Moderate Nitrogen Rates Applied to a Rainfed Olive Grove Seem to Provide an Interesting Balance between Variables Associated with Olive and Oil Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characterization and Experimental Design
2.2. Fruit Sampling and Oil Extraction
2.3. Fruit Biometrics and Maturation Index
2.4. Extraction and Quantification of Polyphenolic Compounds from Olive and Olive Oil
2.5. Free Acidity, Peroxide Value and UV Spectrophotometric Indices
2.6. Sensorial Analysis
2.7. Data Analysis
3. Results and Discussion
3.1. Maturation Index and Fruit Biometric Variables
3.2. Metabolite Concentration in Olives and Oil
3.3. Quality of Olive Oil during Storage
3.4. Sensory Profile of Olive Oil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erel, R.; Kerem, Z.; Ben-Gal, A.; Dag, A.; Schwartz, A.; Zipori, I.; Basheer, L.; Yermiyahu, U. Olive (Olea europaea L.) Tree Nitrogen Status Is a Key Factor for Olive Oil Quality. J. Agric. Food Chem. 2013, 61, 11261–11272. [Google Scholar] [CrossRef] [PubMed]
- Haberman, A.; Dag, A.; Shtern, N.; Zipori, I.; Erel, R.; Ben-Gal, A.; Yermiyahu, U. Significance of proper nitrogen fertilization for olive productivity in intensive cultivation. Sci. Hortic. 2019, 246, 710–717. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Coelho, V.; Arrobas, M.; Gouveia, E.; Raimundo, S.; Correia, C.M.; Bento, A. The effect of nitrogen fertilization on the incidence of olive fruit fly, olive leaf spot and olive anthracnose in two olive cultivars grown in rainfed conditions. Sci. Hortic. 2019, 256, 108658. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, I.Q.; Arrobas, M.; Moutinho-Pereira, J.M.; Correia, C.M.; Rodrigues, M.Â. The effect of nitrogen applications on the growth of young olive trees and nitrogen use efficiency. Turk. J. Agric. For. 2020, 44, 278–289. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Antonaya-Baena, F.; Almeida-Lavado, S. Nitrogen Uptake Efficiency of Olive Cultivars. Horticulturae 2021, 7, 136. [Google Scholar] [CrossRef]
- Silva, E.; Arrobas, M.; Gonçalves, A.; Martins, S.; Raimundo, S.; Pinto, L.; Brito, C.; Moutinho-Pereira, J.; Correia, C.M.; Rodrigues, M.Â. A controlled-release fertilizer improved soil fertility but not olive tree performance. Nutr. Cycl. Agroecosystems 2021, 120, 1–15. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Ferreira, I.Q.; Claro, A.M.; Arrobas, M. Fertilizer recommendations for olive based upon nutrients removed in crop and pruning. Sci. Hortic. 2012, 142, 205–211. [Google Scholar] [CrossRef]
- Bustan, A.; Avni, A.; Yermiyahu, U.; Ben-Gal, A.; Riov, J.; Erel, R.; Zipori, I.; Dag, A. Interactions between fruit load and macroelement concentrations in fertigated olive (Olea europaea L.) trees under arid saline conditions. Sci. Hortic. 2013, 152, 44–55. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Sánchez-Zamora, M.A.; García-Novelo, J.M.; Molina-Soria, C. Nutrient Removal from Olive Trees by Fruit Yield and Pruning. Hortscience 2015, 50, 474. [Google Scholar] [CrossRef] [Green Version]
- Stateras, D.C.; Moustakas, N.K. Seasonal changes of macro- and micro-nutrients concentration in olive leaves. J. Plant Nutr. 2018, 41, 186–196. [Google Scholar] [CrossRef]
- Silva, E.C.; Nogueira, R.J.M.C.; Silva, M.A.; Albuquerque, M.B. Drought Stress and Plant Nutrition. Plant Stress 2011, 1, 32–41. [Google Scholar]
- O’Brien, J.A.; Vega, A.; Bouguyon, E.; Krouk, G.; Gojon, A.; Coruzzi, G.; Gutiérrez, R.A. Nitrate Transport, Sensing, and Responses in Plants. Mol. Plant 2016, 9, 837–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, Y.; Porat, R.; Yermiyahu, U.; Heler, Y.; Holland, D.; Dag, A. Effects of nitrogen fertilization on pomegranate fruit, aril and juice quality. J. Sci. Food Agric. 2020, 100, 1678–1686. [Google Scholar] [CrossRef]
- Saidana, D.; Braham, M.; Boujnah, D.; Mariem, F.B.; Ammari, S.; El Hadj, S.B. Nutrient Stress, Ecophysiological, and Metabolic Aspects of Olive Tree Cultivars. J. Plant Nutr. 2009, 32, 129–145. [Google Scholar] [CrossRef]
- Erel, R.; Dag, A.; Ben-Gal, A.; Schwartz, A.; Yermiyahu, U. Flowering and Fruit Set of Olive Trees in Response to Nitrogen, Phosphorus, and Potassium. J. Am. Soc. Hortic. Sci. 2008, 133, 639–647. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Pavão, F.; Lopes, J.I.; Gomes, V.; Arrobas, M.; Moutinho-Pereira, J.; Ruivo, S.; Cabanas, J.E.; Correia, C.M. Olive Yields and Tree Nutritional Status during a Four-Year Period without Nitrogen and Boron Fertilization. Commun. Soil Sci. Plant Anal. 2011, 42, 803–814. [Google Scholar] [CrossRef]
- Fernandez-Escobar, R.; Ortiz-Urquiza, A.; Prado, M.; Rapoport, H.F. Nitrogen status influence on olive tree flower quality and ovule longevity. Environ. Exp. Bot. 2008, 64, 113–119. [Google Scholar] [CrossRef]
- Centeno, A.; García, J.M.; Gómez-del-Campo, M. Effects of nitrogen fertilization and nitrification inhibitor product on vegetative growth, production and oil quality in ‘Arbequina’ hedgerow and ‘Picual’ vase-trained orchards. J. Grasas Y Aceites 2017, 68, e215. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Escobar, R.; Beltrán, G.; Sánchez-Zamora, M.A.; García-Novelo, J.; Aguilera, M.P.; Uceda, M. Olive Oil Quality Decreases with Nitrogen Over-fertilization. HortScience 2006, 41, 215–219. [Google Scholar] [CrossRef] [Green Version]
- Servili, M.; Selvaggini, R.; Esposto, S.; Taticchi, A.; Montedoro, G.; Morozzi, G. Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A 2004, 1054, 113–127. [Google Scholar] [CrossRef]
- Dag, A.; Ben-David, E.; Kerem, Z.; Ben-Gal, A.; Erel, R.; Basheer, L.; Yermiyahu, U. Olive oil composition as a function of nitrogen, phosphorus and potassium plant nutrition. J. Sci. Food Agric. 2009, 89, 1871–1878. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.-T.; Silva, E.; Gonçalves, A.; Matos, C.; Rodrigues, M.A.; Moutinho-Pereira, J.; Barros, A.; Correia, C. Kaolin and salicylic acid foliar application modulate yield, quality and phytochemical composition of olive pulp and oil from rainfed trees. Sci. Hortic. 2018, 237, 176–183. [Google Scholar] [CrossRef] [Green Version]
- El Yamani, M.; Sakar, E.H.; Boussakouran, A.; Rharrabti, Y. Influence of ripening index and water regime on the yield and quality of “Moroccan Picholine” virgin olive oil. OCL 2020, 27, 19. [Google Scholar] [CrossRef]
- Sousa, C.; Gouvinhas, I.; Barreira, D.; Carvalho, M.T.; Vilela, A.; Lopes, J.; Martins-Lopes, P.; Barros, A.I. ‘Cobrançosa’ Olive Oil and Drupe: Chemical Composition at Two Ripening Stages. J. Am. Oil Chem. Soc. 2014, 91, 599–611. [Google Scholar] [CrossRef] [Green Version]
- Regulation, E. Commission Implementing Regulation (EU) No 299/2013 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Union 2013, 28, 3. [Google Scholar]
- IOC. Method for the Organoleptic Assessment of Extra Virgin Olive Oil Applying to Use a Designation of Origin. International Olive Concil Available COI/T.20/Doc. no. 22. Available online: http://www.internationaloliveoil.org (accessed on 3 September 2005).
- Elbadawy, N.; Hegazi, E.; Yehia, T.; Abourayya, M.; Mahmoud, T. Effect of Nitrogen Fertilizer on Yield, Fruit Quality and Oil Content in Manzanillo Olive Trees. J. Arid. Land Stud. 2016, 26, 175–177. [Google Scholar] [CrossRef]
- Dag, A.; Kerem, Z.; Yogev, N.; Zipori, I.; Lavee, S.; Ben-David, E. Influence of time of harvest and maturity index on olive oil yield and quality. Sci. Hortic. 2011, 127, 358–366. [Google Scholar] [CrossRef]
- Fernández, F.J.; Ladux, J.L.; Hammami, S.B.M.; Rapoport, H.F.; Searles, P.S. Fruit, mesocarp, and endocarp responses to crop load and to different estimates of source: Sink ratio in olive (cv. Arauco) at final harvest. Sci. Hortic. 2018, 234, 49–57. [Google Scholar] [CrossRef]
- Martins, S.; Silva, E.; Brito, C.; Martins-Gomes, C.; Gonçalves, A.; Arrobas, M.; Rodrigues, M.Â.; Correia, C.M.; Nunes, F.M. Zeolites and Biochar Modulate Olive Fruit and Oil Polyphenolic Profile. Antioxidants 2022, 11, 1332. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Jímenez, B.; Ruíz, A.; Albi, M.A. Effect of Olive Ripeness on the Oxidative Stability of Virgin Olive Oil Extracted from the Varieties Picual and Hojiblanca and on the Different Components Involved. J. Agric. Food Chem. 1999, 47, 121–127. [Google Scholar] [CrossRef]
- Briante, R.; Patumi, M.; Limongelli, S.; Febbraio, F.; Vaccaro, C.; Di Salle, A.; La Cara, F.; Nucci, R. Changes in phenolic and enzymatic activities content during fruit ripening in two Italian cultivars of Olea europaea L. Plant Sci. 2002, 162, 791–798. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Fregapane, G.; Salvador, M.D. Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res. Int. 2008, 41, 433–440. [Google Scholar] [CrossRef]
- Machado, M.; Felizardo, C.; Fernandes-Silva, A.A.; Nunes, F.M.; Barros, A. Polyphenolic compounds, antioxidant activity and l-phenylalanine ammonia-lyase activity during ripening of olive cv. “Cobrançosa” under different irrigation regimes. Food Res. Int. 2013, 51, 412–421. [Google Scholar] [CrossRef]
- Tekaya, M.; El-Gharbi, S.; Mechri, B.; Chehab, H.; Bchir, A.; Chraief, I.; Ayachi, M.; Boujnah, D.; Attia, F.; Hammami, M. Improving performance of olive trees by the enhancement of key physiological parameters of olive leaves in response to foliar fertilization. Acta Physiol. Plant. 2016, 38, 101. [Google Scholar] [CrossRef]
- Gonçalves, A.; Silva, E.; Brito, C.; Martins, S.; Pinto, L.; Dinis, L.-T.; Luzio, A.; Martins-Gomes, C.; Fernandes-Silva, A.; Ribeiro, C.; et al. Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies. J. Sci. Food Agric. 2020, 100, 682–694. [Google Scholar] [CrossRef] [Green Version]
- Gouvinhas, I.; Machado, J.; Gomes, S.; Lopes, J.; Martins-Lopes, P.; Barros, A.I.R.N.A. Phenolic Composition and Antioxidant Activity of Monovarietal and Commercial Portuguese Olive Oils. J. Am. Oil Chem. Soc. 2014, 91, 1197–1203. [Google Scholar] [CrossRef]
- Douzane, M.; Mohamed seghir, D.; Meribai, A.; Guezil, A.-H.; Abdi, A.; Tamendjari, A. Physico-chemical and sensory evaluation of virgin olive oils from several Algerian olive-growing regions. OCL 2021, 28, 55. [Google Scholar] [CrossRef]
- El Riachy, M.; Bou-Mitri, C.; Youssef, A.; Andary, R.; Skaff, W. Chemical and Sensorial Characteristics of Olive Oil Produced from the Lebanese Olive Variety ‘Baladi’. Sustainability 2018, 10, 4630. [Google Scholar] [CrossRef] [Green Version]
- Baiano, A.; Terracone, C.; Viggiani, I.; Del Nobile, M.A. Changes produced in extra-virgin olive oils from cv. Coratina during a prolonged storage treatment. Czech J. Food Sci. 2014, 32, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Condelli, N.; Caruso, M.C.; Galgano, F.; Russo, D.; Milella, L.; Favati, F. Prediction of the antioxidant activity of extra virgin olive oils produced in the Mediterranean area. Food Chem. 2015, 177, 233–239. [Google Scholar] [CrossRef]
- Jones, C.G.; Hartley, S.E. A Protein Competition Model of Phenolic Allocation. Oikos 1999, 86, 27–44. [Google Scholar] [CrossRef]
- Bryant, J.P.; Chapin, F.S.; Klein, D.R. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 1983, 40, 357–368. [Google Scholar] [CrossRef]
- Khaleghi, E.; Arzani, K.; Moallemi, N.; Barzegar, M. The efficacy of kaolin particle film on oil quality indices of olive trees (Olea europaea L.) cv ‘Zard’ grown under warm and semi-arid region of Iran. Food Chem. 2015, 166, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Salvador, M.D.; Aranda, F.; Fregapane, G. Influence of fruit ripening on ‘Cornicabra’ virgin olive oil quality A study of four successive crop seasons. Food Chem. 2001, 73, 45–53. [Google Scholar] [CrossRef]
- Youssef, N.B.; Zarrouk, W.; Carrasco-Pancorbo, A.; Ouni, Y.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Daoud, D.; Zarrouk, M. Effect of olive ripeness on chemical properties and phenolic composition of chétoui virgin olive oil. J. Sci. Food Agric. 2010, 90, 199–204. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Ghanbari Shendi, E.; Sivri Ozay, D.; Ozkaya, M.T.; Ustunel, N.F. Changes occurring in chemical composition and oxidative stability of virgin olive oil during storage. OCL 2018, 25, A602. [Google Scholar] [CrossRef] [Green Version]
- Gambacorta, G.; Faccia, M.; Previtali, M.A.; Pati, S.; Notte, E.L.; Baiano, A. Effects of Olive Maturation and Stoning on Quality Indices and Antioxidant Content of Extra Virgin Oils (cv. Coratina) during Storage. Food Sci. 2010, 75, C229–C235. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Arnaud, T.; Garrido, A. Contribution of polyphenols to the oxidative stability of virgin olive oil. J. Sci. Food Agric. 2001, 81, 1463–1470. [Google Scholar] [CrossRef]
- Borello, E.; Roncucci, D.; Domenici, V. Study of the Evolution of Pigments from Freshly Pressed to ‘On-the-Shelf’ Extra-Virgin Olive Oils by Means of Near-UV Visible Spectroscopy. Foods 2021, 10, 1891. [Google Scholar] [CrossRef]
- Lazzerini, C.; Cifelli, M.; Domenici, V. Pigments in extra virgin olive oils produced in different mediterranean countries in 2014: Near UV-vis spectroscopy versus HPLC-DAD. LWT 2017, 84, 586–594. [Google Scholar] [CrossRef]
- Jaswir, I. Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plant Res. 2011, 5, 7119–7131. [Google Scholar] [CrossRef]
- Cayuela, J.A.; Gómez-Coca, R.B.; Moreda, W.; Pérez-Camino, M.C. Sensory defects of virgin olive oil from a microbiological perspective. Trends Food Sci. Technol. 2015, 43, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Rallo, L.; Díez, C.M.; Morales-Sillero, A.; Miho, H.; Priego-Capote, F.; Rallo, P. Quality of olives: A focus on agricultural preharvest factors. Sci. Hortic. 2018, 233, 491–509. [Google Scholar] [CrossRef]
- Veloso, A.C.A.; Dias, L.G.; Rodrigues, N.; Pereira, J.A.; Peres, A.M. Sensory intensity assessment of olive oils using an electronic tongue. Talanta 2016, 146, 585–593. [Google Scholar] [CrossRef] [Green Version]
- Harzallia, U.; Rodriguesa, N.; Veloso, A.C.A.; Diasa, L.G.; Pereira, J.A.; Oueslati, S.; Peres, A.M. A taste sensor device for unmasking admixing of rancid or winey-vinegary olive oil to extra virgin olive oil. Comput. Electron. Agric. 2018, 144, 222–231. [Google Scholar] [CrossRef]
Fruit FW (g) | Pulp FW (g) | Pit FW (g) | Equat. Length (mm) | Long. Length (mm) | Pulp/Pit Ratio | |
---|---|---|---|---|---|---|
2017 | ||||||
N0 | 2.91 ± 0.09 a | 2.28 ± 0.08 a | 0.625 ± 0.017 | 15.2 ± 0.2 a | 21.1 ± 0.2 a | 3.66 ± 0.10 a |
N40 | 2.08 ± 0.06 c | 1.48 ± 0.05 c | 0.595 ± 0.018 | 13.5 ± 0.1 c | 19.6 ± 0.3 b | 2.51 ± 0.06 c |
N120 | 2.49 ± 0.07 b | 1.87 ± 0.05 b | 0.656 ± 0.022 | 13.9 ± 0.1 b | 20.9 ± 0.2 a | 2.88 ± 0.05 b |
p-values | <0.0001 | <0.0001 | 0.0885 | <0.0001 | <0.0001 | <0.0001 |
2018 | ||||||
N0 | 3.72 ± 0.06 a | 3.05 ± 0.05 a | 0.668 ± 0.016 | 16.6 ± 0.1 a | 22.4 ± 0.2 a | 4.61 ± 0.10 a |
N40 | 3.26 ± 0.08 b | 2.52 ± 0.07 b | 0.736 ± 0.021 | 15.7 ± 0.2 b | 21.9 ± 0.2 a | 3.46 ± 0.10 b |
N120 | 2.65 ± 0.07 c | 1.96 ± 0.27 c | 0.692 ± 0.021 | 14.7 ± 0.2 c | 20.7 ± 0.3 b | 2.84 ± 0.05 c |
p-values | <0.0001 | <0.0001 | 0.0513 | <0.0001 | <0.0001 | <0.0001 |
2019 | ||||||
N0 | 3.97 ± 0.08 a | 3.23 ± 0.07 a | 0.735 ± 0.019 b | 16.7 ± 0.1 a | 22.7 ± 0.2 | 4.46 ± 0.14 a |
N40 | 3.38 ± 0.12 b | 2.59 ± 0.10 b | 0.817 ± 0.030 a | 14.9 ± 0.2 b | 22.6 ± 0.3 | 3.13 ± 0.07 b |
N120 | 2.95 ± 0.06 c | 2.21 ± 0.05 c | 0.746 ± 0.017 ab | 14.5 ± 0.1 b | 22.3 ± 0.2 | 2.98 ± 0.06 b |
p-values | <0.0001 | <0.0001 | 0.0253 | <0.0001 | 0.4726 | <0.0001 |
Olive Fruits | Olive Oil | |||||||
---|---|---|---|---|---|---|---|---|
Total Phenols (mg g−1) | Ortho-Diphenols (mg g−1) | Flavonoids (mg g−1) | Total Antioxidant Capacity (mmol g−1) | Total Phenols (mg kg−1) | Ortho-Diphenols (mg kg−1) | Flavonoids (mg kg−1) | Total Antioxidant Capacity (mmol kg−1) | |
2017 | ||||||||
N0 | 17.4 ± 0.4 ab | 25.0 ± 0.9 a | 19.9 ± 0.6 b | 28.8 ± 0.8 b | 169.0 ± 4.2 c | 80.5 ± 1.7 b | 101.4 ± 1.6 b | 0.131 ± 0.004 b |
N40 | 19.3 ± 0.7 a | 25.4 ± 1.6 a | 23.8 ± 1.5 a | 42.1 ± 1.3 a | 229.8 ± 7.0 a | 91.1 ± 1.2 a | 132.2 ± 5.6 a | 0.156 ± 0.001 a |
N120 | 15.8 ± 1.2 b | 18.6 ± 1.4 b | 20.2 ± 1.6 ab | 29.8 ± 1.3 b | 200.9 ± 5.4 b | 84.7 ± 1.2 b | 138.1 ± 4.3 a | 0.151 ± 0.001 a |
p-values | 0.0221 | 0.0053 | 0.0395 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
2018 | ||||||||
N0 | 18.0 ± 0.5 | 31.5 ± 0.4 a | 17.9 ± 0.3 | 34.9 ± 0.4 a | 255.5 ± 6.1 a | 98.2 ± 2.6 a | 145.2 ± 3.3 a | 0.156 ± 0.001 a |
N40 | 16.3 ± 0.6 | 25.1 ± 0.7 c | 16.2 ± 0.3 | 24.9 ± 2.0 b | 213.7 ± 3.5 b | 88.2 ± 1.7 b | 113.1 ± 2.4 b | 0.149 ± 0.003 a |
N120 | 17.9 ± 0.9 | 28.8 ± 1.0 b | 16.6 ± 0.9 | 35.0 ± 1.4 a | 184.0 ± 2.7 c | 59.3 ± 1.4 c | 86.1 ± 2.9 c | 0.092 ± 0.004 b |
p-values | 0.1753 | <0.0001 | 0.128 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
2019 | ||||||||
N0 | 9.45 ± 0.21 b | 19.6 ± 0.8 a | 7.58 ± 0.3 a | 19.5 ± 0.8 a | 183.8 ± 6.8 b | 52.6 ± 1.1 b | 92.32.9 b | 0.079 ± 0.003 b |
N40 | 11.9 ± 0.3 a | 19.6 ± 0.6 a | 7.61 ± 0.5 a | 17.4 ± 0.5 a | 231.5 ± 2.3 a | 106.0 ± 0.8 a | 178.2 ± 5.7 a | 0.150 ± 0.002 a |
N120 | 11.6 ± 0.4 a | 14.6 ± 0.3 b | 5.77 ± 0.4 b | 15.7 ± 0.8 b | 187.4 ± 4.2 b | 43.5 ± 0.9 c | 81.5 ± 4.6 b | 0.059 ± 0.003 c |
p-values | <0.0001 | <0.0001 | 0.0036 | 0.005 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Free Acidity (%) | Peroxide Index (meqO2 kg−1) | K232 | K270 | ΔK | |
---|---|---|---|---|---|
2017 | |||||
N0 | 0.178 ± 0.023 a | 3.49 ± 0.35 b | 1.81 ± 0.21 | 0.122 ± 0.007 ab | 0.005 ± 0.0003 b |
N40 | 0.140 ± 0.022 ab | 6.93 ± 0.16 a | 1.74 ± 0.08 | 0.124 ± 0.006 a | 0.008 ± 0.0004 a |
N120 | 0.067 ± 0.017 b | 6.29 ± 0.08 a | 1.14 ± 0.21 | 0.099 ± 0.003 b | 0.004 ± 0.0002 b |
p-values | 0.0248 | <0.0001 | 0.067 | 0.0408 | 0.0005 |
2018 | |||||
N0 | 0.189 ± 0.007 b | 7.14 ± 0.78 b | 2.18 ± 0.07 b | 0.136 ± 0.005 | 0.003 ± 0.0003 b |
N40 | 0.259 ± 0.0002 a | 7.72 ± 0.82 b | 2.86 ± 0.23 ab | 0.143 ± 0.006 | 0.003 ± 0.0001 ab |
N120 | 0.120 ± 0.012 c | 12.6 ± 0.38 a | 3.36 ± 0.28 a | 0.158 ± 0.003 | 0.004 ± 0.0002 a |
p-values | <0.0001 | 0.0027 | 0.0218 | 0.0602 | 0.0136 |
2019 | |||||
N0 | 0.187 ± 0.014 a | 3.04 ± 0.96 | 2.99 ± 0.08 | 0.189 ± 0.004 | 0.003 ± 0.00003 c |
N40 | 0.121 ± 0.0001 b | 2.61 ± 0.54 | 3.05 ± 0.03 | 0.200 ± 0.002 | 0.005 ± 0.0001 a |
N120 | 0.120 ± 0.0003 b | 3.41 ± 0.51 | 3.16 ± 0.37 | 0.173 ± 0.012 | 0.004 ± 0.0002 b |
p-values | 0.0014 | 0.701 | 0.8702 | 0.0955 | 0.0002 |
Month | N0 | N40 | N120 | p-Values | |
---|---|---|---|---|---|
Peroxide index (meqO2 kg−1) | 3 | 7.14 ± 0.78 b | 7.72 ± 0.82 b | 12.5 ± 0.4 a | 0.0027 |
15 | 7.12 ± 0.55 a | 3.85 ± 0.15 b | 9.51 ± 0.44 a | 0.0055 | |
K232 | 3 | 2.18 ± 0.07 b | 2.86 ± 0.23 ab | 3.36 ± 0.28 a | 0.0218 |
15 | 6.07 ± 0.75 a | 3.61 ± 0.34 b | 7.93 ± 0.49 a | 0.0042 | |
K270 | 3 | 0.136 ± 0.005 | 0.143 ± 0.006 | 0.158 ± 0.003 | 0.0602 |
15 | 0.237 ± 0.004 b | 0.207 ± 0.003 c | 0.369 ± 0.002 a | <0.0001 | |
ΔK | 3 | 0.003 ± 0.0003 b | 0.003 ± 0.0001 b | 0.004 ± 0.0002 a | 0.0136 |
15 | 0.002 ± 0.00005 b | 0.002 ± 0.00001 b | 0.007 ± 0.00003 a | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, E.; Gonçalves, A.; Martins, S.; Pinto, L.; Rocha, L.; Ferreira, H.; Moutinho-Pereira, J.; Rodrigues, M.Â.; Correia, C.M. Moderate Nitrogen Rates Applied to a Rainfed Olive Grove Seem to Provide an Interesting Balance between Variables Associated with Olive and Oil Quality. Horticulturae 2023, 9, 110. https://doi.org/10.3390/horticulturae9010110
Silva E, Gonçalves A, Martins S, Pinto L, Rocha L, Ferreira H, Moutinho-Pereira J, Rodrigues MÂ, Correia CM. Moderate Nitrogen Rates Applied to a Rainfed Olive Grove Seem to Provide an Interesting Balance between Variables Associated with Olive and Oil Quality. Horticulturae. 2023; 9(1):110. https://doi.org/10.3390/horticulturae9010110
Chicago/Turabian StyleSilva, Ermelinda, Alexandre Gonçalves, Sandra Martins, Luís Pinto, Luís Rocha, Helena Ferreira, José Moutinho-Pereira, Manuel Ângelo Rodrigues, and Carlos M. Correia. 2023. "Moderate Nitrogen Rates Applied to a Rainfed Olive Grove Seem to Provide an Interesting Balance between Variables Associated with Olive and Oil Quality" Horticulturae 9, no. 1: 110. https://doi.org/10.3390/horticulturae9010110
APA StyleSilva, E., Gonçalves, A., Martins, S., Pinto, L., Rocha, L., Ferreira, H., Moutinho-Pereira, J., Rodrigues, M. Â., & Correia, C. M. (2023). Moderate Nitrogen Rates Applied to a Rainfed Olive Grove Seem to Provide an Interesting Balance between Variables Associated with Olive and Oil Quality. Horticulturae, 9(1), 110. https://doi.org/10.3390/horticulturae9010110