello, G.; Lorito, M. Trichoderma-Based Products and Their Widespread Use in Agriculture. Open Mycol. J. 2014, 8, 71–126. [Google Scholar] [CrossRef]
- Sharma, P.; Jambhulkar, P.P.; Raja, M.; Sain, S.K.; Javeria, S. Trichoderma spp. in consortium and their rhizospheric interactions. Trichoderma Host Pathog. Interact. Appl. 2020, 8, 267–292. [Google Scholar]
- Bellini, A.; Gilardi, G.; Idbella, M.; Zotti, M.; Pugliese, M.; Bonanomi, G.; Gullino, M.L. Trichoderma enriched compost, BCAs and potassium phosphite control Fusarium wilt of lettuce without affecting soil microbiome at genus level. Appl. Soil Ecol. 2023, 182, 104678. [Google Scholar] [CrossRef]
- International Biochar Initiative (IBI). Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil; IBI Biochar Standards: Victor, NY, USA, 2012. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Earth Scan Ltd.: London, UK, 2015. [Google Scholar]
- Kammann, C.; Glaser, B.; Schmidt, H.P. Combining Biochar and Organic Amendments. In Biochar in European Soils and Agriculture: Science and Practice; Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B., Eds.; Routledge: Oxon, UK; New York, NY, USA, 2016; pp. 136–164. [Google Scholar]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 53001. [Google Scholar] [CrossRef]
- Iacomino, G.; Idbella, M.; Laudonia, S.; Vinale, F.; Bonanomi, G. The Suppressive Effects of Biochar on Above-and Belowground Plant Pathogens and Pests: A Review. Plants 2022, 11, 3144. [Google Scholar] [CrossRef] [PubMed]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant. Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant. Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Bandara, T.; Franks, A.; Xu, J.; Bolan, N.; Wang, H.; Tang, C. Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils. Crit. Rev. Environ. Sci. Technol. 2020, 50, 903–978. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Elad, Y.; Cytryn, E.; Graber, E.R.; Frenkel, O. Activating biochar by manipulating the bacterial and fungal microbiome through pre-conditioning. New Phytol. 2018, 219, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Oleszczuk, P.; Rycaj, M.; Lehmann, J.; Cornelissen, G. Influence of activated carbon and biochar on phytotoxicity of air- dried sewage sludge to Lepidium sativum. Ecotoxicol. Environ. Saf. 2012, 80, 321–326. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Hagemann, N.; Draper, K.; Kammann, C. The use of biochar in animal feeding. PeerJ 2019, 7, e7373. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Noubactep, C.; Mukome, F.N.D. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 2017, 197, 732–749. [Google Scholar] [CrossRef]
- Postma, J.; Clematis, F.; Nijhuis, E.H.; Someus, E. Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatum and Fusarium oxysporum f. sp. radicis lycopersici in tomato. Biol. Control 2013, 67, 284–291. [Google Scholar] [CrossRef]
- De Medeiros, E.V.; da Silva, L.F.; da Silva, J.S.A.; da Costa, D.P.; de Souza, C.A.F.; Berger, L.R.R.; Hammecker, C. Biochar and Trichoderma spp. in management of plant diseases caused by soilborne fungal pathogens: A review and perspective. Res. Soc. Dev. 2021, 10, e296101522465. [Google Scholar] [CrossRef]
- Bonanomi, G.; Maisto, G.; De Marco, A.; Cesarano, G.; Zotti, M.; Mazzei, P.; Libralato, G.; Staropoli, A.; Siciliano, A.; De Filippis, F.; et al. The fate of cigarette butts in different environments: Decay rate, chemical changes and ecotoxicity revealed by a 5-years decomposition experiment. Environ. Pollut. 2020, 261, 114108. [Google Scholar] [CrossRef] [PubMed]
- Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Armas, C.; Ordiales, R.; Pugnaire, F.I. Measuring plant interactions: A new comparative index. Ecology 2004, 85, 2682–2686. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Li, Y.; Yu, C.; Wang, Q.Q.; Wang, M.; Sun, J.; Chen, J. Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Sci. Rep. 2017, 7, 1771. [Google Scholar] [CrossRef]
- Doni, F.; Isahak, A.; Zain, C.R.C.M.; Yusoff, W.M.W. Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express 2014, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Prashar, P.; Vandenberg, A. Genotype-specific responses to the effects of commercial Trichoderma formulations in lentil (Lens culinaris ssp. culinaris) in the presence and absence of the oomycete pathogen Aphanomyces euteiches. Biocontrol Sci. Technol. 2017, 27, 1123–1144. [Google Scholar] [CrossRef]
- Marra, R.; Lombardi, N.; d’Errico, G.; Troisi, J.; Scala, G.; Vinale, F.; Woo, S.L.; Bonanomi, G.; Lorito, M. Application of Trichoderma Strains and Metabolites Enhances Soybean Productivity and Nutrient Content. J. Agric. Food Chem. 2019, 67, 1814–1822. [Google Scholar] [CrossRef]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma species—Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef]
- Bonanomi, G.; Zotti, M.; Abd-ElGawad, A.M.; Iacomino, G.; Nappi, A.; Grauso, L.; Idbella, M. Plant-growth promotion by biochar-organic amendments mixtures explained by selective chemicals adsorption of inhibitory compounds. J. Environ. Chem. Eng. 2023, 11, 109009. [Google Scholar] [CrossRef]
- Alonso-Ramírez, A.; Poveda, J.; Martín, I.; Hermosa, R.; Monte, E.; Nicolás, C. Salicylic acid Prevents Trichoderma harzianum from entering the vascular system of roots. Mol. Plant Pathol. 2014, 15, 823–831. [Google Scholar] [CrossRef]
- Hagemann, N.; Joseph, S.; Schmidt, H.-P.; Kammann, C.I.; Harter, J.; Borch, T.; Young, R.B.; Varga, K.; Taherymoosavi, S.; Elliott, K.W.; et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. 2017, 8, 1089. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Dunst, G.; Glaser, B. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 2013, 33, 817–827. [Google Scholar] [CrossRef]
- Kammann, C.I.; Schmidt, H.P.; Messerschmidt, N.; Linsel, S.; Steffens, D.; Muller, C.; Koyro, H.W.; Conte, P.; Stephen, J. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 2015, 5, 11080. [Google Scholar] [CrossRef] [PubMed]
- Rasse, D.P.; Weldon, S.; Joner, E.J.; Joseph, S.; Kammann, C.I.; Liu, X.Y.; O’Toole, A.; Pan, G.X.; Kocatürk-Schumacher, N.P. Enhancing Plant N Uptake with Biochar-Based Fertilizers: Limitation of Sorption and Prospects. Plant Soil 2022, 475, 213–236. [Google Scholar] [CrossRef]
- Bonanomi, G.; Cesarano, G.; Lombardi, N.; Motti, R.; Scala, F.; Mazzoleni, S.; Incerti, G. Litter chemistry explains contrasting feeding preferences of bacteria, fungi, and higher plants. Sci. Rep. 2017, 7, 9208. [Google Scholar] [CrossRef] [PubMed]
C (%) | N (%) | C/N | H/C | pH | EC (mS/cm) | |
---|---|---|---|---|---|---|
Medicago | 38.29 | 3.90 | 9.81 | 0.17 | 5.78 | 3.365 |
Maize | 41.32 | 0.51 | 81.01 | 0.19 | 7.11 | 2.743 |
Biochar | 77.71 | 0.41 | 189.53 | 0.03 | 9.38 | 0.150 |
AC | 78.43 | 1.39 | 56.42 | 0.02 | 5.76 | 0.234 |
Fish | 39.14 | 6.09 | 6.42 | 0.04 | 6.31 | 1.326 |
Medicago—2 d | 40.10 | 3.93 | 10.20 | 0.18 | 5.82 | 3.450 |
Maize—2 d | 40.38 | 0.49 | 82.40 | 0.19 | 7.05 | 2.650 |
Biochar—2 d | 74.57 | 0.50 | 149.62 | 0.03 | 7.49 | 0.290 |
AC—2 d | 76.56 | 1.47 | 52.08 | 0.02 | 5.67 | 0.264 |
Fish—2 d | 43.12 | 6.06 | 7.12 | 0.05 | 6.25 | 1.295 |
AC + Fish—2 d | 59.84 | 3.76 | 29.60 | 0.04 | 5.96 | 0.779 |
AC + EM—2 d | 58.33 | 2.70 | 31.14 | 0.10 | 5.75 | 1.857 |
AC + Maize—2 d | 58.47 | 0.98 | 67.24 | 0.11 | 6.36 | 1.457 |
Biochar + Fish—2 d | 58.85 | 3.28 | 78.37 | 0.04 | 6.87 | 0.792 |
Biochar + Medicago—2 d | 57.33 | 2.21 | 79.91 | 0.11 | 6.66 | 1.870 |
Biochar + Maize—2 d | 57.47 | 0.49 | 116.01 | 0.11 | 7.27 | 1.470 |
Medicago—100 d | 39.23 | 3.12 | 12.57 | 0.19 | 6.81 | 3.214 |
Maize—100 d | 41.57 | 0.41 | 101.39 | 0.20 | 7.14 | 2.124 |
Biochar—100 d | 73.83 | 0.48 | 153.81 | 0.03 | 7.54 | 0.245 |
AC—100 d | 74.12 | 1.44 | 51.47 | 0.02 | 5.98 | 0.212 |
Fish—100 d | 38.08 | 5.14 | 7.41 | 0.06 | 7.12 | 1.012 |
AC + Fish—100 d | 56.10 | 3.29 | 29.44 | 0.04 | 6.55 | 0.612 |
AC + Medicago—100 d | 56.68 | 2.28 | 32.02 | 0.10 | 6.40 | 1.713 |
AC + Maize—100 d | 57.85 | 0.93 | 76.43 | 0.11 | 6.56 | 1.168 |
Biochar + Fish—100 d | 55.96 | 2.81 | 80.61 | 0.05 | 7.33 | 0.628 |
Biochar + Medicago—100 d | 56.53 | 1.80 | 83.19 | 0.11 | 7.18 | 1.729 |
Biochar + Maize—100 d | 57.70 | 0.45 | 127.60 | 0.11 | 7.34 | 1.184 |
Alkyl C (0−45) | Methoxyl and N-alkyl C (46−60) | O-Alkyl C (61−90) | di-O-Alkyl C (91−110) | H and C-Sub. aromatic C (111−140) | O-Sub. Aromatic C (141−160) | Carbonyl C (161−190) | |
---|---|---|---|---|---|---|---|
Medicago | 22.97 | 10.13 | 38.53 | 8.75 | 6.46 | 2.01 | 11.15 |
Maize | 9.61 | 8.39 | 61.07 | 14.16 | 2.93 | 1.21 | 2.63 |
Biochar | 9.30 | 4.17 | 5.56 | 7.07 | 61.71 | 4.41 | 7.79 |
AC | 7.04 | 4.98 | 10.49 | 15.41 | 49.34 | 7.11 | 5.63 |
Fish | 27.82 | 16.32 | 31.59 | 6.00 | 5.93 | 3.00 | 9.34 |
AC + Fish—2 d | 17.43 | 10.65 | 21.04 | 10.70 | 27.63 | 5.05 | 7.49 |
AC + Medicago—2 d | 15.01 | 7.55 | 24.51 | 12.08 | 27.90 | 4.56 | 8.39 |
AC + Maize—2 d | 8.32 | 6.69 | 35.78 | 14.78 | 26.14 | 4.16 | 4.13 |
Biochar + Fish—2 d | 18.56 | 10.24 | 18.57 | 6.53 | 33.82 | 3.70 | 8.57 |
Biochar + Medicago—2 d | 16.13 | 7.15 | 22.04 | 7.91 | 34.09 | 3.21 | 9.47 |
Biochar + Maize—2 d | 9.45 | 6.28 | 33.31 | 10.61 | 32.32 | 2.81 | 5.21 |
Medicago—100 d | 8.63 | 10.69 | 47.71 | 14.39 | 10.79 | 4.01 | 3.78 |
Maize—100 d | 7.58 | 10.00 | 54.77 | 15.58 | 7.31 | 2.47 | 2.29 |
Biochar—100 d | 2.45 | 0.41 | 1.01 | 4.62 | 75.91 | 13.63 | 1.98 |
AC—100 d | 8.66 | 3.13 | 3.37 | 10.65 | 58.54 | 6.89 | 8.77 |
Fish—100 d | 17.42 | 9.99 | 29.04 | 9.92 | 10.83 | 6.75 | 16.05 |
AC + Fish—100 d | 21.57 | 7.96 | 16.49 | 8.67 | 32.17 | 5.83 | 7.30 |
AC + Medicago—100 d | 5.13 | 3.24 | 32.41 | 13.11 | 35.56 | 4.98 | 5.58 |
AC + Maize—100 d | 3.88 | 7.58 | 44.19 | 15.02 | 22.49 | 3.44 | 3.38 |
Biochar + Fish—100 d | 5.58 | 2.03 | 2.37 | 11.76 | 67.48 | 8.84 | 1.94 |
Biochar + Medicago—100 d | 9.84 | 7.13 | 27.43 | 11.87 | 32.74 | 6.95 | 4.05 |
Biochar + Maize—100 d | 6.08 | 5.68 | 33.45 | 12.78 | 31.87 | 7.77 | 2.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacomino, G.; Bonanomi, G.; Motti, R.; Idbella, M. Trick of the Trade: Unveiling the Importance of Feedstock Chemistry in Trichoderma-Organic Amendments-Based Bio-Stimulants. Horticulturae 2023, 9, 957. https://doi.org/10.3390/horticulturae9090957
Iacomino G, Bonanomi G, Motti R, Idbella M. Trick of the Trade: Unveiling the Importance of Feedstock Chemistry in Trichoderma-Organic Amendments-Based Bio-Stimulants. Horticulturae. 2023; 9(9):957. https://doi.org/10.3390/horticulturae9090957
Chicago/Turabian StyleIacomino, Giuseppina, Giuliano Bonanomi, Riccardo Motti, and Mohamed Idbella. 2023. "Trick of the Trade: Unveiling the Importance of Feedstock Chemistry in Trichoderma-Organic Amendments-Based Bio-Stimulants" Horticulturae 9, no. 9: 957. https://doi.org/10.3390/horticulturae9090957
APA StyleIacomino, G., Bonanomi, G., Motti, R., & Idbella, M. (2023). Trick of the Trade: Unveiling the Importance of Feedstock Chemistry in Trichoderma-Organic Amendments-Based Bio-Stimulants. Horticulturae, 9(9), 957. https://doi.org/10.3390/horticulturae9090957