Genetic Diversity Analysis of Onion (Allium cepa L.) from the Arid Region of Tunisia Using Phenotypic Traits and SSR Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. DNA Extraction and SSR Genotyping
2.3. Molecular Data Analysis
2.4. Phenotypic Evaluation
2.5. Phenotypic Data Analyses
3. Results
3.1. SSR Analysis
3.2. Genetic Diversity
3.3. Population Structure
3.4. AMOVA Analysis
3.5. Phenotypic Diversity
3.6. Phenotypic Correlation
3.7. Genotypic and Phenotypic Correlation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; STAT. Food and Agriculture Organization of the United Nations-FAO Statistics Division. 2019. Available online: http://www.fao.org (accessed on 1 June 2023).
- Zhao, X.X.; Linc, F.J.; Li, H.; Li, H.B.; Wu, D.T.; Geng, F.; Ma, W.; Wang, Y.; Miao, B.H.; Gan, R.Y. Recent advances in bioactive compounds, health functions, and safety concerns of onion (Allium cepa L.). Front. Nutr. 2021, 8, 669805. [Google Scholar] [CrossRef]
- Griffiths, G.; Trueman, L.; Crowther, T.; Thomas, B.; Smith, B. Onions—A global benefit to health. Phytother. Res. 2002, 16, 603–615. [Google Scholar] [CrossRef]
- Sato, A.T.; Zhang, L.; Yonekura, H.; Tamura, A. Antiallergic activities of eleven onions (Allium cepa) were attributed to quercetin 4’-glucoside using QuEChERS method and Pearson’s correlation coefficient. J. Funct. Foods 2015, 14, 581–589. [Google Scholar] [CrossRef]
- Wang, C.K. Health benefits of onion bioactives on hypercholesterolemia, cardiovascular diseases, and bone mineral density. Food Front. 2020, 1, 107–108. [Google Scholar] [CrossRef]
- Fayos, O.; Mallor, C.; Garcés-Claver, A. Evolución del conocimiento sobre la pungencia de la cebolla (Allium cepa L.) y del pimiento (Capsicum spp.): Desde sus orígenes hasta el potencial nutracéutico actual. ITEA 2018, 114, 99–118. [Google Scholar]
- Rodriguez, J.M.; Berke, T.; Engle, L.; Nienhuis, J. Variation among and within Capsicum species revealed by RAPD markers. Theor. Appl. Genet. 1999, 99, 147–156. [Google Scholar] [CrossRef]
- Chikh-Rouhou, H.; Mezghani, N.; Mnasri, S.; Mezghani, N.; Garcés-Claver, A. Assessing the genetic diversity and population structure of a Tunisian melon (Cucumis melo L.) collection using phenotypic traits and SSR molecular markers. Agronomy 2021, 11, 1121. [Google Scholar] [CrossRef]
- Luo, C.; Chen, D.; Cheng, X.; Liu, H.; Li, Y.; Huang, C. SSR Analysis of genetic relationship and classification in Chrysanthemum germplasm collection. Hortic. Plant J. 2018, 4, 73–82. [Google Scholar] [CrossRef]
- Song, X.Y.; Zhang, C.Z.; Ying, L.I.; Feng, S.; Yang, Q.; Huang, S. SSR analysis of genetic diversity among 192 diploid potato cultivars. Hortic. Plant J. 2016, 2, 163–171. [Google Scholar] [CrossRef]
- Rivera, A.; Mallor, C.; Garcés-Claver, A.; García-Ulloa, A.; Pomar, F.; Silvar, C. Assessing the genetic diversity in onion (Allium cepa L.) landraces from northwest Spain and comparison with the European variability. N. Z. J. Crop Hortic. Sci. 2016, 44, 103–120. [Google Scholar] [CrossRef]
- Mallor, C.; Arnedo-Andrés, M.S.; Garcés-Claver, A. Assessing the genetic diversity of Spanish Allium cepa landraces for onion breeding using microsatellite markers. Sci. Hortic. 2014, 170, 24–31. [Google Scholar] [CrossRef]
- Baldwin, S.; Pither–Joyce, M.; Wright, K.; Chen, L.; McCallum, J.A. Development of robust genomic simple sequence repeat markers for estimation of genetic diversity within and among bulb onion (Allium cepa L.) populations. Mol. Breed. 2012, 30, 1401–1411. [Google Scholar] [CrossRef]
- Fischer, D.; Bachmann, K. Onion microsatellites for germplasm analysis and their use in assessing intra- and interspecific relatedness within the subgenus Rhizirideum. Theor. Appl. Genet. 2000, 101, 153–164. [Google Scholar] [CrossRef]
- Raj, A.C.; Sharangi, A.B.; Das, A.; Pramanik, K.; Upadhyay, T.K.; Almutairi, M.; Khan, M.I.; Ahmad, I.; Kausar, M.A.; Saeed, M. Assessing the genetic divergence of onion (Allium cepa L.) through morpho-physiological and molecular markers. Sustainability 2022, 14, 1131. [Google Scholar] [CrossRef]
- Brahimi, A.; Landschoot, S.; Bekaert, B.; Hajji, L.; Hajjaj, H.; Audenaert, K.; Haesaert, G.; Mazouz, H. Exploring the genetic and phenotypic diversity within and between onion (Allium cepa L.) ecotypes in Morocco. J. Genet. Eng. Biotechnol. 2022, 20, 96. [Google Scholar] [CrossRef]
- Nkhoma, N.; Shimelis, H.; Laing, M.D.; Shayanowako, A.; Mathew, I. Assessing the genetic diversity of cowpea (Vignaun guiculata L. Walp.) germplasm collections using phenotypic traits and SNP markers. BMC Genet. 2020, 21, 110–126. [Google Scholar] [CrossRef]
- Lyngkhoi, F.; Saini, N.; Gaikwad, A.B.; Thirunavukkarasu, N.; Verma, P.; Silvar, C.; Yadav, S.; Khar, A. Genetic diversity and population structure in onion (Allium cepa L.) accessions based on morphological and molecular approaches. Physiol. Mol. Biol. Plants 2021, 27, 2517–2525. [Google Scholar] [CrossRef]
- Guidoti, D.T.; Gonela, A.; Vidigal, M.C.; Conrado, T.V.; Romani, I. Interrelationship between morphological, agronomic and molecular characteristics in the analysis of common bean genetic diversity. Acta Sci. Agron. 2018, 40, 1–9. [Google Scholar] [CrossRef]
- Chalbi, A.; Chikh-Rouhou, H.; Tlahig, S.; Mallor, C.; Garcés-Claver, A.; Haddad, M.; Sta-Baba, R.; Bel-Kadhi, M.S. Biochemical characterization of local onion genotypes (Allium cepa L.) in the arid regions of Tunisia. Polish J. Environ. Stud. 2023, 32, 15–26. [Google Scholar] [CrossRef]
- Elbekey, M.; Hamza, H.; Neily, M.H.; Djebali, N.; Ferchichi, A. Characterization of watermelon local cultivars from Southern Tunisia using morphological traits and molecular markers. Euphytica 2021, 217, 74. [Google Scholar] [CrossRef]
- Chikh-Rouhou, H.; Gómez-Guillamón, M.L.; Garcés-Claver, A. Melon germplasm from Tunisia with immense breeding value. CGC Rep. 2021, 44, 7–12. [Google Scholar]
- Mohamed, A.; García-Martínez, S.; Loumerem, M.; Carbonell, P.; José-Ruiz, J.; Boubaker, M. Assessment of genetic diversity among local pea (Pisum sativum L.) accessions cultivated in the arid regions of Southern Tunisia using agro-morphological and SSR molecular markers. Genet. Resour. Crop Evol. 2019, 66, 1189–1203. [Google Scholar] [CrossRef]
- Saddoud Debbabi, O.; Rahmani Mnasri, S.; Ben Amor, F.; Ben Naceur, M.; Montemurro, C.; Marilena Miazzi, M. Applications of microsatellite markers for the characterization of olive genetic resources of Tunisia. Genes 2021, 12, 286. [Google Scholar] [CrossRef] [PubMed]
- Robbana, C.; Kehel, Z.; Ben Naceur, M.; Sansaloni, C.; Bassi, F.; Amri, A. Genome-wide genetic diversity and population structure of Tunisian durum wheat landraces based on DArTseq technology. Int. J. Molec. Sci. 2019, 20, 1352. [Google Scholar] [CrossRef] [PubMed]
- Fergany, M.; Kaur, B.; Monforte, A.J.; Pitrat, M.; Rys, C.; Lecoq, H.; Dhillon, N.P.S.; Dhaliwal, S.S. Variation in melon (Cucumis melo) landrances adapted to the humid tropics of sourthern India. Genet. Resour. Crop Evol. 2011, 58, 225–243. [Google Scholar] [CrossRef]
- Zeven, A.C. Landraces: A review of definitions and classifications. Euphytica 1998, 104, 127–139. [Google Scholar] [CrossRef]
- Sancheza, D.; Ben Sadouna, S.; Mary-Huarda, T.; Allierc, A.; Moreaua, L.; Charcosse, A. Improving the use of plant genetic resources to sustain breeding programs’ efficiency. Proc. Natl. Acad. Sci. USA 2023, 120, e2205780119. [Google Scholar] [CrossRef]
- Arnedo-Andrés, M.S.; Gil-Ortega, R.; Luis-Arteaga, M.; Hormaza, I. Development of RAPD and SCAR markers linked to the Pvr4 locus for resistance to PVY in pepper (Capsicum annuum L.). Theor. Appl. Genet. 2002, 105, 1067–1074. [Google Scholar] [CrossRef]
- McCallum, J.; Thomson, S.; Pitcher-Joyce, M.; Kenel, F.; Clarke, A.; Havey, M.J. Genetic diversity analysis and single nucleotide polymorphism marker development in cultivated bulb onion based on expressed sequence Tag-simple sequence repeats markers. J. Am. Soc. Hortic. Sci. 2008, 113, 810–818. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research—An Update. Bioinform. Appl. Note 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Weir, B.S. Genetic Data Analysis II: Methods for discrete population genetic data; Sinauer Associates, Inc.: Sunderland, MA, USA, 1996. [Google Scholar]
- Sokal, R.R.; Michener, C.D. A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 1958, 38, 1409–1438. [Google Scholar]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A Website and program for visualizing STRUCTURE output and implementing the evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Sharma, J.P. Principle of Vegetable Breeding; Kalyani Publishers: New Delhi, India, 2009; pp. 60–76. [Google Scholar]
- Johnson, H.W.; Robinson, H.F.; Comstock, R.E. Estimates of genetic and environmental variability in soybeans. J. Agron. 1955, 47, 314–318. [Google Scholar] [CrossRef]
- Johnson, H.W.; Robinson, H.F.; Comstock, R.E. Genotypic and phenotypic correlations in soybeans and their implications in selection. J. Agron. 1955, 47, 477–483. [Google Scholar] [CrossRef]
- Mantel, N.A. The detection of disease clustering and generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar]
- Kuhl, J.C.; Cheung, F.; Yuan, Q.; Martin, W.; Zewdie, Y.; McCallum, J.; Catanach, A.; Rutherford, P.; Sink, K.C.; Jenderek, M.; et al. A Unique Set of 11,008 Onion expressed sequence tags reveals expressed sequence and genomic differences between the monocot orders Asparagales and Poales. Plant Cell 2004, 16, 114–125. [Google Scholar] [CrossRef]
- Martin, W.J.; McCallum, J.; Shigyo, M.; Jakse, J.; Kuhl, J.C.; Yamane, N.; Pither-Joyce, M.; Gokce, A.F.; Sink, K.C.; Town, C.D.; et al. Genetic mapping of expressed sequences in onion and in silico comparisons with rice show scant colinearity. Mol. Genet. Genom. 2005, 274, 197–204. [Google Scholar] [CrossRef]
- Kisha, T.J.; Cramer, C.S. Determining redundancy of short-day onion accessions in a germplasm collection using microsatellite and targeted region amplified polymorphic markers. J. Am. Soc. Hortic. Sci. 2011, 136, 129–134. [Google Scholar] [CrossRef]
- Ellis, J.R.; Burke, J.M. EST-SSRs as a resource for population genetic analyses. Heredity 2007, 99, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Khar, A.; Lawande, K.E.; Negi, K.S. Microsatellite marker based analysis of genetic diversity in short day tropical Indian onion and cross amplification in related Allium spp. Genet. Resour. Crop Evol. 2011, 58, 741–752. [Google Scholar] [CrossRef]
- Santos, C.A.F.; Oliveira, V.R.; Rodrigues, M.A.; Ribeiro, H.L.C. Molecular characterization of onion cultivars with microsatellite markers. Pesq. Agropec. Bras 2010, 45, 49–55. [Google Scholar] [CrossRef]
- Simó, J.; Pascual, L.; Cañizares, J.; Casañas, F. Spanish onion landraces (Allium cepa L.) as sources of germplasm for breeding calçots: A morphological and molecular survey. Euphytica 2014, 195, 287–300. [Google Scholar] [CrossRef]
- Jayaswall, K.; Bhandawat, A.; Sharma, H.; Yadav, V.K.; Mahajan, V.; Singh, M. Characterization of Allium germplasms for conservation and sustainable management using SSR markers. Indian J. Tradit. Knowl. 2019, 18, 193–199. [Google Scholar]
- Kumar, M.; Sharma, V.; Kumar, V.; Sirohi, U.; Chaudhary, V.; Sharma, S.; Gautam, S.; Naresh, R.K.; Yadav, H.K.; Sharma, S. Genetic diversity and population structure analysis of Indian garlic (Allium sativum L.) collection using SSR markers. Physiol. Mol. Biol. Plants 2019, 25, 377–386. [Google Scholar] [CrossRef]
- Khosa, J.S.; McCallum, J.; Dhatt, A.S.; Macknight, R.C. Enhancing onion breeding using molecular tools. Plant Breed. 2016, 135, 9–20. [Google Scholar] [CrossRef]
- Sharma, K.; Assefa, A.D.; Kim, S.; Ko, E.Y.; Lee, E.T.; Park, S.W. Evaluation of total phenolics, flavonoids and antioxidant activity of 18 Korean onion cultivars: A comparative study. J. Sci. Food Agric. 2014, 94, 1521–1529. [Google Scholar] [CrossRef]
- Sinclair, P.J.; Blakeney, A.B.; Barlow, E. Relationships between bulb dry matter content, soluble solids concentration and non-structural carbohydrate composition in the onion (Allium cepa). J. Sci. Food Agric. 1995, 69, 203–209. [Google Scholar] [CrossRef]
- Mallor, C.; Balcells, M.; Mallor, F.; Sales, E. Genetic variation for bulb size, soluble solids content and pungency in the Spanish sweet onion variety Fuentes de Ebro. Response to selection for low pungency. Plant Breed. 2011, 130, 55–59. [Google Scholar] [CrossRef]
- Manjunathagowda, D.C. Genetic enhancement of onion germplasm through population improvement. Plant Physiol. Rep. 2022, 27, 73–80. [Google Scholar] [CrossRef]
- Dangi, R.; Kumar, A.; Khar, A. Genetic variability, heritability, and diversity analysis studies in short day tropical onion (Allium cepa L.). Indian J. Agric. Sci. 2018, 88, 948–957. [Google Scholar] [CrossRef]
- Dabholkar, A.R. Element of Biometrical Genetics; Concept Publishing Company: New Delhi, India, 1992; p. 431. [Google Scholar]
- McCallum, J. Onion. In Genome Mapping and Molecular Breeding in Plants; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; Volume 5, pp. 31–342. [Google Scholar]
- Jones, H.A.; Emsweller, S.L. A male sterile onion. Proc. Am. Soc. Hortic. Sci. 1936, 34, 582–585. [Google Scholar]
- Albrecht, E.; Zhang, D.; Mays, A.D.; Saftner, R.A.; Stommel, J.R. Genetic diversity in Capsicum baccatum is significantly influenced by its ecogeographical distribution. BMC Genet. 2012, 13, 68–83. [Google Scholar] [CrossRef] [PubMed]
Code | Accession Type | Site of Collection /Origin | Bulb Color | Bulb Shape |
---|---|---|---|---|
Acce-1 | Landrace | Kebili | White | Transverse medium elliptic |
Acce-2 | Landrace | Katana Gabes | Yellow | Broad elliptic |
Acce-3 | Landrace | Ghannouch Gabes | Red | Transverse narrow elliptic |
Acce-4 | Landrace | Kebili | Violet | Broad elliptic |
Acce-5 | Landrace | Tozeur | White | Rhombic |
Acce-6 | Landrace | Sidi Bouzid | White | Rhombic |
Acce-7 | Landrace | Kebili | Red | Transverse medium elliptic |
Acce-8 | Landrace | Chouba Gafsa | Red | Broad elliptic |
Acce-9 | Landrace | Gabes | Violet | Transverse medium elliptic |
Acce-10 | PBL * | Exotic | White | Circular |
Acce-11 | Landrace | El hamma bechima Gabes | White | Transverse medium elliptic |
Acce-12 | Landrace | Chouba Gafsa | Yellow | Circular |
Acce-13 | Landrace | Chenchou Gabes | Purple | Transverse medium elliptic |
Acce-14 | Landrace | Gabes | Violet | Broad elliptic |
Acce-15 | PBL | Exotic | Red | Circular |
Acce-16 | PBL | Exotic | Yellow | Rhombic |
Acce-17 | PBL | Exotic | White | Circular |
Acce-18 | Landrace | Gafsa | Yellow | Rhombic |
Acce-19 | Landrace | Chenchou Gabes | Red | Circular |
Acce-20 | Landrace | Ghannouch Gabes | Red | Transverse medium elliptic |
Acce-21 | Landrace | Sidi Bouzid | White | Circular |
Acce-22 | Landrace | Gabes | Purple | Transverse medium elliptic |
Acce-23 | Landrace | Gabes | Red | Transverse medium elliptic |
Locus | Repeat Motif and Number of Repeats | Forward Primer Sequence/ Reverse Primer Sequence | Expected Size (bp) a | Obtained Size (bp) | N | Major Allele Frequency | PIC |
---|---|---|---|---|---|---|---|
ACM004 | (CAA)4 | TCGTTCTTTAGAACACGTTAGG GTCGGCGGATATAGTGACA | 220–203 | 220–230 | 3 | 0.81 | 0.20 |
ACM006 | (CTC)7 | GCAGTTCTCCCTTTGTAAAATCA GTGATGGATGAGTGGATGGA | 217–224 | 211–228 | 5 | 0.58 | 0.38 |
ACM101 | (TCC)5 | CCTTTGCTAACCAAATCCGA CTTGTTGAGAAGGAGGACGC | 227–239 | 227–239 | 4 | 0.71 | 0.17 |
ACM124 | (AAAG)5 | GCAAACTTGAATCCCTTCCA AACCCGTTAAGAGGAGGGAA | 217–225 | 240 | - | - | - |
ACM045 | (TC)6 | AAAACGAAGCAACAAACAAAA CGACGAAGGTCATAAGTAGGC | 255–280 | 260–268 | 5 | 0.17 | 0.94 |
ACM235 | (TTTG)4 | ACGCATTTTCAAATGAAGGC TGAGTCGGCACTCACCTATG | 288–299 | 290–299 | 2 | 0.89 | 0.08 |
ACM134 | (GA)8 | ACACACACAAGAGGGAAGGG CACACACCCACACACATCAA | 192–206 | 194–203 | 3 | 0.15 | 0.95 |
ACM146 | (ACA)5 | ATGTCCCAATTCGACCAGAG CGTTACGGCTGAGAACTTCC | 230–233 | 233–236 | 2 | 0.85 | 0.26 |
ACM187 | (GT)6 | GTACTCGGGCAGTGGAGGTA GGAGCTGTCCAAATGCTAGG | 228–266 | 226–265 | 5 | 0.68 | 0.33 |
ACM119 | (AAT)8 | TTTCAGCAACATAGTATTGCGTC TCTTCGGGATTGGTATGGAG | 242–206 | 246–254 | 2 | 0.49 | 0.54 |
ACM138 | (CTGC)11 | ACGGTTTGATGCACAAGATG CCAACCAACAGTTGATACTGC | 242–274 | 231–251 | 4 | 0.46 | 0.42 |
Mean | ---- | 3.50 | ---- | 0.43 |
Locus | G | Ho | He | I | Fis |
---|---|---|---|---|---|
ACM004 | 6 | 0.47 | 0.38 | 0.60 | −0.22 |
ACM006 | 10 | 0.55 | 0.48 | 0.80 | −0.14 |
ACM101 | 8 | 0.58 | 0.45 | 0.72 | −0.30 |
ACM045 | 9 | 0.10 | 0.26 | 0.48 | 0.60 |
ACM235 | 3 | 0.33 | 0.26 | 0.39 | −0.25 |
ACM134 | 5 | 0.12 | 0.19 | 0.35 | 0.37 |
ACM146 | 4 | 0.87 | 0.48 | 0.67 | −0.81 |
ACM187 | 7 | 0.58 | 0.39 | 0.66 | −0.46 |
ACM119 | 3 | 0.25 | 0.32 | 0.48 | 0.20 |
ACM138 | 8 | 0.32 | 0.50 | 0.84 | 0.36 |
Mean | -- | 0.42 | 0.37 | 0.59 | −0.06 |
SV | df | SS | MS | Est. var | PV (%) | p-Value |
---|---|---|---|---|---|---|
Among populations | 22 | 372.07 | 16.91 | 1.76 | 21% | 0.001 |
Within populations | 112 | 737.71 | 6.58 | 6.58 | 79% | 0.001 |
Total | 134 | 1109.78 | 8.35 | 100% |
Location 1 * | Location 2 | |||||
---|---|---|---|---|---|---|
Traits | Min ** | Max ** | Mean ± SD | Min | Max | Mean ± SD |
Bulb diameter (cm) | 4.80 | 9.30 | 7.93 ± 1.35 | 5.50 | 9.50 | 7.76 ± 0.90 |
Fresh weight (g) | 57.7 | 391.3 | 232.3 ± 104.1 | 176.6 | 409.6 | 281.1 ± 62.5 |
Dry matter content (%) | 6.88 | 13.5 | 10.85 ± 1.95 | 8.43 | 12.95 | 11.27 ± 1.37 |
Scales number | 6.70 | 11.7 | 9.19 ± 1.54 | 7.33 | 13.00 | 10.30 ± 1.61 |
Thickness of neck (cm) | 0.60 | 2.19 | 1.25 ±0.41 | 0.14 | 2.33 | 1.47 ± 0.62 |
Sources | BD * | FW | DMC | SN | NT |
---|---|---|---|---|---|
Accession (G) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Location (E) | 0.313 | <0.001 | <0.001 | <0.001 | <0.001 |
G × E | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Location 1 | Location 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
BD | FW | DMC | SN | NT | BD | FW | DMC | SN | NT | |
σ2e | 1.03 | 1749.32 | 2.09 | 0.68 | 0.13 | 0.01 | 15.9 | 0.03 | 0.04 | 0.01 |
σ2g | 1.36 | 10,243.67 | 3.11 | 2.15 | 0.12 | 0.86 | 3908.11 | 1.21 | 2.53 | 0.33 |
σ2p | 2.39 | 11,992.99 | 5.20 | 2.83 | 0.25 | 0.87 | 3924.01 | 1.24 | 2.57 | 0.34 |
PCV (%) | 19.49 | 47.13 | 21.03 | 18.3 | 40.28 | 12.04 | 22.75 | 10.27 | 15.69 | 43.00 |
GCV (%) | 14.71 | 43.56 | 16.27 | 15.95 | 28.10 | 11.97 | 22.65 | 10.14 | 15.56 | 42.36 |
H2 | 56.90 | 85.41 | 59.81 | 75.97 | 48.00 | 98.85 | 99.59 | 97.58 | 98.44 | 97.06 |
GA | 1.81 | 192.69 | 2.81 | 2.63 | 0.49 | 1.90 | 128.52 | 2.24 | 3.25 | 0.57 |
GAM (%) | 22.82 | 82.93 | 25.89 | 28.65 | 39.55 | 24.48 | 46.56 | 20.63 | 31.81 | 38.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalbi, A.; Chikh-Rouhou, H.; Mezghani, N.; Slim, A.; Fayos, O.; Bel-Kadhi, M.S.; Garcés-Claver, A. Genetic Diversity Analysis of Onion (Allium cepa L.) from the Arid Region of Tunisia Using Phenotypic Traits and SSR Markers. Horticulturae 2023, 9, 1098. https://doi.org/10.3390/horticulturae9101098
Chalbi A, Chikh-Rouhou H, Mezghani N, Slim A, Fayos O, Bel-Kadhi MS, Garcés-Claver A. Genetic Diversity Analysis of Onion (Allium cepa L.) from the Arid Region of Tunisia Using Phenotypic Traits and SSR Markers. Horticulturae. 2023; 9(10):1098. https://doi.org/10.3390/horticulturae9101098
Chicago/Turabian StyleChalbi, Amel, Hela Chikh-Rouhou, Najla Mezghani, Amine Slim, Oreto Fayos, Mohamed Sadok Bel-Kadhi, and Ana Garcés-Claver. 2023. "Genetic Diversity Analysis of Onion (Allium cepa L.) from the Arid Region of Tunisia Using Phenotypic Traits and SSR Markers" Horticulturae 9, no. 10: 1098. https://doi.org/10.3390/horticulturae9101098
APA StyleChalbi, A., Chikh-Rouhou, H., Mezghani, N., Slim, A., Fayos, O., Bel-Kadhi, M. S., & Garcés-Claver, A. (2023). Genetic Diversity Analysis of Onion (Allium cepa L.) from the Arid Region of Tunisia Using Phenotypic Traits and SSR Markers. Horticulturae, 9(10), 1098. https://doi.org/10.3390/horticulturae9101098