Use Optimization of Organic Wastes in Anaerobic Soil Disinfestation against Strawberry Charcoal Rot Root
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Amendments Characterization
2.2. Anaerobic Soil Disinfestation Trials to Evaluate the Effect of the Type of Amendment, the Dose of Amendment, and the Duration of Treatment on the Reduction of M. phaseolina Propagules
2.2.1. Experimental Design
2.2.2. Inoculum Preparation, Soil Inoculation, and ASD Development
2.2.3. Macrophomina phaseolina and Trichoderma spp. Population Density Determination
2.2.4. Enzyme Activity Determination
2.3. Trials to Evaluate the Effect of Amendment Type, Amendment Dose, and ASD Duration of Treatments on the Severity of Charcoal Rot Disease
2.3.1. Experimental Design
2.3.2. Data Analysis
3. Results
3.1. Effect of ASD Treatments on the Populations of Macrophomina phaseolina and Trichoderma spp.
3.2. Effect of ASD Effect on the Physicochemical Characteristics of the Soil
3.3. Effect of ASD Treatments on Plant Disease Foliar Severity (AUDPCs)
3.4. Effect of ASD on Crowns, Vessels, Root Severity, and Plant Mortality
4. Discussion
5. Conclusions
- −
- All treatments amended with residual strawberry extrudate and rice bran resulted in a marked reduction in M. phaseolina propagules in the soil.
- −
- Both residual strawberry extrudate and rice bran cause a reduction of charcoal rot caused by M. phaseolina when used as amendments in ASD.
- −
- The resulting soil disinfestation against M. phaseolina with the residual strawberry extrudate at 16.89 t/ha and 25 days was similar to the most effective treatment with rice bran (20 t/ha and 40 days) based on the disease foliar severity.
- −
- Behind the suppressive effect of ASD against M. phaseolina, the action of Trichoderma spp. as a biological control agent could be operated. The growth of this microorganism is favored by treatments with residual strawberry extrudate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, L.; Jiang, H.; Zhang, L.; Zhang, Y.; Sial, M.U.; Yu, H.; Cao, A. Combined effect of a reduced dose of 1,3-dichloropropene and dimethyl disulfide on soilborne pests and tomato growth. Crop Prot. 2019, 121, 1–6. [Google Scholar] [CrossRef]
- Ajwa, H.A.; Klose, S.; Nelson, S.D.; Lopez-Aranda, J.M.; Gullino, M.L.; Lamberti, F.; Minuto, A. Alternatives to methyl bromide in strawberry production in the United States of America and the mediterranean region. Phytopathol. Mediterr. 2003, 42, 220–244. [Google Scholar]
- López-Aranda, J.M.; Gómez, F.; Puga, M.; Zamora, R.; Daugovish, O.; Cotero, M.A. Chemical soil fumigation for raspberry nursery in Jalisco (Mexico). J. Berry Res. 2016, 6, 37–46. [Google Scholar] [CrossRef]
- Watson, R.T.; Albritton, D.L.; Andersen, S.O.; Lee-Bapty, S. Methyl Bromide: Its Atmospheric Science, Technology and Economics. Montreal Protocol Assessment Supplement; UNEP: Nairobi, Kenya, 1992. [Google Scholar]
- Holmes, G.J.; Mansouripour, S.M.; Hewavitharana, S.S. Strawberries at the crossroads: Management of soilborne diseases in California without methyl bromide. Am. Phytopath. Soc. 2020, 110, 956–968. [Google Scholar] [CrossRef] [PubMed]
- Koike, S.T.; Kirkpatrick, S.C.; Gordon, T.R. Fusarium wilt of strawberry caused by Fusarium oxysporum in California. Plant Dis. 2009, 93, 1077. [Google Scholar] [CrossRef] [PubMed]
- Koike, S.T. Crown rot of strawberry caused by Macrophomina phaseolina in California. Plant Dis. 2008, 92, 1253. [Google Scholar] [CrossRef]
- Zveibil, A.; Freeman, S. First report of crown and root rot in strawberry caused by Macrophomina phaseolina in Israel. Plant Dis. 2005, 89, 1014. [Google Scholar] [CrossRef]
- Avilés, M.; Castillo, S.; Bascon, J.; Zea-Bonilla, T.; Martín-Sánchez, P.M.; Pérez-Jiménez, R.M. First report of Macrophomina phaseolina causing crown and root rot of strawberry in Spain. Plant Pathol. 2008, 57, 382. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 13 December 2021).
- de los Santos, B.; Medina, J.J.; Miranda, L.; Gómez, J.A.; Talavera, M. Soil disinfestation efficacy against soil fungal pathogens in strawberry crops in Spain: An overview. Agronomy 2021, 11, 526. [Google Scholar] [CrossRef]
- Baggio, J.S.; Córdova, L.G.; Peres, N.A. Sources of inoculum and survival of Macrophomina phaseolina in Florida strawberry fields. Plant Dis. 2019, 103, 2417–2424. [Google Scholar] [CrossRef]
- Lodha, S.; Mawar, R. Population dynamics of Macrophomina phaseolina in relation to disease management: A review. J. Phytopathol. 2020, 168, 1–17. [Google Scholar] [CrossRef]
- Blok, W.J.; Lamers, J.G.; Termorshuizen, A.J.; Bollen, G.J. Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 2000, 90, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Rosskopf, E.N.; Serrano-Pérez, P.; Hong, J.; Shrestha, U.; Rodríguez-Molina, M.D.C.; Martin, K.; Kokalis-Burelle, N.; Shennan, C.; Muramoto, J.; Butler, D. Anaerobic Soil Disinfestation and Soilborne Pest Management. In Organic Amendments and Soil Suppressiveness in Plant Disease Management; Springer: Cham, Switzerland, 2015; pp. 277–305. [Google Scholar]
- Hewavitharana, S.S.; Klarer, E.; Muramoto, J.; Shennan, C.; Mazzola, M. Analysis of environmental variables and carbon input on soil microbiome, metabolome and disease control efficacy in strawberry attributable to anaerobic soil disinfestation. Microorganisms 2021, 9, 1638. [Google Scholar] [CrossRef] [PubMed]
- Zavatta, M.; Muramoto, J.; Mazzola, M.; Shennan, C. Rotation length, crop rotation, anaerobic soil disinfestation and mustard seed meal affect organic strawberry yield and soil-borne disease incidence in California. Acta Hortic. 2021, 1309, 501–508. [Google Scholar] [CrossRef]
- Hewavitharana, S.S.; Klarer, E.; Reed, A.J.; Leisso, R.; Poirier, B.; Honaas, L.; Rudell, D.R.; Mazzola, M. Temporal dynamics of the soil metabolome and microbiome during simulated anaerobic soil disinfestation. Front. Microbiol. 2019, 10, 2365. [Google Scholar] [CrossRef] [PubMed]
- Poret-Peterson, A.T.; Albu, S.; McClean, A.E.; Kluepfel, D.A. Shifts in soil bacterial communities as a function of carbon source used during anaerobic soil disinfestation. Front. Environ. Sci. 2019, 6, 160. [Google Scholar] [CrossRef]
- Hewavitharana, S.S.; Ruddell, D.; Mazzola, M. Carbon source-dependent antifungal and nematicidal volatiles derived during anaerobic soil disinfestation. Eur. J. Plant. Pathol. 2014, 140, 39–52. [Google Scholar] [CrossRef]
- Momma, N.; Yamamoto, K.; Simandi, P.; Shishido, M. Role of organic acids in the mechanisms of biological soil disinfestation (BSD). J. Gen. Plant Pathol. 2006, 72, 247–252. [Google Scholar] [CrossRef]
- Rosskopf, E.; Di Gioia, F.; Hong, J.C.; Pisani, C.; Kokalis-Burelle, N. Organic amendments for pathogen and nematode control. Annu. Rev. Phytopathol. 2020, 58, 277–311. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle Size Analysis. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5.1, Second Edition; Klaute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; Volume 9, pp. 383–411. [Google Scholar]
- Zhu, W.; Wang, W.; Hong, C.; Ding, J.; Zhu, F.; Hong, L.; Yao, Y. Influence of reductive soil disinfestation on the chemical and microbial characteristics of a greenhouse soil infested with Fusarium oxysporum. Physiol. Mol. Plant Pathol. 2022, 118, 101805. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watatanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (SDA Circ 939); U.S. Government Publishing Office: Washington, DC, USA, 1954.
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A. Methods of Soil Analysis; Soil Science Society of America, Inc.: Madison, WI, USA, 1996; pp. 1201–1231. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Serrano-Pérez, P.; Rosskopf, E.; De Santiago, A.; Del Carmen Rodríguez-Molina, M. Anaerobic soil disinfestation reduces survival and infectivity of Phytophthora nicotianae chlamydospores in pepper. Sci. Hortic. 2017, 215, 38–48. [Google Scholar] [CrossRef]
- Strauss, S.L.; Kluepfel, D.A. Anaerobic soil disinfestation: A chemical-independent approach to pre-plant control of plant pathogens. J. Integr. Agric. 2015, 14, 2309–2318. [Google Scholar] [CrossRef]
- Mazzola, M.; Muramoto, J.; Shennan, C. Anaerobic disinfestation induced changes to the soil microbiome, disease incidence and strawberry fruit yields in California field trials. Appl. Soil Ecol. 2018, 127, 74–86. [Google Scholar] [CrossRef]
- Serrano, A.; Siles, J.A.; Gutiérrez, M.C.; Martín, M.Á. Improvement of the biomethanization of sewage sludge by thermal pre-treatment and co-digestion with strawberry extrudate. J. Clean Prod. 2015, 90, 25–33. [Google Scholar] [CrossRef]
- Benson, M.; Parker, K. PROTOCOL 02-07.1: Rice grain method for Phytophthora inoculum production. In Laboratory Protocols for Phytophthora Species; American Phytopathological Society: St. Paul, MN, USA, 2015; pp. 1–2. [Google Scholar]
- Papavizas, G.C.; Klag, N.G. Macrophomina phaseolina from Soil. Phytopathology 1975, 65, 182–187. [Google Scholar] [CrossRef]
- Chun, D.; Lockwood, J.L. Reductions of Pythium ultimum, Thielaviopsis basicola, and Macrophomina phaseolina populations in soil associated with ammonia generated from urea. Plant Dis. 1985, 69, 154–158. [Google Scholar]
- Fiedler, S.; Vepraskas, M.J.; Richardson, J.L. Soil redox potential: Importance, field measurements, and observations. Adv. Agron. 2007, 94, 1–54. [Google Scholar]
- Shennan, C.; Muramoto, J.; Koike, S.; Baird, G.; Fennimore, S.; Samtani, J.; Bolda, M.; Dara, S.; Daugovish, O.; Lazarovits, G. Anaerobic soil disinfestation is an alternative to soil fumigation for control of some soilborne pathogens in strawberry production. Plant Pathol. 2018, 67, 51–66. [Google Scholar] [CrossRef]
- Rabenhorst, M.C.; Castenson, K.L. Temperature effects on iron reduction in a hydric soil. Soil Sci. 2005, 170, 734–742. [Google Scholar] [CrossRef]
- Bandick, A.K.; Dick, R.P. Field management effects on soil enzyme activities. Soil Biol. Biochem. 1999, 31, 1471–1479. [Google Scholar] [CrossRef]
- Campbell, C.L.; Madden, L.V. Introduction to Plant Disease Epidemiology; Wiley-Interscience: New York, NY, USA, 1990. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- Khadka, R.B.; Marasini, M.; Rawal, R.; Testen, A.L.; Miller, S.A. Effects of anaerobic soil disinfestation carbon sources on soilborne diseases and weeds of okra and eggplant in Nepal. Crop Prot. 2020, 135, 104846. [Google Scholar] [CrossRef]
- Muramoto, J.; Shennan, C.; Zavatta, M.; Baird, G.; Toyama, L.; Mazzola, M. Effect of Anaerobic Soil Disinfestation and Mustard Seed Meal for Control of Charcoal Rot in California Strawberries. Int. J. Fruit Sci. 2016, 16, 59–70. [Google Scholar] [CrossRef]
- Testen, A.L.; Martínez, M.B.; Madrid, A.J.; Deblais, L.; Taylor, C.G.; Paul, P.A.; Miller, S.A. On-farm evaluations of anaerobic soil disinfestation and grafting for management of a widespread soilborne disease complex in protected culture tomato production. Phytopathology 2021, 111, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Zavatta, M.; Muramoto, J.; Milazzo, E.; Koike, S.; Klonsky, K.; Goodhue, R.; Shennan, C. Integrating broccoli rotation, mustard meal, and anaerobic soil disinfestation to manage Verticillium wilt in strawberry. Crop Prot. 2021, 146, 105659. [Google Scholar] [CrossRef]
- Giovannini, D.; Maltoni, M.L.; Stagno, F.; Sbrighi, P.; Minuto, A.; Lanteri, A.P.; Lazzeri, L.; Brandi, F.; Matteo, R.; Baruzzi, G. Application of eco-friendly practices alternative to soil chemical fumigation: Preliminary results on strawberry. Acta Hortic. 2021, 1309, 463–469. [Google Scholar] [CrossRef]
- Elad, Y.; Zvieli, Y.; Chet, I. Biological control of Macrophomina phaseolina (Tassi) Goid by Trichoderma harzianum. Crop Prot. 1986, 5, 288–292. [Google Scholar] [CrossRef]
- Ramezani, H. Biological Control of Root-Rot of Eggplant Caused by Macrophomina phaseolina. J. Agric. Environ. Sci. 2008, 4, 218–220. [Google Scholar]
- Larralde-Corona, C.P.; Santiago-Mena, M.R.; Sifuentes-Rincon, A.M.; Rodríguez-Luna, I.C.; Rodriguez-Perez, M.A.; Shirai, K.; Narvaez-Zapata, J.A. Biocontrol potential and polyphasic characterization of novel native Trichoderma strains against Macrophomina phaseolina isolated from sorghum and common bean. Appl. Microbiol. Biotechnol. 2008, 80, 167–177. [Google Scholar] [CrossRef]
- Manjunatha, S.V.; Naik, M.K.; Khan, M.F.R.; Goswami, R.S. Evaluation of bio-control agents for management of dry root rot of chickpea caused by Macrophomina phaseolina. Crop Prot. 2013, 45, 147–150. [Google Scholar] [CrossRef]
- Pastrana, A.M.; Basallote-Ureba, M.J.; Aguado, A.; Akdi, K.; Capote, N. Biological control of strawberry soil-borne pathogens Macrophomina phaseolina and Fusarium solani, using Trichoderma asperellum and Bacillus spp. Phytopathol. Mediterr. 2016, 55, 109–120. [Google Scholar]
- Song, Z.; Massart, S.; Yan, D.; Cheng, H.; Eck, M.; Berhal, C. Composted chicken manure for anaerobic soil disinfestation increased the strawberry yield and shifted the soil microbial communities. Sustainability 2020, 12, 6313. [Google Scholar] [CrossRef]
- Fujita, K.; Kunito, T.; Otsuka, S.; Nagaoka, K. Anaerobic soil disinfestation using diluted ethanol increases phosphorus availability in arable Andosols. Biol. Fertil. Soils 2020, 56, 927–941. [Google Scholar] [CrossRef]
- Momma, N. Biological Soil Disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Jpn. Agric. Res. Q. 2008, 42, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, U.; Augé, R.M.; Butler, D.M. A meta-analysis of the impact of anaerobic soil disinfestation on pest suppression and yield of horticultural crops. Front. Plant Sci. 2016, 7, 1254. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Tabatabai, M.A. Enzyme activities in a limed agricultural soil. Biol. Fertil. Soils 2000, 31, 85–91. [Google Scholar] [CrossRef]
- Madejón, E.; Burgos, P.; López, R.; Cabrera, F. Soil enzymatic response to addition of heavy metals with organic residues. Biol. Fertil. Soils 2001, 34, 144–150. [Google Scholar] [CrossRef]
- Khalili, E.; Huyop, F.; Myra Abd Manan, F.; Wahab, R.A. Optimization of cultivation conditions in banana wastes for production of extracellular β-glucosidase by Trichoderma harzianum Rifai efficient for in vitro inhibition of Macrophomina phaseolina. Biotechnol. Biotechnol. Equip. 2017, 31, 921–934. [Google Scholar] [CrossRef]
- Rosskopf, E.N.; Di Gioia, F.; Hong, J.C.; Ozores-Hampton, M.; Zhao, X.; Black, Z.; Gao, Z.; Wilson, C.; Thomas, J.; Jones, J.B.; et al. Anaerobic soil disinfestation: Areawide project on obstacles and adoption. Acta Hortic. 2020, 1270, 23–35. [Google Scholar] [CrossRef]
Parameter | Value † |
---|---|
pH (extractor 1/2.5 p/V) | 5.52 ± 0.055 |
Electrical conductivity (µS/cm) (extractor 1/5 p/V) | 216.20 ± 13.273 |
Olsen P (mg/kg) | 62.18 ± 1.746 |
Oxidable organic matter (%) | 0.42 ± 0.005 |
Oxidable organic carbon (%) | 0.24 ± 0.003 |
Total N (%) | 0.03 ± 0.005 |
Exchange cations (soluble in amonium acetate 1N pH 7) | |
Ca (cmolc/kg) | 1.17 ± 0.092 |
Mg (cmolc/kg) | 0.37 ± 0.015 |
K (cmolc/kg) | 0.52 ± 0.029 |
Na (cmolc/kg) | 0.18 ± 0.007 |
Trace elements available (soluble in DTPA-TEA-CaCl2) | |
Fe (mg/kg) | 49.92 ± 1.245 |
Mn (mg/kg) | 11.33 ± 0.530 |
Zn (mg/kg) | 4.23 ± 0.118 |
Cu (mg/kg) | 2.73 ± 0.026 |
Texture | |
Slime (%) | 7.18 ± 0.083 |
Clay (%) | 3.59 ± 0.099 |
Sand (%) | 89.24 ± 0.062 |
Oxidable c (%) | Total C (%) | Total N (%) | Total S (%) | Humidity (%) | |
---|---|---|---|---|---|
Strawberry residual extrudate | 37.18 | 52.37 | 1.95 | 0.18 | 5.42 |
Rice bran | 46.51 | 50.19 | 2.21 | 0.24 | 4.51 |
Abbreviation | Amendment | Dose 1 | Duration 2 |
---|---|---|---|
BLS | Rice bran | Low | Short |
BLL | Rice bran | Low | Long |
BHS | Rice bran | High | Short |
BHL | Rice bran | High | Long |
ELS | Residual strawberry extrudate | Low | Short |
ELL | Residual strawberry extrudate | Low | Long |
EHS | Residual strawberry extrudate | High | Short |
EHL | Residual strawberry extrudate | High | Long |
Control 3 | - | - | - |
Metam Sodium 4 | - | - | - |
Treatment † | CA 1 (mV h) | pH 2 | Beta-glucosidase Activity (μg of p-nitrophenol/g·h) 3 | Population Density of Trichoderma spp. (CFU/g of Soil) |
---|---|---|---|---|
BLS | 5593 ± 247 c | 8.045 ± 0.051 a | 9.070 ± 1.49 bc | 119.5 ± 53 cde |
BLL | 97,504 ± 25,290 ab | 7.805 ± 0.193 bc | 6.237 ± 1.25 bcd | 177.5 ± 60 bc |
BHS | 44,891 ± 18,555 bc | 7.812 ± 0.094 ab | 14.080 ± 2.73 a | 15.4 ± 5 de |
BHL | 87,747 ± 13,634 ab | 7.767 ± 0.155 bc | 5.567 ± 0.93 cd | 244.2 ± 89 c |
ELS | 58,934 ± 17,604 b | 7.367 ± 0.131 d | 7.990 ± 0.88 bc | 531 ± 89 b |
ELL | 77,058 ± 21,476 ab | 6.878 ± 0.101 e | 10.634 ± 1.88 ab | 510.1 ± 93 b |
EHS | 48,458 ± 10,229 bc | 7.461 ± 0.106 cd | 10.276 ± 1.78 ab | 489.2 ± 41 b |
EHL | 118,703 ± 43,171 a | 6.706 ± 0.075 e | 7.402 ± 1.50 bcd | 769.2 ± 103 a |
Control | ‡ | 6.448 ± 0.040 f | 3.495 ± 1.20 d | 22.7 ± 6 de |
Metam Sodium | ‡ | 6.738 ± 0.083 e | 5.070 ± 1.01 cd | 4.7 ± 2 e |
Treatment † | % Crown Disease Severity | % Root Disease Severity | % Vessels Disease Severity | % Plant Mortality ‡ |
---|---|---|---|---|
BLS | 79.4 ± 8.4 abc | 91.4 ± 4.9 abc | 83.1 ± 7.3 a | 44, 44 b |
BLL | 81.7 ± 8.4 ab | 93.1 ± 4.6 ab | 81.9 ± 8.5 ab | 38, 89 bc |
BHS | 76.4 ± 8.3 bc | 91.7 ± 3.4 abc | 77.2 ± 8.0 ab | 44, 44 b |
BHL | 62.2 ± 9.5 c | 71.1 ± 7.5 d | 62.8 ± 9.3 b | 11, 12 e |
ELS | 89.7 ± 7.1 ab | 94.2 ± 3.5 ab | 93.9 ± 4.2 a | 44, 44 b |
ELL | 93.3 ± 5.3 ab | 88.9 ± 5.9 abc | 93.8 ± 5.3 a | 27, 78 cd |
EHS | 93.3 ± 4.6 b | 93.6 ± 4.1 ab | 90.6 ± 6.3 a | 33, 33 c |
EHL | 77.5 ± 7.8 bc | 76.4 ± 7.3 cd | 76.4 ± 7.8 ab | 22, 22 d |
Control | 94.7 ± 5.3 a | 98.3 ± 1.7 a | 95.6 ± 4.4 a | 77, 78 a |
Metam Sodium | 81.4 ± 7.9 abc | 83.6 ± 5.2 bcd | 82.1 ± 7.3 ab | 22, 22 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Márquez-Caro, A.; Borrero, C.; Hernández-Muñiz, P.; Avilés, M. Use Optimization of Organic Wastes in Anaerobic Soil Disinfestation against Strawberry Charcoal Rot Root. Horticulturae 2022, 8, 841. https://doi.org/10.3390/horticulturae8090841
Márquez-Caro A, Borrero C, Hernández-Muñiz P, Avilés M. Use Optimization of Organic Wastes in Anaerobic Soil Disinfestation against Strawberry Charcoal Rot Root. Horticulturae. 2022; 8(9):841. https://doi.org/10.3390/horticulturae8090841
Chicago/Turabian StyleMárquez-Caro, Ana, Celia Borrero, Paloma Hernández-Muñiz, and Manuel Avilés. 2022. "Use Optimization of Organic Wastes in Anaerobic Soil Disinfestation against Strawberry Charcoal Rot Root" Horticulturae 8, no. 9: 841. https://doi.org/10.3390/horticulturae8090841
APA StyleMárquez-Caro, A., Borrero, C., Hernández-Muñiz, P., & Avilés, M. (2022). Use Optimization of Organic Wastes in Anaerobic Soil Disinfestation against Strawberry Charcoal Rot Root. Horticulturae, 8(9), 841. https://doi.org/10.3390/horticulturae8090841