High-Density Genetic Linkage Map Construction and QTLs Identification Associated with Four Leaf-Related Traits in Lady’s Slipper Orchids (Paphiopedilum concolor × Paphiopedilum hirsutissimum)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Leaf-Related Traits Determination
2.3. RNA Extraction, cDNA Library Construction, and RNA Sequencing
2.4. RNA Sequencing Data Assembly and Annotation
2.5. SNP Marker Calling and Genotyping
2.6. Genetic Linkage Map Construction and Evaluation
2.7. Leaf Traits-Related QTLs Analysis
3. Results
3.1. Four Leaf Traits Data Evaluation of F1 Mapping Population
3.2. RNA Sequencing Data and De Novo Assembly
3.3. SNP Calling and Genotyping
3.4. High-Density Genetic Linkage Map
3.5. Quality Evaluation of the Genetic Map
3.6. Identifying QTLs for Four Leaf-Related Traits in Slipper Orchids
3.7. Potential Candidate Genes in Four Leaf Traits-Related QTLs
4. Discussion
4.1. High-Density SNP Genetic Map for Lady’s Slipper Orchids
4.2. QTLs Identified for Leaf-Related Traits in Lady’s Slipper Orchids
4.3. Candidate Genes Associated with Leaf-Related Traits in Slipper Orchids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
bp | base pairs |
BLAST | Basic Local Alignment Search Tool |
NCBI | National Center for Biotechnology Information |
DNA | Deoxyribonucleic Acid |
RNA | Ribonucleic acid |
SNPs | Single Nucleotide Polymorphisms |
QTL | Quantitative Trait Loci |
LG | Linkage Group |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
COG | Cluster of Orthologous Groups |
References
- Cox, A.V.; Pridgeon, A.M.; Albert, V.A.; Chase, M.W. Phylogenetics of the slipper orchids (Cypripedioideae, Orchidaceae): Nuclear rDNA ITS sequences. Plant Syst. Evol. 1997, 208, 197–223. [Google Scholar] [CrossRef]
- Cribb, P. The genus Paphiopedilum, 2nd ed.; Natural History Publications: Borneo, Malaysia, 1998. [Google Scholar]
- Liu, Z.; Chen, S.; Chen, L.; Lei, S. The Genus Paphiopedilum in China; Science Press: Beijing, China, 2009; Volume 1, pp. 73–79+93–100+231. [Google Scholar]
- Lee, Y.I.; Chang, F.C.; Chung, M.C. Chromosome pairing affinities in interspecific hybrids reflect phylogenetic distances among lady’s slipper orchids (Paphiopedilum). Ann. Bot. 2011, 108, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Ai, T.M.; Zhang, S.R.; Yang, X.W.; Du, L.J.; Yan, Z.Y. Zhongguo Yaoyong Zhiwuzhi Volume 12; Dai, L.K., Zheng, Y.N., Du, G.H., Li, Y.C., Eds.; Beijing Peking University Medical Press: Beijing, China, 2013; pp. 444–450. [Google Scholar]
- Li, D.; Yin, H.; Zhao, C.; Zhu, G.; Lǚ, F. Transcriptome analysis of tessellated and green leaves in Paphiopedilum orchids using Illumina paired-end sequencing and discovery simple sequence repeat markers. J. Plant Biochem. Physiol. 2014, 2, 136. [Google Scholar]
- Leitch, I.J.; Kahandawala, I.; Suda, J.; Hanson, L.; Ingrouille, M.J.; Chase, M.W.; Fay, M.F. Genome size diversity in orchids: Consequences and evolution. Ann. Bot. 2009, 104, 469–481. [Google Scholar] [CrossRef]
- Li, D.M.; Wu, W.; Zhang, D.; Liu, X.R.; Liu, X.F.; Lin, Y.J. Floral transcriptome analyses of four Paphiopedilum orchids with distinct flowering behaviors and development of simple sequence repeat markers. Plant Mol. Biol. Rep. 2015, 33, 1928–1952. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Yang, S.; Wu, C.; Shao, Q.; Feng, X. The genetic control of leaf and petal allometric variations in Arabidopsis thaliana. BMC Plant Biol. 2020, 20, 547. [Google Scholar] [CrossRef]
- Choi, S.R.; Yu, X.; Dhandapani, V.; Li, X.; Wang, Z.; Lee, S.Y.; Oh, S.H.; Pang, W.; Ramchiary, N.; Hong, C.P.; et al. Integrated analysis of leaf morphological and color traits in different populations of Chinese cabbage (Brassica rapa ssp. pekinensis). Theor. Appl. Genet. 2017, 130, 1617–1634. [Google Scholar] [CrossRef]
- Jian, H.; Yang, B.; Zhang, A.; Zhang, L.; Xu, X.; Li, J.; Liu, L. Screening of candidate leaf morphology genes by integration of QTL mapping and RNA sequencing technologies in oilseed rape (Brassica napus L.). PLoS ONE 2017, 12, e0169641. [Google Scholar] [CrossRef]
- Du, B.; Liu, L.; Wang, Q.; Sun, G.; Ren, X.; Li, C.; Sun, D. Identification of QTL underlying the leaf length and area of different leaves in barley. Sci. Rep. 2019, 9, 4431. [Google Scholar] [CrossRef]
- Farokhzadeh, S.; Fakheri, B.A.; Nezhad, N.M.; Tahmasebi, S.; Mirsoleimani, A. Mapping QTLs of flag leaf morphological and physiological traits related to aluminum tolerance in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 2019, 25, 975–990. [Google Scholar] [CrossRef]
- Hoang, G.T.; Gantet, P.; Nguyen, K.H.; Phung, N.T.P.; Ha, L.T.; Nguyen, T.T.; Lebrun, M.; Courtois, B.; Pham, X.H. Genome-wide association mapping of leaf mass traits in a Vietnamese rice landrace panel. PLoS ONE 2019, 14, e0219274. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Wang, J.; Sun, C.; Liu, X.; Xu, H.; Yang, Y.; Dong, L.; Zhang, D. High-density QTL mapping of leaf-related traits and chlorophyll content in three soybean RIL populations. BMC Plant Biol. 2020, 20, 470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, S.; Ye, M.; Jiang, L.; Vallejos, C.E.; Wu, R. The genetic control of leaf allometry in the common bean, Phaseolus vulgaris. BMC Genet. 2020, 21, 29. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Xiao, Z.; Cao, P.; Zhang, Y.; Du, K.; Wang, N. Construction of a high-density genetic map and its application for leaf shape QTL mapping in poplar. Planta 2018, 248, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Feng, S.; Zhao, H.; Jiang, H.; Shen, B.; Shi, N.; Lu, J.; Liu, J.; Wang, H. The linkage maps of Dendrobium species based on RAPD and SRAP markers. J. Genet. Genom. 2010, 37, 197–204. [Google Scholar] [CrossRef]
- Lu, J.J.; Wang, S.; Zhao, H.Y.; Liu, J.J.; Wang, H. Genetic linkage map of EST-SSR and SRAP markers in the endangered Chinese endemic herb Dendrobium (Orchidaceae). Genet. Mol. Res. 2012, 11, 4654–4667. [Google Scholar] [CrossRef]
- Lu, J.J.; Zhao, H.Y.; Suo, N.N.; Wang, S.; Shen, B.; Wang, H.Z.; Liu, J.J. Genetic linkage maps of Dendrobium moniliforme and D. officinale based on EST-SSR, SRAP, ISSR and RAPD markers. Sci. Hortic. 2012, 137, 1–10. [Google Scholar] [CrossRef]
- Feng, S.; Zhao, H.; Lu, J.; Liu, J.; Shen, B.; Wang, H. Preliminary genetic maps of chinese herb Dendrobium nobile and D. moniliforme. J. Genet. 2013, 92, 205–212. [Google Scholar] [CrossRef]
- Sun, X.; Liu, D.; Zhang, X.; Li, W.; Liu, H.; Hong, W.; Jiang, C.; Guan, N.; Ma, C.; Zeng, H.; et al. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 2013, 8, e58700. [Google Scholar] [CrossRef]
- Galpaz, N.; Gonda, I.; Shem-Tov, D.; Barad, O.; Tzuri, G.; Lev, S.; Fei, Z.; Xu, Y.; Mao, L.; Jiao, C.; et al. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. Plant J. 2018, 94, 169–191. [Google Scholar] [CrossRef]
- Lu, J.; Liu, Y.; Xu, J.; Mei, Z.; Shi, Y.; Liu, P.; He, J.; Wang, X.; Meng, Y.; Feng, S.; et al. High-density genetic map construction and stem total polysaccharide content-related QTL exploration for Chinese endemic Dendrobium (Orchidaceae). Front. Plant Sci. 2018, 9, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Xu, Y.; Gao, K.; Fan, G.; Zhang, C.; Deng, C.; Dai, S.; Huang, H.; Xin, H.; Li, Y. High-density genetic map construction and identification of loci controlling flower-type traits in Chrysanthemum (Chrysanthemum × morifolium Ramat.). Hortic. Res. 2020, 7, 108. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, Y.; Wang, Z. Construction of a high-density genetic map by RNA sequencing and eQTL analysis for stem length and diameter in Dendrobium (Dendrobium nobile ×Dendrobium wardianum). Ind. Crop Prod. 2019, 128, 48–54. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-seq data. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef]
- Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.; Kanehisa, M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35, W182–W185. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Koonin, E.V.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Krylov, D.M.; Makarova, K.S.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N.; Rao, B.S.; et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 2004, 5, R7. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ma, C.; Hong, W.; Huang, L.; Liu, M.; Liu, H.; Zeng, H.; Deng, D.; Xin, H.; Song, J.; et al. Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS ONE 2014, 9, e98855. [Google Scholar] [CrossRef] [PubMed]
- van Os, H.; Stam, P.; Visser, R.G.; van Eck, H.J. SMOOTH: A statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor. Appl. Genet. 2005, 112, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Kosambi, D.D. The estimation of map distance from recombination values. Ann. Eugen. 1944, 12, 172–175. [Google Scholar] [CrossRef]
- Arends, D.; Prins, P.; Jansen, R.C.; Broman, K.W. R/qtl: High-throughput multiple QTL mapping. Bioinformatics 2010, 26, 2990–2992. [Google Scholar] [CrossRef]
- McClure, K.A.; Gardner, K.M.; Toivonen, P.M.A.; Hampson, C.R.; Song, J.; Forney, C.F.; DeLong, J.; Rajcan, I.; Myles, S. QTL analysis of soft scald in two apple populations. Hortic. Res. 2016, 3, 16043. [Google Scholar] [CrossRef]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Valenzuela, T.; Muñoz-Espinoza, C.; Riveros, A.; Pedreschi, R.; Arús, P.; Campos-Vargas, R.; Meneses, C. Expression QTL (eQTLs) analyses reveal candidate genes associated with fruit flesh softening rate in peach [Prunus persica (L.) Batsch]. Front. Plant Sci. 2019, 10, 1581. [Google Scholar] [CrossRef]
- Chai, L.; Feng, B.; Liu, X.; Jiang, L.; Yuan, S.; Zhang, Z.; Li, H.; Zhang, J.; Fernando, D.; Xu, C.; et al. Fine mapping of a locus underlying the ectopic blade-like outgrowths on leaf and screening its candidate genes in rapeseed (Brassica napus L.). Front. Plant Sci. 2021, 11, 616844. [Google Scholar] [CrossRef]
- Bastiaanse, H.L.S.; Henry, I.M.; Tsai, H.; Lieberman, M.; Canning, C.; Comai, L.; Andrew, G. A systems genetics approach to deciphering the effect of dosage variation on leaf morphology in Populus. Plant Cell. 2021, 33, 940–960. [Google Scholar] [CrossRef]
- Lu, N.; Zhang, M.; Xiao, Y.; Han, D.; Liu, Y.; Zhang, Y.; Yi, F.; Zhu, T.; Ma, W.; Fan, E.; et al. Construction of a high-density genetic map and QTL mapping of leaf traits and plant growth in an interspecific F1 population of Catalpa bungei × Catalpa duclouxii Dode. BMC Plant Biol. 2019, 19, 596. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Z.; Qi, X.; Wang, Z.; Zheng, Y.; Ren, H.; Liang, S.; Zheng, X. Construction of a high-density genetic map and identification of leaf trait-related QTLs in Chinese bayberry (Myrica rubra). Front. Plant Sci. 2021, 12, 675855. [Google Scholar] [CrossRef] [PubMed]
- Bang, W.Y.; Hata, A.; Jeong, I.S.; Umeda, T.; Masuda, T.; Chen, J.; Yoko, I.; Suwastika, I.N.; Kim, D.W.; Im, C.H.; et al. AtObgC, a plant ortholog of bacterial Obg, is a chloroplast-targeting GTPase essential for early embryogenesis. Plant Mol. Biol. 2009, 71, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, L.; Jin, X.; Wan, J.; Zhang, L.; Je, B.I.; Zhao, K.; Kong, F.; Huang, J.; Tian, M. Oryza sativa ObgC1 acts as a key regulator of DNA replication and ribosome biogenesis in chloroplast nucleoids. Rice 2021, 14, 65. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Deng, F.; Deng, M.; Han, J.; Chen, J.; Wang, L.; Yan, S.; Tong, K.; Liu, F.; Tian, M. Identification and characterization of a chloroplast-targeted Obg GTPase in Dendrobium officinale. DNA Cell Biol. 2016, 35, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Shirley, N.J.; Burton, R.A.; Lahnstein, J.; Hrmova, M.; Fincher, G.B. The genetics, transcriptional profiles, and catalytic properties of UDP-alpha-D-xylose 4-epimerases from barley. Plant Physiol. 2010, 153, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xu, W.; Zhang, Y.; Sun, S.; Wang, L.; Zhong, S.; Zhao, X.; Liu, B. PPR647 protein is required for chloroplast RNA editing, splicing and chloroplast development in maize. Int. J. Mol. Sci. 2021, 22, 11162. [Google Scholar] [CrossRef]
- Kamigaki, A.; Kondo, M.; Mano, S.; Hayashi, M.; Nishimura, M. Suppression of peroxisome biogenesis factor 10 reduces cuticular wax accumulation by disrupting the ER network in Arabidopsis thaliana. Plant Cell Physiol. 2009, 50, 2034–2046. [Google Scholar] [CrossRef]
- Chen, D.; Li, J.; Jiao, F.; Wang, Q.; Li, J.; Pei, Y.; Zhao, M.; Song, X.; Guo, X. ZmACY-1 antagonistically regulates growth and stress responses in Nicotiana benthamiana. Front. Plant Sci. 2021, 12, 593001. [Google Scholar] [CrossRef]
- Nishimura, T.; Wada, T.; Okada, Y.K. The Arabidopsis STV1 protein, responsible for translation reinitiation, is required for auxin-mediated gynoecium patterning. Plant Cell 2005, 17, 2940–2953. [Google Scholar] [CrossRef] [Green Version]
Leaf Traits | Mean P. concolor | Mean P. hirsutissimum | F1 Mapping Population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean ± se | SD | Variance | Skewness | Kurtosis | CV (%) | H2 (%) | |||
LL/cm | 7.48 | 17.66 | 13.70 | 2.20 | 7.84 ± 0.24 | 2.38 | 5.66 | 0.385 | 0.011 | 30.25 | 96.48 |
LW/cm | 2.76 | 1.50 | 2.60 | 0.82 | 1.60 ± 0.04 | 0.37 | 0.14 | 0.242 | −0.392 | 23.16 | 96.13 |
LT/mm | 1.05 | 0.69 | 2.20 | 0.47 | 0.97 ± 0.03 | 0.27 | 0.08 | 1.318 | 4.050 | 28.28 | 87.76 |
LN/No. | 6 | 4.4 | 8 | 3 | 5.66 ± 0.14 | 1.32 | 1.74 | −0.178 | −0.574 | 23.28 | 36.02 |
Traits | LL | LW | LT | LN |
---|---|---|---|---|
LL | 1 | |||
LW | 0.756 ** | 1 | ||
LT | 0.480 ** | 0.397 ** | 1 | |
LN | 0.268 ** | 0.136 NS | 0.158 NS | 1 |
Length Range | Contig | Transcript | Unigene |
---|---|---|---|
200–300 bp | 24,760,054 (99.57%) | 127,279 (36.39%) | 95,156 (51.41%) |
300–500 bp | 53,461 (0.21%) | 72,952 (20.85%) | 42,698 (23.06%) |
500–1000 bp | 30,531 (0.12%) | 61,915 (17.70%) | 24,944 (13.47%) |
1000–2000 bp | 15,089 (0.06%) | 55,805 (15.95%) | 14,089 (7.61%) |
>2000 bp | 7542 (0.03%) | 31,779 (9.087%) | 8202 (4.43%) |
Total number | 24,866,677 | 349,730 | 185,089 |
Total length | 1,124,466,789 | 276,064,986 | 100,941,049 |
N50 length | 47 | 1430 | 788 |
Mean length | 45.22 | 789.37 | 545.36 |
Type | Number | Ratio |
---|---|---|
Total number of encoded SNPs | 165,196 | 100% |
Biallelic SNPs | 162,219 | 98.20% |
W(A/T) | 20,097 | 12.16% |
R(A/G) | 50,225 | 30.40% |
M(A/C) | 14,249 | 8.62% |
K(G/T) | 14,059 | 8.51% |
Y(C/T) | 50,573 | 30.61% |
S(C/G) | 13,016 | 7.87% |
≥Tri-allelic SNPs | 2977 | 1.80% |
LGs | Total Markers | Total Distance (cM) | Average Distance (cM) | Gap < 5 cM (%) | Max Gap (cM) | No. of SD a | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Female Map | Male Map | Integrated Map | Female Map | Male Map | Integrated Map | Female Map | Male Map | Integrated Map | Female Map | Male Map | Integrated Map | Female Map | Male Map | Integrated Map | ||
LG1 | 3 | 183 | 183 | 511.45 | 132.98 | 132.98 | 170.48 | 0.73 | 0.73 | 0.00 | 97.25 | 97.25 | 425.86 | 9.17 | 9.17 | 32 |
LG2 | 38 | 333 | 688 | 134.61 | 147.06 | 147.33 | 0.35 | 0.44 | 0.21 | 99.74 | 99.10 | 99.56 | 10.95 | 14.59 | 7.41 | 26 |
LG3 | 223 | 0 | 223 | 129.74 | 0.00 | 129.74 | 0.58 | 0.00 | 0.58 | 98.20 | 0.00 | 98.20 | 6.66 | 0.00 | 6.66 | 3 |
LG4 | 7 | 320 | 21 | 183.82 | 189.90 | 189.89 | 26.26 | 0.59 | 0.59 | 0.00 | 97.81 | 97.81 | 63.69 | 12.91 | 12.91 | 189 |
LG5 | 254 | 6 | 254 | 101.04 | 76.10 | 101.04 | 0.4 | 12.68 | 0.40 | 99.60 | 20.00 | 99.60 | 5.41 | 25.30 | 5.41 | 8 |
LG6 | 37 | 747 | 767 | 129.41 | 104.70 | 104.58 | 3.5 | 0.14 | 0.14 | 69.44 | 99.73 | 99.74 | 21.49 | 10.58 | 10.44 | 314 |
LG7 | 310 | 10 | 316 | 117.06 | 467.35 | 123.08 | 0.38 | 46.74 | 0.39 | 99.03 | 22.22 | 98.73 | 6.93 | 260.04 | 6.92 | 95 |
LG8 | 414 | 7 | 414 | 138.42 | 52.24 | 138.42 | 0.33 | 7.46 | 0.33 | 99.76 | 66.67 | 99.76 | 12.60 | 21.10 | 12.60 | 207 |
LG9 | 1466 | 30 | 1468 | 114.35 | 107.74 | 114.35 | 0.08 | 3.59 | 0.08 | 99.93 | 72.41 | 99.93 | 5.98 | 13.66 | 5.98 | 798 |
LG10 | 31 | 709 | 714 | 95.71 | 99.52 | 99.52 | 3.09 | 0.14 | 0.14 | 86.67 | 99.72 | 99.86 | 19.70 | 8.15 | 8.15 | 29 |
LG11 | 1080 | 43 | 1085 | 111.10 | 100.32 | 111.10 | 0.1 | 2.33 | 0.10 | 99.81 | 88.10 | 99.82 | 19.59 | 18.98 | 19.59 | 65 |
LG12 | 87 | 706 | 754 | 122.61 | 118.63 | 118.57 | 1.41 | 0.17 | 0.16 | 91.86 | 100.00 | 100.00 | 11.23 | 3.06 | 2.84 | 42 |
LG13 | 1204 | 79 | 1223 | 105.58 | 74.01 | 105.58 | 0.09 | 0.94 | 0.09 | 99.92 | 98.72 | 99.92 | 12.26 | 5.45 | 8.11 | 69 |
Total | 5498 | 3173 | 8410 | 1994.90 | 1670.55 | 1616.18 | 0.36 | 0.53 | 0.19 | 80.30 | 80.14 | 99.24 | 425.86 | 260.04 | 19.59 | 1877 |
Leaf Traits | QTLs | Linkage Group | Linkage Map Position Start (cM) | Linkage Map Position Final (cM) | Interval Size (cM) | Max LOD | PVE (%) a | SNP No. |
---|---|---|---|---|---|---|---|---|
LL | qLL2-1 | 2 | 73.375 | 73.375 | 0.00 | 3.099 | 11.86 | 1 |
LL | qLL9-1 | 9 | 7.986 | 23.413 | 15.427 | 3.313 | 12.41–12.65 | 2 |
LL | qLL10-1 | 10 | 64.342 | 64.645 | 0.303 | 4.472 | 13.86–19.49 | 3 |
LW | qLW1-1 | 1 | 127.059 | 132.982 | 5.923 | 4.087 | 14.33–17.97 | 10 |
LW | qLW7-1 | 7 | 102.095 | 102.095 | 0.00 | 3.121 | 14.04 | 2 |
LW | qLW9-1 | 9 | 50.358 | 91.793 | 41.435 | 5.014 | 16.88–21.58 | 5 |
LT | qLT2-1 | 2 | 73.483 | 73.483 | 0.00 | 3.317 | 14.85 | 2 |
LT | qLT5-1 | 5 | 87.770 | 87.770 | 0.00 | 4.948 | 21.33 | 2 |
LT | qLT9-1 | 9 | 24.727 | 81.723 | 56.996 | 4.106 | 15.59–18.05 | 4 |
LN | qLN2-1 | 2 | 61.984 | 61.984 | 0.00 | 3.411 | 15.24 | 2 |
LN | qLN3-1 | 3 | 56.101 | 56.101 | 0.00 | 3.142 | 12.34 | 1 |
LN | qLN11-1 | 11 | 52.537 | 52.537 | 0.00 | 3.228 | 14.49 | 4 |
SNP Marker Name | Corresponding Unigene Name | SNP Site in Unigene (bp) | LGs | Position in LG (cM) | Description (Nr Database) |
---|---|---|---|---|---|
Marker62778 | c184170.graph_c0 | 352 | 1 | 132.982 | CSC1-like protein RXW8 |
Marker62785 | c184170.graph_c0 | 937 | 1 | 132.982 | CSC1-like protein RXW8 |
Marker62795 | c184170.graph_c0 | 1740 | 1 | 132.982 | CSC1-like protein RXW8 |
Marker62797 | c184170.graph_c0 | 1804 | 1 | 132.982 | CSC1-like protein RXW8 |
Marker62892 | c184183.graph_c0 | 2000 | 1 | 127.059 | Leucine carboxyl methyltransferase |
Marker93699 | c188082.graph_c0 | 982 | 2 | 73.483 | Aminoacylase-1 |
Marker101111 | c188843.graph_c0 | 1217 | 2 | 73.483 | Plant intracellular Ras-group-related LRR protein 4 |
Marker151866 | c193047.graph_c1 | 1021 | 5 | 87.77 | DNA-directed RNA polymerase 3, chloroplastic |
Marker151869 | c193047.graph_c1 | 1871 | 5 | 87.77 | DNA-directed RNA polymerase 3, chloroplastic |
Marker49769 | c182003.graph_c0 | 1033 | 7 | 102.095 | peroxisome biogenesis factor 10 |
Marker83301 | c186860.graph_c1 | 695 | 9 | 50.358 | Probable UDP-arabinose 4-epimerase 3 |
Marker126719 | c191195.graph_c0 | 1338 | 9 | 50.358 | Pentatricopeptide repeat domain |
Marker103037 | c189030.graph_c0 | 864 | 10 | 64.588 | uncharacterized protein LOC103703380 isoform X1 |
Marker122309 | c190842.graph_c0 | 1789 | 10 | 64.645 | Chloroplastic GTP-binding protein ObgC1 |
Marker13507 | c170791.graph_c0 | 471 | 11 | 52.537 | Chloroplastic 50S ribosomal protein L24 |
Marker13508 | c170791.graph_c0 | 492 | 11 | 52.537 | Chloroplastic 50S ribosomal protein L24 |
Marker13509 | c170791.graph_c0 | 585 | 11 | 52.537 | Chloroplastic 50S ribosomal protein L24 |
Marker13510 | c170791.graph_c0 | 684 | 11 | 52.537 | Chloroplastic 50S ribosomal protein L24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.-M.; Zhu, G.-F. High-Density Genetic Linkage Map Construction and QTLs Identification Associated with Four Leaf-Related Traits in Lady’s Slipper Orchids (Paphiopedilum concolor × Paphiopedilum hirsutissimum). Horticulturae 2022, 8, 842. https://doi.org/10.3390/horticulturae8090842
Li D-M, Zhu G-F. High-Density Genetic Linkage Map Construction and QTLs Identification Associated with Four Leaf-Related Traits in Lady’s Slipper Orchids (Paphiopedilum concolor × Paphiopedilum hirsutissimum). Horticulturae. 2022; 8(9):842. https://doi.org/10.3390/horticulturae8090842
Chicago/Turabian StyleLi, Dong-Mei, and Gen-Fa Zhu. 2022. "High-Density Genetic Linkage Map Construction and QTLs Identification Associated with Four Leaf-Related Traits in Lady’s Slipper Orchids (Paphiopedilum concolor × Paphiopedilum hirsutissimum)" Horticulturae 8, no. 9: 842. https://doi.org/10.3390/horticulturae8090842
APA StyleLi, D. -M., & Zhu, G. -F. (2022). High-Density Genetic Linkage Map Construction and QTLs Identification Associated with Four Leaf-Related Traits in Lady’s Slipper Orchids (Paphiopedilum concolor × Paphiopedilum hirsutissimum). Horticulturae, 8(9), 842. https://doi.org/10.3390/horticulturae8090842