Exploring the Potential of Sunflowers: Agronomy, Applications, and Opportunities within Bio-Circular-Green Economy
Abstract
:1. Introduction
2. Sunflower Agronomy
2.1. Botanical Characteristics of Sunflower
2.2. Growth Stages
2.3. Environmental Factors Affecting Sunflower Plant Growth and Development
2.3.1. Moisture
2.3.2. Temperature
2.3.3. Soils
2.4. Cultivation and Practices
2.4.1. Field Preparation
2.4.2. Cultivation
2.4.3. Fertilization and Irrigation
2.4.4. Disease and Insect Pests and Managements (IPM)
2.4.5. Harvesting
2.4.6. Postharvest Process and Preservation
2.5. Propagation
3. Utilization and Opportunities in the Bio-Circular-Green (BCG) Economy Model
3.1. The Bio Economy for Sunflower
3.1.1. Sunflower Sprouts
3.1.2. Roasted Sunflower Seed
3.1.3. Sunflower Seed Oil
3.2. The Circular Economy for Sunflower
3.2.1. Feeds
3.2.2. Biodiesel
3.2.3. Fiber
3.2.4. Dye
3.3. The Green Economy for Sunflower
4. Sunflowers in Agricultural Tourism
4.1. Commercial Development of Sunflower Farms and Tourism
4.2. Training Courses and Educational Information on Sunflower Plantations and Products
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adeleke, B.S.; Babalola, O.O. Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Sci. Nutri. 2020, 8, 4666–4684. [Google Scholar] [CrossRef] [PubMed]
- Pilorge, E. Sunflower in the global vegetable oil system: Situation, specificities and perspectives. OCL 2020, 27, 34. [Google Scholar] [CrossRef]
- De Oliveira Filho, J.G.; Egea, M.B. Sunflower seed byproduct and its fractions for food application: An attempt to improve the sustainability of the oil process. J. Food Sci. 2021, 86, 1497–1510. [Google Scholar] [CrossRef] [PubMed]
- Fortune Business Insights. Sunflower Oil Market Size, Share & COVID-19 Impact Analysis, By Type (High-Oleic, Mid-Oleic, and Linoleic), End-Users (Household/Retail, Foodservice/HORECA, and Industrial) and Regional Forecast, 2021–2028. Available online: https://www.fortunebusinessinsights.com/industry-reports/sunflower-oil-market-101480 (accessed on 12 June 2023).
- Mordor Intelligence. Sunflower Market-Growth, Trends, COVID-19 Impact, and Forecasts (2023–2028). Available online: https://www.mordorintelligence.com/industry-reports/global-sunflower-market (accessed on 12 June 2023).
- The Southern African Grain Laboratory NPC. Sunflower Report: 2020–2021 Season. Available online: https://sagl.co.za/wp-content/uploads/New-Sunflower-Crop-Quality-Report-2020-2021-NEW.pdf (accessed on 12 June 2023).
- Verified Market Research. Global Sunflower Market Size by Product, By Application, By Geographic Scope and Forecast. Available online: https://www.verifiedmarketresearch.com/product/sunflower-market/ (accessed on 12 June 2023).
- Agricultural Marketing Resource Center. Sunflower Profile. Available online: https://www.agmrc.org/commodities-products/grains-oilseeds/sunflower-profile#:~:text=Sunflowers%20are%20considered%20oilseeds.,ingredient%20in%20livestock%20feed%20rations (accessed on 12 June 2023).
- Bertelsen, A. Soaring Bird Food Sales Fuel Sunflower Production. Available online: https://www.wisfarmer.com/story/news/2021/02/26/bird-seed-sales-have-been-soaring-during-pandemic/3893892001/ (accessed on 12 June 2023).
- National Science and Technology Development Agency. BCG Model: Fostering Sustainable Development in Thai Economy. Available online: https://www.nstda.or.th/en/images/pdf/BCG_Booklet1.pdf (accessed on 15 September 2023).
- Briggs, W.R. How do sunflowers follow the Sun—And to what end? Science 2016, 353, 541–542. [Google Scholar] [CrossRef] [PubMed]
- Bashir, T.; Mashwani, Z.U.R.; Zahara, K.; Haider, S.; Tabassum, S.; Mudrikah, M. Chemistry, pharmacology and ethnomedicinal uses of Helianthus annuus (Sunflower): A review. Pure Appl. Biol. 2015, 4, 226–235. [Google Scholar] [CrossRef]
- Dwivedi, A.; Sharma, G.N. A Review on Heliotropism Plant: Helianthus annuus L. J. Phytopharm. 2014, 3, 149–155. [Google Scholar] [CrossRef]
- Park, Y.J.; Seo, P.J. How the sunflower gets its rings. Elife 2023, 12, e86284. [Google Scholar]
- Techasan, S.; Naramas, P. Sunflower Planting. Available online: https://eto.ku.ac.th/neweto/e-book/plant/flower/sunflower.pdf (accessed on 12 June 2023).
- Gai, F.; Karamac, M.; Janiak, M.A.; Amarowicz, R.; Peiretti, P.G. Sunflower (Helianthus annuus L.) plants at various growth stages subjected to extraction—Comparison of the antioxidant activity and phenolic profile. Antioxidants 2020, 9, 535. [Google Scholar] [CrossRef]
- Schneiter, A.A.; Miller, J.F. Description of sunflower growth stages 1. Crop Sci. 1981, 21, 901–903. [Google Scholar] [CrossRef]
- Pioneer Technical Bulletin. Sunflower Crop Development Stages and Yield Determinants. Available online: https://intelseed.ca/uploads/Sunflower_Crop_Development_Stages_and_Yield.pdf (accessed on 12 June 2023).
- Agriculture & Rural Development. Sunflower Production—A Concise Guide. Available online: https://www.kzndard.gov.za/images/Documents/RESOURCE_CENTRE/GUIDELINE_DOCUMENTS/PRODUCTION_GUIDELINES/Look-n-Do/Sunflower%20Production.pdf (accessed on 15 September 2023).
- North Dakota State University. Stages of Sunflower Development. Available online: https://www.ndsu.edu/agriculture/sites/default/files/2022-08/a1145.pdf (accessed on 12 June 2023).
- Wen, B. Effects of High Temperature and Water Stress on Seed Germination of the Invasive Species Mexican Sunflower. PLoS ONE 2015, 10, e0141567. [Google Scholar] [CrossRef]
- Chenyin, P.; Yu, W.; Fenghou, S.; Yongbao, S. Review of the Current Research Progress of Seed Germination Inhibitors. Horticulturae 2023, 9, 462. [Google Scholar] [CrossRef]
- Haj Sghaier, A.; Khaeim, H.; Tarnawa, A.; Kovacs, G.P.; Gyuricza, C.; Kende, Z. Germination and seedling development responses of sunflower (Helianthus annuus L.) seeds to temperature and different levels of water availability. Agriculture 2023, 13, 608. [Google Scholar] [CrossRef]
- Alahdadi, I.; Oraki, H.; Khajani, F.P. Effect of water stress on yield and yield components of sunflower hybrids. Afr. J. Biotechnol. 2011, 10, 6504–6509. [Google Scholar]
- Buriro, M.; Sanjrani, A.S.; Chachar, Q.I.; Chachar, N.A.; Chachar, S.D.; Buriro, B.; Gandahi, A.W.; Mangan, T. Effect of water stress on growth and yield of sunflower. J. Agric. Tech. 2015, 11, 1547–1563. [Google Scholar]
- Ebrahimian, E.; Seyyedi, S.M.; Bybordi, A.; Damalas, C.A. Seed yield and oil quality of sunflower, safflower, and sesame under different levels of irrigation water availability. Agric. Water Manag. 2019, 218, 149–157. [Google Scholar] [CrossRef]
- Smaeili, M.; Madani, H.; Nassiri, B.M.; Sajedi, N.A.; Chavoshi, S. Study of water deficiency levels on ecophysiological characteristics of sunflower cultivars in Isfahan, Iran. Appl. Water Sci. 2022, 12, 108. [Google Scholar] [CrossRef]
- Guo, S.; Klinkesorn, U.; Lorjaroenphon, Y.; Ge, Y.; Na Jom, K. Effects of germinating temperature and time on metabolite profiles of sunflower (Helianthus annuus L.) seed. Food Sci. Nutr. 2021, 9, 2810–2822. [Google Scholar] [CrossRef]
- Van der Merwe, R.; Labuschagne, M.T.; Herselman, L.; Hugo, A. Effect of heat stress on seed yield components and oil composition in high-and mid-oleic sunflower hybrids. S. Afr. J. Plant Soil 2015, 32, 121–128. [Google Scholar] [CrossRef]
- Nelms, K.D.; Allison, J.; Strickland, B.; Hamrick, B. Growing and Managing Sunflowers. Available online: https://extension.msstate.edu/sites/default/files/publications/publications/p2725.pdf (accessed on 12 June 2023).
- Sutradhar, A.; Lollato, R.P.; Butchee, K.; Arnall, D.B. Determining critical soil pH for sunflower production. Int. J. Agron. 2014. [Google Scholar] [CrossRef]
- Abd El-Kader, A.A.; Mohamedin, A.A.M.; Ahmed, M.K.A. Growth and yield of sunflower as affected by different salt affected soils. Int. J. Agric. Biol. 2006, 8, 583–587. [Google Scholar]
- Yılmaz, F.F.; Erdem, D.B. Effects of different soil types and varieties on oil quality of sunflower in the Thrace region. Riv. Ital. Delle Sostanze Grasse 2020, 97, 1–9. [Google Scholar]
- Basha, N.A.I.; James, A.; Ram, B.; Rao, P.S. Impact of flyash on soil physical properties under sunflower-spinach-sunflower crop rotation system in Central India. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1815–1828. [Google Scholar] [CrossRef]
- Pinkovskyi, H.; Tanchyk, S. Management of Productivity of Sunflower Plants Depending on Terms of Sowing and Density of Standing in Arid Conditions of the Right-Bank Steppe of Ukraine. Agron. Sci. 2021, 76, 21–38. [Google Scholar] [CrossRef]
- Pan, Y.; Pan, X.; Zi, T.; Hu, Q.; Wang, J.; Han, G.; Wang, J.; Pan, Z. Optimal Ridge–Furrow Ratio for Maximum Drought Resilience of Sunflower in Semi-Arid Region of China. Sustainability 2019, 11, 4047. [Google Scholar] [CrossRef]
- Modanlo, H.; Baghi, M.; Malidarreh, A.G. Sunflower (Helianthus annuus L.) grain yield affected by fertilizer and plant density. Cent. Asian J. Plant Sci. Innov. 2021, 1, 102–108. [Google Scholar]
- Beg, A.S.S.P.; Pourdad, S.S.; Alipour, S. Row and plant spacing effects on agronomic performance of sunflower in warm and semi-cold areas of Iran. Helia 2007, 30, 99–104. [Google Scholar] [CrossRef]
- Baghdadi, A.; Halim, R.A.; Nasiri, A.; Ahmad, I.; Aslani, F. Influence of plant spacing and sowing time on yield of sunflower (Helianthus annuus L.). J. Food Agric. Environ. 2014, 12, 688–691. [Google Scholar]
- Ion, V.; Dicu, G.; Basa, A.G.; Dumbrava, M.; Temocico, G.; Epure, L.I.; State, D. Sunflower Yield and Yield Components Under Different Sowing Conditions. Agric. Agric. Sci. Procedia 2015, 6, 44–51. [Google Scholar] [CrossRef]
- Handayati, W.; Sihombing, D. Study of NPK fertilizer effect on sunflower growth and yield. In AIP Conference Proceedings, 13–14 March 2019, Malang Indonesia; AIP Publishing LLC: Melville, NY, USA, 2019; p. 030031. [Google Scholar]
- Simoes, W.L.; da Silva, J.S.; de Oliveira, A.R.; Regitano Neto, A.; Drumond, M.A.; Lima, J.A.; do Nascimento, B.R. Sunflower cultivation under different irrigation systems and planting spacings in the sub-middle region of Sao Francisco Valley. Semin. Cienc. Agrar. Londrina 2020, 41, 2899–2910. [Google Scholar] [CrossRef]
- Qureshi, A.L.; Gadehi, M.A.; Mahessar, A.A.; Memon, N.A.; Soomro, A.G.; Memon, A.H. Effect of drip and furrow irrigation systems on sunflower yield and water use efficiency in dry area of Pakistan. Am. Eurasian J. Agric. Environ. Sci. 2015, 15, 1947–1952. [Google Scholar]
- Bai, R.; Liu, W.; Zheng, H. Problems of sunflower disease in China. In Proceedings of the Second Sunflower Conference, Jilin, China, 12–16 December 1985; pp. 12–16. [Google Scholar]
- Masseeds. Sunflower Disease Tolerance to Secure the Yield. Available online: https://www.masseeds.com/our-genetic-innovations/heliosmart-sunflowers-provide-best-disease-tolerance-secure-yield (accessed on 12 June 2023).
- Ahmed, R.; Yousaf, J.; Nadeem, I.; Saleem, M.F.; Ali, A. Response of Sunflower (Helianthus annuus L.) Hybrids to Population of Different Insect Pests and Their Bio-Control Agents. J. Agric. Res. 2013, 51, 31–39. [Google Scholar]
- Grains Research and Development Corporation. Sunflowers. Available online: https://grdc.com.au/__data/assets/pdf_file/0034/238957/grdc-grownotes-sunflowers-northern.pdf.pdf (accessed on 17 September 2023).
- Miklic, V.; Crnobarac, J.; Joksimovic, J.; Dusanic, N.; Vasic, D.; Jocic, S. Effect of Harvest Date on Seed Viability of different Sunflower Genotypes. Helia 2006, 29, 127–134. [Google Scholar] [CrossRef]
- Miklic, V.; Mrda, J.; Modi, R.; Jocic, S.; Dusanic, N.; Hladni, N.; Miladinovic, D. Effect of Location and Harvesting Date on Yield and 1,000-Seed Weight of Different Sunflower Genotypes. Rom. Agric. Res. 2012, 29, 219–225. [Google Scholar]
- El-Khateeb, H.; Sorour, H.; Khodeir, M.; Saad, M. Quality of drying sunflower crop after mechanical threshing. Misr. J. Agric. Eng. 2009, 26, 1364–1376. [Google Scholar] [CrossRef]
- Lima, D.D.C.; Dutra, A.S.; Pontes, F.M.; Bezerra, F.T.C. Storage of sunflower seeds. Rev. Cienc. Agron. 2014, 45, 361–369. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, M.; Wu, H.; Zhao, T.; Wu, P.; Cao, D. High drying temperature accelerates sunflower seed deterioration by regulating the fatty acid metabolism, glycometabolism, and abscisic acid/gibberellin balance. Front. Plant Sci. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Nithya, N.; Renugadevi, J.; Bhaskaran, M.; Johnjoel, A. Influence of temperature and moisture on seed viability period in sunflower seeds. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 820–827. [Google Scholar] [CrossRef]
- El-Saidy, A.E.A.; El-Hai, K.M.A. Effect of some evaporation matters on storability of sunflower (Helianthus annuus L.) seed. Pak. J. Biol. Sci. 2016, 19, 239–249. [Google Scholar] [CrossRef]
- Coradi, P.C.; Fernandes, C.H.P.; Peralta, C.C.; Pereira, T.L. Effects of drying and storage conditions in the quality of sunflower seeds. Pesq. Agropec. Pernamb. Recife 2015, 20, 26–35. [Google Scholar] [CrossRef]
- Gutierrez, A.; Rueda, F.; Cantamutto, M.A.; Poverene, M. Self-Pollination and Its Implication in Invasiveness of Helianthus annuus ssp. annuus and H. Petiolaris. J. Appl. Genet. 2014, 25, 5–15. [Google Scholar]
- Maksimovic, L. Adaptability to Variable Weather Conditions and Irrigation Response in NS Sunflower Hybrids. Helia 2005, 28, 113–124. [Google Scholar]
- Pourdad, S.S.; Beg, A. Sunflower Production: Hybrids Versus Open Pollinated Varieties on Dry Land. Helia 2008, 31, 155–160. [Google Scholar] [CrossRef]
- Goksoy, A.T.; Turkec, A.; Turan, Z.M. Determination of Some Agronomic Characteristics and Hybrid Vigor of New Improved Synthetic Varieties in Sunflower (Helianthus annuus L.). Helia 2002, 25, 119–130. [Google Scholar] [CrossRef]
- New Holland Agriculture a Brand of CNH Industrial. Sunflower. Available online: https://agriculture.newholland.com/apac/th-th/equipment/agronomy/production-guidelines/sunflower (accessed on 12 June 2023).
- Farahani, H.A.; Moaveni, P.; Maroufi, K. Effect of seed size on seedling vigour in sunflower (Helianthus annus L.). Adv. Environ. Biol. 2011, 5, 1701–1705. [Google Scholar]
- Ahmeda, T.A.M.; Mutwali, E.M.; Salih, E.A. The effect of seed size and burial depth on the germination, growth and yield of sunflower (Helianthus annus L.). Am. Sci. Res. J. Eng. Tech. Sci. 2019, 53, 75–82. [Google Scholar]
- Edyvean, R.G.; Apiwatanapiwat, W.; Vaithanomsat, P.; Boondaeng, A.; Janchai, P.; Sophonthammaphat, S. The Bio-Circular Green Economy model in Thailand—A comparative review. Agric. Nat. Resour. 2023, 57, 51–64. [Google Scholar]
- Andey, A.; Daim, W.; Lim, S.A. Food Waste to Bio-Products: Recent Opportunities and Challenges to Promote Bio-Circular-Green. In Handbook of Research on Designing Sustainable Supply Chains to Achieve a Circular Economy; IGI Global: Hershey, PA, USA, 2023; pp. 306–331. [Google Scholar]
- Thongchuang, M.; Kunsombat, C.; Taothong, R.; Naknawa, W.; Kraboun, K.; Ajavakom, V.; Wutipraditkul, N. Antioxidant capacity in different cultivars of sunflower sprouts and their harvesting indices. J. Appl. Sci. 2019, 18, 79–96. [Google Scholar] [CrossRef]
- Guo, S.; Ge, Y.; Na Jom, K. A review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (Helianthus annuus L.). Chem. Cent. J. 2017, 11, 1–10. [Google Scholar] [CrossRef]
- Naernruangroj, K. Sunflower Seedlings. Available online: https://esc.doae.go.th/wp-content/uploads/2020/02/Baby_Sunflower.pdf (accessed on 12 June 2023).
- Rosa, P.M.; Antoniassi, R.; Freitas, S.C.; Bizzo, H.R.; Zanotto, D.L.; Oliveira, M.F.; Castiglioni, V.B.R. Chemical composition of brazilian sunflower varieties. Helia 2009, 32, 145–156. [Google Scholar] [CrossRef]
- Puwaphut, R.; Yusuh, M.; Mekarat, S. Suitable period of young sunflower (Helianthus annuus L.) for the ability of bioactive compounds production. Princess Naradhiwas Univ. J. 2016, 8, 90–100. [Google Scholar]
- Thai Industrial Standards Institute (TISI). Roasted Sunflower Seeds. Available online: https://tcps.tisi.go.th/pub%5Ctcps739_48.pdf (accessed on 12 June 2023).
- Guo, S.; Na Jom, K.; Ge, Y. Influence of roasting condition on flavor profile of sunflower seeds: A flavoromics approach. Sci. Rep. 2019, 9, 11295. [Google Scholar] [CrossRef]
- Gotor, A.A.; Rhazi, L. Effects of refining process on sunflower oil minor components: A review. OCL 2016, 23, D207. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Sunflower Crude and Refined Oils. Available online: https://www.fao.org/3/al375e/al375e.pdf (accessed on 12 June 2023).
- Shafi, M.; Bakht, J.; Yousaf, M.; Khan, M.A. Effects of irrigation regime on growth and seed yield of sunflower (Helianthus annuus L.). Pak. J. Bot. 2013, 45, 1995–2000. [Google Scholar]
- Petraru, A.; Ursachi, F.; Amariei, S. Nutritional characteristics assessment of sunflower seeds, oil and cake. Perspective of using sunflower oilcakes as a functional ingredient. Plants 2021, 10, 2487. [Google Scholar] [CrossRef] [PubMed]
- Manivannan, N.; Chandirakala, R.; Manonmani, S.; Viswanathan, P.L.; Ganesamurthy, K.; Dudhe, M.Y.; Sujatha, M.; Vishnuvardhan Reddy, A.; Sasikala, R.; Rajendran, L.; et al. Sunflower COH3: A high yielding and high oil content sunflower hybrid for Tamil Nadu. Electron. J. Plant Breed 2021, 12, 525–528. [Google Scholar]
- Demir, I. Yield traits of sunflower (Helianthus annuus L.) hybrids according to the difference in their growth stages. Pak. J. Bot. 2021, 53. [Google Scholar] [CrossRef] [PubMed]
- Levic, J.D.; Sredanovic, S.A.; Duragic, O.M. Sunflower meal protein as a feed for broilers. Acta Period. Technol. 2005, 36, 3–10. [Google Scholar] [CrossRef]
- Saleh, A.A.; El-Awady, A.; Amber, K.; Eid, Y.Z.; Alzawqari, M.H.; Selim, S.; Soliman, M.M.; Shukry, M. Effects of sunflower meal supplementation as a complementary protein source in the laying hen’s diet on productive performance, egg quality, and nutrient digestibility. Sustainability 2021, 13, 3557. [Google Scholar] [CrossRef]
- Zilic, S.; Barac, M.; Pesic, M.; Crevar, M.; Stanojevic, S.; Nisavic, A.; Saratlic, G.; Tolimir, M. Characterization of sunflower seed and kernel proteins. Helia 2010, 33, 103–114. [Google Scholar] [CrossRef]
- Okur, M.T.; Saraçoglu, N.E. Ethanol production from sunflower seed hull hydrolysate by Pichia stipitis under uncontrolled pH conditions in a bioreactor. Turk. J. Eng. Environ. Sci. 2006, 30, 317–322. [Google Scholar]
- Spirchez, C.; Lunguleasa, A.; Croitoru, C. Ecological briquettes from sunflower seed husk. In E3S Web of Conferences; EDP Sciences; EDP: Les Ulis, France, 2019; p. 01001. [Google Scholar]
- Grasso, S.; Pintado, T.; Perez-Jimenez, J.; Ruiz-Capillas, C.; Herrero, A.M. Potential of a sunflower seed by-product as animal fat replacer in healthier frankfurters. Foods 2020, 9, 445. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, S.; Erdogan, S. Using of sunflower silage instead of corn silage in the diets of goat. Indian J. Anim. Res. 2018, 52, 1446–1451. [Google Scholar]
- Tutunea, D.; Dumitru, I.; Racila, L.; Otat, O.; Matei, L.; Geonea, I. Characterization of sunflower oil biodiesel as alternative for diesel fuel. In Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018) IV, Cluj-Napoca, Romania, 17–19 October 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 172–180. [Google Scholar]
- Summerscales, J.; Dissanayake, N.P.; Virk, A.S.; Hall, W. A review of bast fibres and their composites. Part 1–Fibres as reinforcements. Composites Part A. Appl. Sci. Manuf. 2010, 41, 1329–1335. [Google Scholar] [CrossRef]
- Binici, H.; Eken, M.; Kara, M.; Dolaz, M. An environment-friendly thermal insulation material from sunflower stalk, textile waste and stubble fibers. In Proceedings of the 2013 International Conference on Renewable Energy Research and Applications (ICRERA), IEEE, Madrid, Spain, 20–23 October 2013; pp. 833–846. [Google Scholar]
- Mathias, J.D.; Alzina, A.; Grediac, M.; Michaud, P.; Roux, P.; De Baynast, H.; Delattre, C.; Dumoulin, N.; Faure, T.; Larrey-Lassalle, P.; et al. Upcycling sunflower stems as natural fibers for biocomposite applications. BioResources 2015, 10, 8076–8088. [Google Scholar] [CrossRef]
- Oyeleke, G.O.; Abdulazeez, I.A.; Adebisi, A.A.; Oyekanmi, K.N.; Akinbode, S.O. Extraction of dyes from sunflower petal and their fourier transform infrared characterization. Org. Polym. Mater. Res. 2021, 3, 1–6. [Google Scholar] [CrossRef]
- Nikneshan, P.; Karimmojeni, H.; Moghanibashi, M.; al Sadat Hosseini, N. Allelopathic potential of sunflower on weed management in safflower and wheat. Aust. J. Crop Sci. 2011, 5, 1434–1440. [Google Scholar]
- Kamal, J. Impact of allelopathy of sunflower (Helianthus annuus L.) roots extract on physiology of wheat (Triticum aestivum L.). Afr. J. Biotechnol. 2011, 10, 14465–14477. [Google Scholar]
- Anjum, T.P.; Stevenson, D.H.; Bajwa, R. Allelopathic potential of Helianthus annuus L. (sunflower) as natural herbicide. In Proceedings of the 4th World Congress on Allelopathy: Establishing the Scientific Base, Wagga, Australia, 21–26 August 2005; pp. 21–26. [Google Scholar]
- Sankaranarayanan, S.; Bama, P.; Deccaraman, M.; Vijayalakshimi, M.; Murugesan, K.; Kalaichelvan, P.T.; Arumugam, P. Isolation and characterization of bioactive and antibacterial compound from Helianthus annuus linn. Indian J. Exp. Biol. 2008, 46, 831–835. [Google Scholar]
- Macias, F.A.; Torres, A.; Galindo, J.L.; Varela, R.M.; Alvarez, J.A.; Molinillo, J.M. Bioactive terpenoids from sunflower leaves cv. Peredovick®. Phytochemistry 2002, 61, 687–692. [Google Scholar] [CrossRef]
- UMass Extraction. Sunflower Pollen and Bee Health Research from the Adler Lab at UMass Amherst. Available online: https://ag.umass.edu/sites/ag.umass.edu/files/pdf-doc-ppt/sunflower_fact_sheet-final_2.pdf (accessed on 12 June 2023).
- Cvejic, S.; Jocic, S.; Mladenovic, E.; Jockovic, M.; Miladinovic, D.; Imerovski, I.; Dimitrijevic, A. Evaluation of combining ability in ornamental sunflower for floral and morphological traits. CJGPB 2017, 53, 83–88. [Google Scholar] [CrossRef]
- Na Songkhla, T.; Somboonsuke, B. Impact of agro-tourism on local agricultural occupation: A case study of Chang Klang district, southern Thailand. J. Agric. Tech. 2012, 8, 1185–1198. [Google Scholar] [CrossRef]
- Puangpejara, K. Service potential development for human resource in ago-tourism attractions: A case study of sunflower fields in Patthana Nikhom district, Lop Buri province, Thailand. Int. J. Hum. Resour. Manag. Res. 2014, 4, 77–86. [Google Scholar]
- Petroman, C.; Mirea, A.; Lozici, A.; Constantin, E.C.; Marin, D.; Merce, I. The rural educational tourism at the farm. Procedia Econ. Financ. 2016, 39, 88–93. [Google Scholar] [CrossRef]
- Da Liang, A.R.; Nie, Y.Y.; Chen, D.J.; Chen, P.J. Case studies on co-branding and farm tourism: Best match between farm image and experience activities. J. Hosp. Tour. Manag. 2020, 42, 107–118. [Google Scholar] [CrossRef]
- Wisnumurti, A.G.O.; Candranegara, I.M.W.; Anggriyani, N.M.; Rintha, N.G.A.M.M. “Sunflower Garden” Eco-tourism area development strategy in Batannyuh Belayu Village, Marga district, Tabanan regency. In Proceedings of the 2nd International Conference on Business Law and Local Wisdom in Tourism (ICBLT 2021), Online, 28–29 July 2021; Atlantis Press: Paris, France, 2021; pp. 1–5. [Google Scholar]
- Sebyiga, B. Sunflower production and its potential for improving income of smallholder producers in the central agricultural zone of Tanzania: A case of villages in Kongwa and Singida rural districts. Local Adm. J. 2020, 13, 223–234. [Google Scholar]
- Prasertkhorawong, K.; Kanchanawong, P.; Ariyadet, C.; Saengsupho, S. The development of smart farmer training course for agricultural extension. AJMI-ASEAN J. Man. Inno. 2020, 7, 119–132. [Google Scholar]
- Akter, A.; Geng, X.; Mwalupaso, G.E.; Lu, H.; Hoque, F.; Ndungu, M.K.; Abbas, Q. Income and yield effects of climate-smart agriculture (CSA) adoption in flood prone areas of Bangladesh: Farm level evidence. Clim. Risk Manag. 2022, 37, 100455. [Google Scholar] [CrossRef]
Sunflower | Days after Planting | Stage | Description |
---|---|---|---|
10 days | Vegetative Emergence, VE | Seedling has emerged and the first leaf beyond the cotyledons is less than 4 cm long. | |
15–35 days | Vegetative Stages (V number, i.e., V-1, V-2, V-3, etc.) | These are determined by counting the number of developed leaves at least 4 cm in length beginning V-1, V-2, V-3, V-4, etc. If senescence of the lower leaves has occurred, count leaf scars (excluding those where the cotyledons were attached) to determine the proper stage. | |
40 days | Reproductive Stages, R-1 | The terminal bud forms a miniature floral head rather than a cluster of leaves. When viewed directly above, the immature bracts form a many-pointed star-like appearance. | |
55 days | R-2 | The immature bud elongates 0.5 to 2.0 cm above the nearest leaf attached to the stem. Disregard leaves attached directly to the back of the bud. | |
65 days | R-3 | The immature bud elongates more than 2.0 cm above the nearest leaf. | |
70 days | R-4 | The inflorescence begins to open. When viewed from directly above, immature ray flowers are visible | |
75 days | R-5 (decimal, i.e., R-5.1, R-5.2., R-5.3, etc.) | This stage is the beginning of flowering. The stage can be divided into substages depending upon the percentage of the head area (disk flowers) that has completed or is in flowering, e.g., R-5.3 (30%) or R-5.8 (80%). | |
85 days | R-6 | Flowering is complete and the ray flowers are wilting. | |
95 days | R-7 | The back of the head has started to turn pale yellow. | |
105 days | R-8 | The back of the head is yellow, but the bracts remain green. | |
125–140 days | R-9 | The bracts become yellow and brown. This stage is regarded as physiological maturity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puttha, R.; Venkatachalam, K.; Hanpakdeesakul, S.; Wongsa, J.; Parametthanuwat, T.; Srean, P.; Pakeechai, K.; Charoenphun, N. Exploring the Potential of Sunflowers: Agronomy, Applications, and Opportunities within Bio-Circular-Green Economy. Horticulturae 2023, 9, 1079. https://doi.org/10.3390/horticulturae9101079
Puttha R, Venkatachalam K, Hanpakdeesakul S, Wongsa J, Parametthanuwat T, Srean P, Pakeechai K, Charoenphun N. Exploring the Potential of Sunflowers: Agronomy, Applications, and Opportunities within Bio-Circular-Green Economy. Horticulturae. 2023; 9(10):1079. https://doi.org/10.3390/horticulturae9101079
Chicago/Turabian StylePuttha, Ratchanee, Karthikeyan Venkatachalam, Sayomphoo Hanpakdeesakul, Jittimon Wongsa, Thanya Parametthanuwat, Pao Srean, Kanokporn Pakeechai, and Narin Charoenphun. 2023. "Exploring the Potential of Sunflowers: Agronomy, Applications, and Opportunities within Bio-Circular-Green Economy" Horticulturae 9, no. 10: 1079. https://doi.org/10.3390/horticulturae9101079
APA StylePuttha, R., Venkatachalam, K., Hanpakdeesakul, S., Wongsa, J., Parametthanuwat, T., Srean, P., Pakeechai, K., & Charoenphun, N. (2023). Exploring the Potential of Sunflowers: Agronomy, Applications, and Opportunities within Bio-Circular-Green Economy. Horticulturae, 9(10), 1079. https://doi.org/10.3390/horticulturae9101079