Water Stress Alleviation Effects of Biostimulants on Greenhouse-Grown Tomato Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Chemical Analyses
2.2.1. Nutritional and Energetic Compound Determination
2.2.2. Analysis of Free Sugars and Organic Acids
2.2.3. Analysis of Lipophilic Compounds
2.2.4. Pigments
2.3. Evaluation of Bioactive Properties In Vitro
2.3.1. Preparation of Hydroethanolic Extracts
2.3.2. Antioxidant Activity Evaluation
2.3.3. Antimicrobial Activity Evaluation
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Searchinger, T.; Hanson, C.; Ranganathan, J.; Lipinski, B.; Waite, R.; Winterbottom, R.; Dinshaw, A.; Heimlich, R. Installment 1 of “Creating a Sustainable Food Future” The Great Balancing Act; World Resources Institute: Washington, DC, USA, 2013. [Google Scholar]
- Altieri, M.A. Agroecology: The science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ. 2002, 93, 1–24. [Google Scholar] [CrossRef]
- Povero, G.; Mejia, J.F.; Di Tommaso, D.; Piaggesi, A.; Warrior, P. A systematic approach to discover and characterize natural plant biostimulants. Front. Plant Sci. 2016, 7, 435. [Google Scholar] [CrossRef] [Green Version]
- Rui, H. Overview of Water-Saving Irrigation Methods in Arid/Semi-Arid Areas; E3; EDP Science: Paris, France, 2020; p. 02001. [Google Scholar]
- Carrão, H.; Naumann, G.; Barbosa, P. Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Glob. Environ. Chang. 2016, 39, 108–124. [Google Scholar] [CrossRef]
- Sharma, H.S.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Pharm. Sci. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Fang, Y.; Xiong, L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci. 2015, 72, 673–689. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Gładysz, O.; Beszterda, M.; Goliński, P. Water stress and vegetable crops. Water Stress Crop Plants Sustain. Approach 2016, 2, 393–411. [Google Scholar] [CrossRef]
- Giordano, M.; Petropoulos, S.A. Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress. Agriculture 2021, 11, 463. [Google Scholar] [CrossRef]
- Petropoulos, S.A.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Rouphael, Y. Biostimulants in horticulture. Sci. Hortic. 2015, 196, 1–134. [Google Scholar] [CrossRef]
- Rai, N.; Rai, S.P.; Sarma, B.K. Prospects for Abiotic Stress Tolerance in Crops Utilizing Phyto-and Bio-Stimulants. Front. Plant Sci. 2021, 5, 1–16. [Google Scholar] [CrossRef]
- Del Buono, D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total Environ. 2021, 751, 141763. [Google Scholar] [CrossRef]
- Azcona, I.; Pascual, I.; Aguirreolea, J.; Fuentes, M.; García-Mina, J.M.; Sánchez-Díaz, M. Growth and development of pepper are affected by humic substances derived from composted sludge. J. Plant Nutr. Soil Sci. 2011, 174, 916–924. [Google Scholar] [CrossRef]
- Abou Chehade, L.; Al Chami, Z.; De Pascali, S.A.; Cavoski, I.; Fanizzi, F.P. Biostimulants from food processing by-products: Agronomic, quality and metabolic impacts on organic tomato (Solanum lycopersicum L.). J. Sci. Food Agric. 2017, 98, 1426–1436. [Google Scholar] [CrossRef]
- Hernandez, O.L.; Calderín, A.; Huelva, R.; Martínez-Balmori, D.; Guridi, F.; Aguiar, N.O.; Olivares, F.L.; Canellas, L.P. Humic substances from vermicompost enhance urban lettuce production. Agron. Sustain. Dev. 2015, 35, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Antonella Di Benedetto, N.; Rosaria Corbo, M.; Campaniello, D.; Pia Cataldi, M.; Bevilacqua, A.; Sinigaglia, M.; Flagella, Z. The role of Plant Growth Promoting Bacteria in improving nitrogen use efficiency for sustainable crop production: A focus on wheat. AIMS Microbiol. 2017, 3, 413–434. [Google Scholar] [CrossRef]
- Ikeda, A.C.; Savi, D.C.; Hungria, M.; Kava, V.; Glienke, C.; Galli-Terasawa, L.V. Bioprospecting of elite plant growth-promoting bacteria for the maize crop. Acta Sci. Agron. 2020, 42, 1–11. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [Green Version]
- Sood, M.; Kapoor, D.; Kumar, V.; Sheteiwy, M.S. Trichoderma: The “ Secrets ” of a Multitalented Biocontrol Agent. Plants 2020, 9, 762. [Google Scholar] [CrossRef]
- Wilkinson, S.; Davies, W.J. Drought, ozone, ABA and ethylene: New insights from cell to plant to community. Plant. Cell Environ. 2010, 33, 510–525. [Google Scholar] [CrossRef]
- Petropoulos, S.A. Practical applications of plant biostimulants in greenhouse vegetable crop production. Agronomy 2020, 10, 1569. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Delian, E.; Bădulescu, L.; Dobrescu, A.; Chira, L.; Lagunovschi-Luchian, V. A brief overview of seed priming benefits in tomato. Rom. Biotechnol. Lett. 2017, 22, 12505–12513. [Google Scholar]
- Dias, J.S. Nutritional Quality and Health Benefits of Vegetables: A Review. Food Nutr. Sci. 2012, 3, 1354–1374. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, K.S.; Santhanakrishnan, P.; Balasubramanian, P. Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci. Hortic. 2006, 107, 245–253. [Google Scholar] [CrossRef]
- Türkmen, Ö.; Dursun, A.; Turan, M.; Erdinç, Ç. Calcium and humic acid affect seed germination, growth, and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under saline soil conditions. Acta Agric. Scand. Sect. B Soil Plant Sci. 2004, 54, 168–174. [Google Scholar] [CrossRef]
- Koleška, I.; Hasanagić, D.; Todorović, V.; Murtić, S.; Klokić, I.; Paradiković, N.; Kukavica, B. Biostimulant prevents yield loss and reduces oxidative damage in tomato plants grown on reduced NPK nutrition. J. Plant Interact. 2017, 12, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Riva, V.; Mapelli, F.; Dragonetti, G.; Elfahl, M.; Vergani, L.; Crepaldi, P.; La Maddalena, N.; Borin, S. Bacterial Inoculants Mitigating Water Scarcity in Tomato: The Importance of Long-Term in vivo Experiments. Front. Plant Sci. 2021, 12, 1328. [Google Scholar] [CrossRef]
- Kalozoumis, P.; Vourdas, C.; Ntatsi, G. Can Biostimulants Increase Resilience of Hydroponically-Grown Tomato to Combined Water and Nutrient Stress? Horticulturae 2021, 7, 297. [Google Scholar] [CrossRef]
- Sudiro, C.; Guglielmi, F.; Hochart, M.; Senizza, B.; Zhang, L.; Lucini, L.; Altissimo, A. A Phenomics and Metabolomics Investigation on the Modulation of Drought Stress by a Biostimulant Plant Extract in Tomato (Solanum lycopersicum). Agronomy 2022, 12, 764. [Google Scholar] [CrossRef]
- Francesca, S.; Najai, S.; Zhou, R.; Decros, G.; Cassan, C.; Delmas, F.; Ottosen, C.; Barone, A.; Manuela, M. Phenotyping to dissect the biostimulant action of a protein hydrolysate in tomato plants under combined abiotic stress. Plant Physiol. Biochem. 2022, 179, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Hamedeh, H.; Antoni, S.; Cocciaglia, L.; Ciccolini, V. Molecular and Physiological Effects of Magnesium—Polyphenolic Compound as Biostimulant in Drought Stress Mitigation in Tomato. Plants 2022, 11, 586. [Google Scholar] [CrossRef] [PubMed]
- Cristina, M.; Lucia, D.; Baghdadi, A.; Mangione, F.; Borella, M.; Zegada-lizarazu, W.; Ravi, S.; Deb, S.; Broccanello, C.; Concheri, G.; et al. Transcriptional and Physiological Analyses to Assess the Effects of a Novel Biostimulant in Tomato. Front. Plant Sci. 2022, 12, 781993. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Taofiq, O.; Fernandes, Â.; Tzortzakis, N.; Ciric, A.; Sokovic, M.; Barros, L.; Ferreira, I.C.F.R.; Plexida, S.; Chrysargyris, A.; et al. Bioactive properties of greenhouse-cultivated green beans (Phaseolus vulgaris L.) under biostimulants and water-stress effect. J. Sci. Food Agric. 2019, 99, 6049–6059. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Dias, M.I.; Petropoulos, S.A.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Calhelha, R.C.; Ivanov, M.; Stojković, D.; Soković, M.; et al. The Effects of Biostimulants, Biofertilizers and Water-Stress on Nutritional Value and Chemical Composition of Two Spinach Genotypes (Spinacia oleracea L.). Molecules 2019, 24, 4494. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, Â.; Figueiredo, S.; Finimundy, T.C.; Pinela, J.; Tzortzakis, N.; Ivanov, M.; Sokovi, M.; Ferreira, I.C.F.R.; Petropoulos, S.A. Chemical Composition and Bioactive Properties of Purple French Bean (Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application. Sustainability 2021, 13, 6869. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists International; Horwitz, W., Latimer, G., Eds.; AOAC Inter.: Gaithersburg, MD, USA, 2016; ISBN 0935584773. [Google Scholar]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal. Methods 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Katsoulas, N.; Barros, L.; Ferreira, I.C.F.R. The effect of covering material on the yield, quality and chemical composition of greenhouse-grown tomato fruit. J. Sci. Food Agric. 2019, 99, 3057–3068. [Google Scholar] [CrossRef]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crop. Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Finimundy, T.C.; Karkanis, A.; Fernandes, Â.; Petropoulos, S.A.; Calhelha, R.; Petrović, J.; Soković, M.; Rosa, E.; Barros, L.; Ferreira, I.C.F.R. Bioactive properties of Sanguisorba minor L. cultivated in central Greece under different fertilization regimes. Food Chem. 2020, 327, 127043. [Google Scholar] [CrossRef]
- Thangavel, P.; Anjum, N.A.; Muthukumar, T.; Sridevi, G. Arbuscular mycorrhizae: Natural modulators of plant—Nutrient relation and growth in stressful environments. Arch. Microbiol. 2022, 204, 264. [Google Scholar] [CrossRef]
- Eló, M.A.; Gonzalez, S.; Acuña, J.J.; Sadowsky, M.J. Rhizobacteria from ‘flowering desert’ events contribute to the mitigation of water scarcity stress during tomato seedling germination and growth. Sci. Rep. 2021, 11, 13745. [Google Scholar] [CrossRef]
- Fracasso, A.; Lanfranco, L.; Bonfante, P.; Amaducci, S. Physiological Beneficial Effect of Rhizophagus intraradices Inoculation on Tomato Plant Yield under Water Deficit Conditions. Agronomy 2020, 10, 71. [Google Scholar] [CrossRef] [Green Version]
- Rady, M.M.; Belal, H.E.E.; Gadallah, F.M.; Semida, W.M. Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Sci. Hortic. 2020, 266, 109290. [Google Scholar] [CrossRef]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 2019, 10, 655. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Plexida, S.; Chrysargyris, A.; Tzortzakis, N.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R. Biostimulants application alleviates water stress effects on yield and chemical composition of greenhouse green bean (Phaseolus vulgaris L.). Agronomy 2020, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Paul, K.; Sorrentino, M.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Miras Moreno, M.B.; Reynaud, H.; Canaguier, R.; Trtílek, M.; et al. A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability. Front. Plant Sci. 2019, 10, 493. [Google Scholar] [CrossRef]
- Delorge, I.; Janiak, M.; Carpentier, S.; Vand Dijck, P. Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. Front. Plant Sci. 2014, 5, 167. [Google Scholar] [CrossRef] [Green Version]
- Porch, T.G. Application of stress indices for heat tolerance screening of common bean. J. Agron. Crop Sci. 2006, 192, 390–394. [Google Scholar] [CrossRef]
- Singh, S. Enhancing phytochemical levels, enzymatic and antioxidant activity of spinach leaves by chitosan treatment and an insight into the metabolic pathway using DART-MS technique. Food Chem. 2016, 199, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Prado, F.E. Soluble sugars-metabolism, sensing and abiotic stress. A complex network in the life of plants. Plant Signal. Behav. 2009, 4, 388–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathinasabapathi, B. Metabolic engineering for stress tolerance: Installing osmoprotectant synthesis pathways. Ann. Bot. 2000, 86, 709–716. [Google Scholar] [CrossRef]
- Pishchik, V.N.; Vorobyev, N.I.; Ostankova, Y.V.; Semenov, A.V.; Areg, A.T.; Popov, A.A.; Khomyakov, Y.V.; Udalova, O.R.; Shibanov, D.V.; Vertebny, V.E.; et al. Impact of Bacillus subtilis on Tomato Plants Growth and Some Biochemical Characteristics under Combined Application with Humic Fertilizer. Int. J. Plant Soil Sci. 2018, 22, 1–12. [Google Scholar] [CrossRef]
- He, M.; Ding, N. Plant Unsaturated Fatty Acids: Multiple Roles in Stress Response. Front. Plant Sci. 2020, 11, 562785. [Google Scholar] [CrossRef]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodriguez, I. Identification of fatty acids in edible wild plants by gas chromatography. J. Chromatogr. A 1996, 719, 229–235. [Google Scholar] [CrossRef]
- Pék, Z.; Szuvandzsiev, P.; Daood, H.; Neményi, A.; Helyes, L. Effect of irrigation on yield parameters and antioxidant profiles of processing cherry tomato. Cent. Eur. J. Biol. 2014, 9, 383–395. [Google Scholar] [CrossRef] [Green Version]
- Mannino, G.; Campobenedetto, C.; Vigliante, I.; Contartese, V.; Gentile, C.; Bertea, C.M. The Application of a Plant Biostimulant Based on Seaweed and Yeast Extract Improved Tomato Fruit Development and Quality. Biomolecules 2020, 10, 1662. [Google Scholar] [CrossRef]
- Munné-Bosch, S. The role of a-tocopherol in plant stress tolerance. J. Plant Physiol. 2005, 162, 743–748. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barsanti, L.; Coltelli, P.; Gualtieri, P. Paramylon Treatment Improves Quality Profile and Drought Resistance in Solanum lycopersicum L. cv. Micro-Tom. Agronomy 2019, 9, 394. [Google Scholar] [CrossRef] [Green Version]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress-a review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; Colla, G.; Mori, M. Effect of Vegetal- and Seaweed Extract-Based Biostimulants on Agronomical and Leaf Quality Traits of Plastic Tunnel-Grown Baby Lettuce under Four Regimes of Nitrogen Fertilization. Agronomy 2019, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; El-Nakhel, C.; Leone, V.; Mori, M. Effect of seaweed (Ecklonia maxima) extract and legume-derived protein hydrolysate biostimulants on baby leaf lettuce grown on optimal doses of nitrogen under greenhouse conditions. Aust. J. Crop Sci. 2020, 14, 1456–1464. [Google Scholar] [CrossRef]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Nocerino, S.; Rouphael, Y.; Colla, G.; El-Nakhel, C.; Mori, M. Nitrogen use and uptake efficiency and crop performance of baby spinach (Spinacia oleracea L.) and Lamb’s Lettuce (Valerianella locusta L.) grown under variable sub-optimal N regimes combined with plant-based biostimulant application. Agronomy 2020, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Xu, X.; Hu, X.; Liu, Y.; Cao, H.; Chan, H.; Gong, Z.; Yuan, Y.; Luo, Y.; Feng, B.; et al. SlMYB72 Regulates the Metabolism of Chlorophylls, Carotenoids, and Flavonoids in Tomato Fruit. Plant Physiol. 2020, 183, 854–868. [Google Scholar] [CrossRef]
- Fleming, E.; Luo, Y. Co-delivery of synergistic antioxidants from food sources for the prevention of oxidative stress. J. Agric. Food Res. 2021, 3, 100107. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Zhang, B.; Deng, Z. The synergistic and antagonistic antioxidant interactions of dietary phytochemical combinations. Crit. Rev. Food Sci. Nutr. 2021, 62, 5658–5677. [Google Scholar] [CrossRef]
- Calvo-polanco, M.; Sánchez-romera, B.; Aroca, R.; José, M.; Declerck, S.; Dodd, I.C.; Martínez-andújar, C.; Albacete, A.; Ruiz-lozano, J.M. Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ. Exp. Bot. 2016, 131, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Campobenedetto, C.; Agliassa, C.; Mannino, G.; Vigliante, I.; Contartese, V.; Secchi, F.; Bertea, C.M. A Biostimulant Based on Seaweed (Ascophyllum nodosum and Laminaria digitata) and Yeast Extracts Mitigates Water Stress Effects on Tomato (Solanum lycopersicum L.). Agriculture 2021, 11, 557. [Google Scholar] [CrossRef]
- Goñi, O.; Quille, P.; O’Connell, S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol. Biochem. 2018, 126, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Abdel Latef, A.A.H.; Chaoxing, H. Does inoculation with Glomus mosseae improve salt tolerance in pepper plants? J. Plant Growth Regul. 2014, 33, 644–653. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Cuciniello, A.; Cenvinzo, V.; Bonini, P.; Colla, G.; Rouphael, Y. Yield and nutritional quality of Vesuvian piennolo tomato PDO as affected by farming system and biostimulant application. Agronomy 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Parađiković, N.; Vinković, T.; Vrček, I.V.; Žuntar, I.; Bojić, M.; Medić-Šarić, M. Effect of natural biostimulants on yield and nutritional quality: An example of sweet yellow pepper (Capsicum annuum L.) plants. J. Sci. Food Agric. 2011, 91, 2146–2152. [Google Scholar] [CrossRef]
- Murtic, S.; Oljaca, R.; Murtic, M.S.; Vranac, A.; Koleska, I. Effects of seaweed extract on the growth, yield and quality of cherry tomato under different growth conditions. Acta Agric. Slov. 2018, 111, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial Activities of Flavonoids: Structure-Activity Relationship and Mechanism. Curr. Med. Chem. 2014, 22, 132–149. [Google Scholar] [CrossRef]
- Gan, R.-Y.; Deng, Z.-Q.; Yan, A.-X.; Prasad, N.; Lui, W.; Chan, C.-L.; Corke, H. Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT Food Sci. Technol. 2016, 73, 168–177. [Google Scholar] [CrossRef]
- Ververidis, F.; Trantas, E.; Douglas, C.; Vollmer, G.; Kretzschmar, G.; Panopoulos, N. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health. Biotechnol. J. 2007, 2, 1214–1234. [Google Scholar] [CrossRef]
- Araya-Cloutier, C.; den Besten, H.M.W.; Aisyah, S.; Gruppen, H.; Vincken, J.-P. The position of prenylation of isoflavonoids and stilbenoids from legumes (Fabaceae) modulates the antimicrobial activity against Gram positive pathogens. Food Chem. 2017, 226, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Lanzuise, S.; Manganiello, G.; Guastaferro, V.M.; Vincenzo, C.; Vitaglione, P.; Ferracane, R.; Vecchi, A.; Vinale, F.; Kamau, S.; Lorito, M.; et al. Combined Biostimulant Applications of Trichoderma spp. with Fatty Acid Mixtures Improve Biocontrol Activity, Horticultural Crop Yield and Nutritional Quality. Agronomy 2022, 15, 275. [Google Scholar] [CrossRef]
- Ronga, D.; Biazzi, E.; Parati, K.; Carminati, D.; Carminati, E.; Tava, A. Microalgal biostimulants and biofertilisers in crop productions. Agronomy 2019, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- González, A.; Castro, J.; Vera, J.; Moenne, A. Seaweed Oligosaccharides Stimulate Plant Growth by Enhancing Carbon and Nitrogen Assimilation, Basal Metabolism, and Cell Division. J. Plant Growth Regul. 2013, 32, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Godlewska, K.; Michalak, I.; Tuhy, A.; Chojnacka, K. Plant growth biostimulants based on different methods of seaweed extraction with water. Biomed Res. Int. 2016, 2016, 5973760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Righini, H.; Roberti, R.; Baraldi, E. Use of algae in strawberry management. J. Appl. Phycol. 2018, 30, 3551–3564. [Google Scholar] [CrossRef]
CW+ | TWW+ | XSW+ | NW+ | CW- | TWW- | XSW- | NW- | |
---|---|---|---|---|---|---|---|---|
Nutritional Value | (g/100 g dw) | |||||||
Fat | 4.53 ± 0.02 a | 2.26 ± 0.04 e | 2.08 ± 0.06 f | 3.75 ± 0.07 d | 4.41 ± 0.01 b | 1.53 ± 0.01 g | 3.94 ± 0.03 c | 3.88 ± 0.01 c |
Proteins | 10.98 ± 0.09 e | 11.90 ± 0.06 b | 13.28 ± 0.08 a | 10.42 ± 0.08 f | 11.04 ± 0.04 e | 11.22 ± 0.08 d | 11.62 ± 0.02 c | 11.50 ± 0.01 c |
Ash | 15.92 ± 0.09 b | 12.41 ± 0.06 f | 10.72 ± 0.07 g | 14.36 ± 0.08 e | 15.11 ± 0.08 c | 17.82 ± 0.02 a | 14.86 ± 0.09 d | 14.84 ± 0.06 d |
Carbohydrates | 68.58 ± 0.01 f | 73.43 ± 0.06 b | 73.92 ± 0.05 a | 71.46 ± 0.06 c | 69.44 ± 0.06 e | 69.44 ± 0.03 e | 69.57 ± 0.07 e | 69.78 ± 0.03 d |
Energy (Kcal/100 g dw) | 359.0 ± 0.2 d | 361.6 ± 0.3 b | 367.5 ± 0.4 a | 361.3 ± 0.5 b | 361.6 ± 0.2 b | 336.4 ± 0.1 e | 360.2 ± 0.1 c | 360.1 ± 0.2 c |
Free sugars | (g/100 g dw) | |||||||
Fructose | 12.81 ± 0.04 b | 12.56 ± 0.07 c | 10.96 ± 0.01 g | 13.00 ± 0.03 a | 12.51 ± 0.07 c | 12.22 ± 0.04 d | 11.44 ± 0.02 f | 12.05 ± 0.01 e |
Glucose | 9.02 ± 0.04 d | 8.61 ± 0.05 e | 6.84 ± 0.04 f | 9.10 ± 0.05 d | 9.75 ± 0.03 b | 9.97 ± 0.07 a | 9.43 ± 0.04 c | 9.70 ± 0.04 b |
Trehalose | 0.32 ± 0.04 ab | 0.19 ± 0.01 c | 0.17 ± 0.04 c | 0.21 ± 0.01 c | 0.282 ± 0.007 b | 0.31 ± 0.01 ab | 0.34 ± 0.01 a | 0.35 ± 0.02 a |
Total | 22.2 ± 0.1 bc | 21.37 ± 0.03 d | 17.97 ± 0.09 f | 22.30 ± 0.07 b | 22.54 ± 0.09 a | 22.50 ± 0.04 a | 21.21 ± 0.04 e | 22.10 ± 0.05 c |
Organic acids | (g/100 g dw) | |||||||
Oxalic acid | 0.95 ± 0.01 c | 1.21 ± 0.01 a | 1.15 ± 0.01 b | 0.77 ± 0.01 e | 0.93 ± 0.01 d | 0.72 ± 0.01 f | 0.68 ± 0.01 g | 0.71 ± 0.01 f |
Malic acid | 2.93 ± 0.01 c | 4.77 ± 0.01 a | 4.43 ± 0.06 b | 2.94 ± 0.02 c | 2.69 ± 0.03 d | 2.47 ± 0.01 f | 2.37 ± 0.01 g | 2.59 ± 0.02 e |
Ascorbic acid | tr * | tr | tr | tr | tr | tr | tr | tr |
Citric acid | 37.7 ± 0.6 c | 40.34 ± 0.03 a | 39.3 ± 0.4 b | 30.45 ± 0.02 e | 36.0 ± 0.8 d | 28.4 ± 0.1 f | 26.08 ± 0.02 g | 28.29 ± 0.09 f |
Total | 41.6 ± 0.6 c | 46.32 ± 0.03 a | 44.9 ± 0.3 b | 34.16 ± 0.01 e | 39.7 ± 0.8 d | 31.6 ± 0.1 f | 29.14 ± 0.01 g | 31.6 ± 0.1 f |
Fatty Acids | CW+ | TWW+ | XSW+ | NW+ | CW- | TWW- | XSW- | NW- |
---|---|---|---|---|---|---|---|---|
Relative Percentage (%) | ||||||||
C6:0 | 0.204 ± 0.003 e | 0.44 ± 0.02 a | 0.33 ± 0.01 b | 0.28 ± 0.01 c | 0.269 ± 0.001 c | 0.306 ± 0.003 b | 0.215 ± 0.003 e | 0.246 ± 0.006 d |
C8:0 | 0.063 ± 0.002 c | 0.095 ± 0.004 a | 0.096 ± 0.001 a | 0.066 ± 0.004 c | 0.084 ± 0.001 b | 0.094 ± 0.001 a | 0.054 ± 0.001 d | 0.052 ± 0.001 d |
C10:0 | 0.031 ± 0.001 e | 0.078 ± 0.001 b | 0.094 ± 0.005 a | 0.064 ± 0.004 c | 0.057 ± 0.003 d | 0.070 ± 0.001 b | 0.065 ± 0.004 c | 0.059 ± 0.001 d |
C12:0 | 0.065 ± 0.001 e | 0.096 ± 0.005 c | 0.102 ± 0.004 b | 0.093 ± 0.008 c | 0.092 ± 0.001 c | 0.070 ± 0.001 d | 0.131 ± 0.008 a | 0.066 ± 0.001 e |
C14:0 | 0.466 ± 0.003 e | 0.358 ± 0.0006 f | 0.71 ± 0.02 c | 1.07 ± 0.06 a | 0.61 ± 0.01 d | 0.689 ± 0.004 c | 0.829 ± 0.001 b | 0.654 ± 0.007 cd |
C15:0 | 0.249 ± 0.002 f | 0.299 ± 0.007 e | 0.37 ± 0.02 b | 0.38 ± 0.03 b | 0.390 ± 0.006 a | 0.330 ± 0.001 c | 0.376 ± 0.005 b | 0.310 ± 0.007 d |
C16:0 | 28.4 ± 0.5 f | 27.53 ± 0.01 g | 37.2 ± 0.2 a | 33.1 ± 0.6 e | 36.0 ± 0.1 b | 35.5 ± 0.3 c | 36.0 ± 0.3 b | 34.5 ± 0.6 d |
C16:1 | 0.759 ± 0.002 e | 0.50 ± 0.02 f | 1.14 ± 0.01 c | 0.80 ± 0.07 d | 1.77 ± 0.05 a | 1.42 ± 0.02 b | 1.746 ± 0.006 a | 1.154 ± 0.003 c |
C17:0 | 0.416 ± 0.004 c | 0.34 ± 0.02 e | 0.363 ± 0.001 d | 0.37 ± 0.02 d | 0.724 ± 0.005 a | 0.592 ± 0.008 b | 0.62 ± 0.02 b | 0.563 ± 0.001 b |
C18:0 | 6.06 ± 0.05 c | 6.8 ± 0.3 a | 5.3 ± 0.2 e | 6.1 ± 0.1 c | 6.03 ± 0.03 c | 5.31 ± 0.01 e | 6.49 ± 0.01 b | 5.62 ± 0.02 d |
C18:1n9c | 17.2 ± 0.6 b | 21.16 ± 0.05 a | 12.76 ± 0.08 d | 16.92 ± 0.31 c | 9.2 ± 0.7 g | 10.3 ± 0.1 e | 10.3 ± 0.1 e | 9.7 ± 0.2f |
C18:2n6c | 35.40 ± 0.02 a | 34.4 ± 0.5 b | 29.8 ± 0.1 d | 30.7 ± 0.2 c | 29.13 ± 0.02 d | 28.5 ± 0.7 e | 27.38 ± 0.03 f | 29.9 ± 0.7 d |
C18:3n3 | 7.81 ± 0.08 d | 5.4 ± 0.1 f | 8.95 ± 0.01 c | 7.30 ± 0.09 e | 13.1 ± 0.7 a | 12.8 ± 0.2 b | 13.1 ± 0.4 a | 13.11 ± 0.05 a |
C20:0 | 1.04 ± 0.01 d | 0.776 ± 0.002 f | 0.89 ± 0.01 e | 0.70 ± 0.06 g | 1.16 ± 0.01 c | 1.27 ± 0.02 b | 1.02 ± 0.01 d | 1.55 ± 0.02 a |
C22:0 | 0.69 ± 0.01 d | 0.56 ± 0.03 f | 0.69 ± 0.01 d | 0.69 ± 0.01 d | 0.587 ± 0.004 e | 0.96 ± 0.04 b | 0.831 ± 0.001 c | 1.09 ± 0.01 a |
C23:0 | 0.41 ± 0.01 c | 0.339 ± 0.001 d | 0.49 ± 0.01 a | 0.41 ± 0.01 c | 0.299 ± 0.006 e | 0.44 ± 0.01 b | 0.280 ± 0.001 f | 0.455 ± 0.004 b |
C24:0 | 0.71 ± 0.05 f | 0.77 ± 0.06 e | 0.812 ± 0.004 d | 0.97 ± 0.08 c | 0.524 ± 0.004 | 1.29 ± 0.01 a | 0.563 ± 0.004 g | 1.05 ± 0.05 b |
SFA | 38.8 ± 0.5 d | 38.5 ± 0.4 d | 47.4 ± 0.1 a | 44.2 ± 0.6 c | 46.86 ± 0.03 ab | 47.0 ± 0.4 ab | 47.5 ± 0.3 a | 46.2 ± 0.7 b |
MUFA | 17.9 ± 0.6 b | 21.65 ± 0.03 a | 13.90 ± 0.08 c | 17.72 ± 0.24 b | 10.9 ± 0.7 e | 11.8 ± 0.1 d | 12.1 ± 0.1 d | 10.81 ± 0.03 e |
PUFA | 43.2 ± 0.1 a | 39.8 ± 0.4 d | 38.7 ± 0.1 e | 38.0 ± 0.3 e | 42.2 ± 0.7 b | 41.3 ± 0.5 c | 40.4 ± 0.4 cd | 43.0 ± 0.7 ab |
Tocopherols | (mg/100 g dw) | |||||||
α-Tocopherol | 11.67 ± 0.09 c | 13.94 ± 0.01 a | 12.02 ± 0.08 b | 10.53 ± 0.06 e | 10.97 ± 0.01 d | 10.03 ± 0.07 f | 9.24 ± 0.01 h | 9.73 ± 0.09 g |
γ-Tocopherol | 4.49 ± 0.04 c | 5.70 ± 0.01 a | 4.99 ± 0.01 b | 3.67 ± 0.03 e | 4.10 ± 0.01 d | 3.49 ± 0.01 f | 3.14 ± 0.07 h | 3.28 ± 0.01 g |
Total | 16.2 ± 0.1 c | 19.65 ± 0.01 a | 17.01 ± 0.07 b | 14.20 ± 0.08 e | 15.07 ± 0.01 d | 13.53 ± 0.08 f | 12.39 ± 0.07 h | 13.01 ± 0.09 g |
β-Carotene | Lycopene | Total Carotenoids | Chlorophyll a | Chlorophyll b | Total Chlorophylls | |
---|---|---|---|---|---|---|
CW+ | 1.27 ± 0.07 bc | 4.47 ± 0.02 b | 5.73 ± 0.05 a | 0.21 ± 0.01 a | 0.15 ± 0.02 b | 0.36 ± 0.01 b |
TWW+ | 1.20 ± 0.08 cd | 4.36 ± 0.02 cd | 5.56 ± 0.05 bc | 0.212 ± 0.008 a | 0.19 ± 0.01 a | 0.399 ± 0.009 a |
XSW+ | 1.39 ± 0.07 ab | 4.30 ± 0.03 de | 5.69 ± 0.05 ab | 0.21 ± 0.01 a | 0.172 ± 0.004 ab | 0.386 ± 0.025 ab |
NW+ | 1.10 ± 0.09 de | 4.61 ± 0.06 a | 5.70 ± 0.07 ab | 0.204 ± 0.001 a | 0.16 ± 0.02 ab | 0.365 ± 0.015 ab |
CW- | 1.45 ± 0.05 a | 4.27 ± 0.03 e | 5.73 ± 0.04 a | 0.21 ± 0.01 a | 0.19 ± 0.03 a | 0.40 ± 0.02 a |
TWW- | 1.23 ± 0.05 c | 4.33 ± 0.06 de | 5.56 ± 0.05 bc | 0.20 ± 0.02 a | 0.17 ± 0.02 ab | 0.37 ± 0.02 ab |
XSW- | 1.02 ± 0.05 e | 4.44 ± 0.04 bc | 5.45 ± 0.04 c | 0.203 ± 0.001 a | 0.19 ± 0.02 a | 0.394 ± 0.015 a |
NW- | 1.10 ± 0.05 de | 4.41 ± 0.06 bc | 5.51 ± 0.05 c | 0.21 ± 0.01 a | 0.16 ± 0.01 ab | 0.38 ± 0.01 ab |
TBARS (EC50; mg/mL) | OxHLIA (IC50; µg/mL) Δt = 60 min | |
---|---|---|
CW+ | 0.73 ± 0.01 e | 82 ± 3 ab |
TWW+ | 0.60 ± 0.02 g | 49 ± 1 d |
XSW+ | 0.65 ± 0.03 fg | 79 ± 3 abc |
NW+ | 1.06 ± 0.09 bc | 82 ± 2 ab |
CW- | 0.90 ± 0.01 d | 75 ± 2 bc |
TWW- | 1.04 ± 0.04 c | 73 ± 2 c |
XSW- | 1.21 ± 0.07 a | 84 ± 5 a |
NW- | 1.1 ± 0.1 ab | 48 ± 2 d |
Positive control | 0.0054 ± 0.003 | 21.8 ± 0.2 |
S. aureus (ATCC 11632) | B. cereus (Food Isolate) | L. monocytogenes (NCTC 7973) | E. coli (ATCC 25922) | E. cloacae (Clinical Isotated) | S. typhimurium (ATCC 13311) | ||
---|---|---|---|---|---|---|---|
CW+ | MIC | 1 | 1 | 2 | 1 | 1 | 2 |
MBC | 2 | 2 | 4 | 2 | 2 | 4 | |
TWW+ | MIC | 2 | 1 | 2 | 1 | 1 | 1 |
MBC | 4 | 2 | 4 | 2 | 2 | 2 | |
XSW+ | MIC | 2 | 1 | 2 | 1 | 2 | 2 |
MBC | 4 | 2 | 4 | 2 | 4 | 4 | |
NW+ | MIC | 2 | 1 | 2 | 1 | 2 | 2 |
MBC | 4 | 2 | 4 | 2 | 4 | 4 | |
CW- | MIC | 2 | 1 | 2 | 1 | 1 | 1 |
MBC | 4 | 2 | 4 | 2 | 2 | 2 | |
TWW- | MIC | 1 | 1 | 2 | 1 | 1 | 2 |
MBC | 2 | 2 | 4 | 2 | 2 | 4 | |
XSW- | MIC | 1 | 1 | 2 | 1 | 2 | 2 |
MBC | 2 | 2 | 4 | 2 | 4 | 4 | |
NW- | MIC | 2 | 1 | 2 | 1 | 1 | 2 |
MBC | 4 | 2 | 4 | 2 | 2 | 4 | |
E211 * | MIC | 4 | 0.5 | 1 | 1 | 2 | 1 |
MBC | 4 | 0.5 | 2 | 2 | 4 | 2 | |
E224 | MIC | 1 | 2 | 0.5 | 0.5 | 0.5 | 1 |
MBC | 1 | 4 | 1 | 1 | 0.5 | 1 |
A. fumigatus (Human Isolate) | A. niger (ATCC 6275) | A. ochraceus (ATCC 12066) | P. v. var. Cyclopium (Food Isolate) | P. funiculosum (ATCC 36839) | T. viride (IAM 5061) | ||
---|---|---|---|---|---|---|---|
CW+ | MIC | 0.5 | 1 | 0.5 | 0.25 | 0.5 | 1 |
MFC | 1 | 2 | 1 | 0.5 | 1 | 2 | |
TWW+ | MIC | 1 | 1 | 0.5 | 0.25 | 0.5 | 1 |
MFC | 2 | 2 | 1 | 0.5 | 1 | 2 | |
XSW+ | MIC | 0.5 | 1 | 0.5 | 0.25 | 0.5 | 1 |
MFC | 1 | 2 | 1 | 0.5 | 1 | 2 | |
NW+ | MIC | 1 | 1 | 0.5 | 0.25 | 0.5 | 0.5 |
MFC | 0.5 | 2 | 1 | 0.5 | 1 | 1 | |
CW- | MIC | 1 | 1 | 0.5 | 0.5 | 0.5 | 1 |
MFC | 2 | 2 | 1 | 1 | 1 | 2 | |
TWW- | MIC | 1 | 1 | 0.5 | 0.5 | 0.5 | 1 |
MFC | 2 | 2 | 1 | 1 | 1 | 2 | |
XSW- | MIC | 0.5 | 1 | 0.5 | 0.5 | 0.5 | 1 |
MFC | 1 | 2 | 1 | 1 | 1 | 2 | |
NW- | MIC | 1 | 1 | 0.5 | 0.5 | 0.5 | 0.5 |
MFC | 2 | 2 | 1 | 1 | 1 | 1 | |
E211 * | MIC | 1 | 1 | 1 | 2 | 1 | 1 |
MFC | 2 | 2 | 2 | 4 | 2 | 2 | |
E224 | MIC | 1 | 1 | 1 | 1 | 0.5 | 0.5 |
MFC | 1 | 1 | 1 | 1 | 0.5 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, Â.; Chaski, C.; Pereira, C.; Kostić, M.; Rouphael, Y.; Soković, M.; Barros, L.; Petropoulos, S.A. Water Stress Alleviation Effects of Biostimulants on Greenhouse-Grown Tomato Fruit. Horticulturae 2022, 8, 645. https://doi.org/10.3390/horticulturae8070645
Fernandes Â, Chaski C, Pereira C, Kostić M, Rouphael Y, Soković M, Barros L, Petropoulos SA. Water Stress Alleviation Effects of Biostimulants on Greenhouse-Grown Tomato Fruit. Horticulturae. 2022; 8(7):645. https://doi.org/10.3390/horticulturae8070645
Chicago/Turabian StyleFernandes, Ângela, Christina Chaski, Carla Pereira, Marina Kostić, Youssef Rouphael, Marina Soković, Lillian Barros, and Spyridon A. Petropoulos. 2022. "Water Stress Alleviation Effects of Biostimulants on Greenhouse-Grown Tomato Fruit" Horticulturae 8, no. 7: 645. https://doi.org/10.3390/horticulturae8070645
APA StyleFernandes, Â., Chaski, C., Pereira, C., Kostić, M., Rouphael, Y., Soković, M., Barros, L., & Petropoulos, S. A. (2022). Water Stress Alleviation Effects of Biostimulants on Greenhouse-Grown Tomato Fruit. Horticulturae, 8(7), 645. https://doi.org/10.3390/horticulturae8070645