Antioxidant Capacity of Salix alba (Fam. Salicaceae) and Influence of Heavy Metal Accumulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Points and Material
2.2. Plant Material
2.3. Soil Material
2.4. Determination of Total Phenols
2.5. Determination of Total Flavonoids
2.6. Determination of Total Chlorophylls and Carotenoids
2.7. Cupric-Reducing Antioxidant Capacity (CUPRAC)
2.8. Ferric-Reducing Antioxidant Power (FRAP)
2.9. DPPH Radical Scavenging Activity
2.10. Reagents and Equipment
2.11. Statistical Analysis
3. Results
3.1. Selected Elements (Metals/Metalloids) in Soil
3.2. Selected Elements (Metals/Metalloids) in Willow Bark Samples of Salix alba
3.3. Phenolic Content and Antioxidant Properties of Salix alba
3.4. Antioxidant Activities of Salix alba
3.5. Correlation Analysis between Selected Elements in Soil and Salix alba Bark
3.6. Correlation Analysis between Selected Elements, Production of Photosynthetic Pigments and Phenolic Compounds, and Antioxidant Activities in Salix alba Bark Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tawfeek, N.; Mahmoud, M.F.; Hamdan, D.I.; Sobeh, M.; Farrag, N.; Wink, M.; El-Shazly, A.M. Phytochemistry, Pharmacology and Medicinal Uses of Plants of the Genus Salix: An Updated Review. Front. Pharmacol. 2021, 12, 593856. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.; Anderson, L.A.; Phillipson, J.D. Herbal Medicines; Pharmaceutical Press: London, UK, 2007; pp. 598–600. [Google Scholar]
- Schmid, B.; Tschirdewahn, B.; Kötter, I.; Günaydin, I.; Lüdtke, R.; Selbmann, H.; Schaffner, W.; Heide, L. Analgesic effects of willow bark extract in osteoarthritis: Results of a clinical double-blind trial. Focus Altern. Complement. Ther. 2010, 3, 186. [Google Scholar] [CrossRef]
- Saller, R.; Melzer, J.; Felder, M. Pain relief with a proprietary extract of Willow bark in rheumatology. Open Trial. Schweiz. Zschr. Ganzheitsmed. Medizin. 2008, 20, 156–162. [Google Scholar] [CrossRef]
- Praciak, A.; Pasiecznik, N.M.; Sheil, D.; van Heist, M.; Sassen, M.; Correia, C.S.; Dixon Ch Fyson, G.E.; Rushforth, K.; Teeling, C. The CABI Encyclopedia of Forest Trees; CABI: Oxfordshire, UK, 2013. [Google Scholar]
- Dickmann, D.I.; Kuzovkina, J. Poplars and Willows in the World. In Poplars and Willows: Trees for Society and the Environment; Isebrands, J.G., Richardson, J., Eds.; Chapter: Poplars and Willows in the World Publisher; FAO: Rome, Italy, 2014; pp. 8–91. [Google Scholar]
- Isebrands, J.G.; Richardson, J. Poplars and Willows: Trees for Society and the Environment CABI; FAO: Rome, Italy, 2014. [Google Scholar]
- Larison, J.R.; Likens, E.; Fitzpatrick, J.W.; Crock, J.G. Cadmium toxicity among wildlife in the Colorado Rocky Mountains. Nature 2000, 406, 181–183. [Google Scholar] [CrossRef]
- Takáč, P.; Szabová, T.; Kozáková, L.; Benková, M. Heavy metals and their bioavailability from soils in the long-term polluted Central Spis Region of SR. Plant Soil Environ. 2009, 55, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Casarett and Doull’s. Toxicology, the Basic Science of Poisons, 7th ed.; McGraw-Hill: New York, NY, USA, 2008; pp. 1103–1104. [Google Scholar]
- Tlustoš, P.; Szková, J.; Vysloužilová, M.; Pavlíková, D.; Weger, J.; Javorská, H. Variation in the uptake of Arsenic, Cadmium, Lead, and Zinc by different species of willows Salix spp. grown in contaminated soils. Cent. Eur. J. Biol. 2007, 2, 254–275. [Google Scholar] [CrossRef]
- Viehweger, K. How plants cope with heavy metals. Bot. Stud. 2014, 55, 35. [Google Scholar] [CrossRef] [Green Version]
- Ekmekçi, Y.; Tanyolaç, D.; Ayhan, B. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J. Plant Physiol. 2008, 165, 600–611. [Google Scholar] [CrossRef]
- Zeneli, L.; Daci-Ajvazi, M.; Daci, N.M.; Hoxha, D.; Shala, A. Environmental Pollution and Relationship Between Total Antioxidant Capacity and Heavy Metals (Pb, Cd, Zn, Mn, and Fe) in Solanum tuberosum L. and Allium cepa L. Hum. Ecol. Risk Assess. Int. J. 2013, 19, 1618–1627. [Google Scholar] [CrossRef]
- Zeneli, L.; Daci, N.; Paçarazi, H.; Daci, A.M. Impact of Environmental Pollution on Human Health of Population Which Lives in Nearby Kosovo Thermopower Plants. Indoor Build Environ. 2011, 20, 479–482. [Google Scholar] [CrossRef]
- Pietarila, H.; Varjoranta, R. Dispersion of Exhaust Gases from Kosovo B Power Plant in Obilic, Kosovo; Finnish Meteorological Institute, Air Quality Research: Helsinki, Finland, 2005. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M. The definition and measurement of antioxidants in biological systems. Free Radic. Biol. Med. 1995, 18, 125–126. [Google Scholar] [CrossRef]
- Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007, 35, 1147–1150. [Google Scholar] [CrossRef] [PubMed]
- Justesen, U.; Knuthsen, P. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem. 2001, 73, 245–250. [Google Scholar] [CrossRef]
- Yadav, A.; Kumari, R.; Yadav, A.; Mishra, J.P.; Srivatva, S.; Prabha, S.H. Antioxidants and its functions in human body—A Review. Res. Environ. Life Sci. 2016, 9, 1328–1331. [Google Scholar]
- Anbudhasan, P.; Surendraraj, A.; Karkuzhali, S.; Sathishkumaran, S. Natural antioxidants and its benefits. Int. J. Food Nutr. Sci. 2014, 3, 225–232. [Google Scholar]
- Gupta, D. Methods for Determination of Antioxidant capacity: A Review. Int. J. Pharm. Sci. Res. 2015, 6, 546–566. [Google Scholar]
- Sin, H.P.Y.; Liu, D.T.L.; Lam, D.S.C. Life style Modification, Nutritional and Vitamins Supplements for Age-Related Macular Degeneration. Acta Ophthalmol. 2013, 91, 6–11. [Google Scholar] [CrossRef]
- Willis, L.M.; Shukitt-Hale, B.; Joseph, J.A. Recent advances in berry supplementation and age-related cognitive decline. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 91–94. [Google Scholar] [CrossRef]
- Kaneria, M.; Kanani, B.; Chanda, S. Assessment of effect of hydroalcoholic and decoction methods on extraction of antioxidants from selected Indian medicinal plants. Asian Pac. J. Trop. Biomed. 2012, 2, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Antolovich, M.; Prenzler, P.D.; Patsalides, E.; Mc-Donald, D.; Robards, K. Methods for testing antioxidant activity. Analyst 2002, 127, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Özyürek, M.; Güçlü, K.; Tütem, E.; Başkan, K.S.; Erçağ, E.; Celik, S.E.; Baki, S.; Yıldız, L.; Karaman, S.; Apak, R. A comprehensive review of CUPRAC methodology. Anal. Methods 2011, 3, 2439–2453. [Google Scholar] [CrossRef]
- Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K.M.; Özyürek, M.; Güçlü, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar] [CrossRef] [Green Version]
- Moharram, H.A.; Youssef, M.M. Methods for Determining the Antioxidant Activity: A Review. Alex. J. Food Sci. Technol. 2014, 11, 31–42. [Google Scholar]
- Ansari, A.Q.; Ahmed, S.A.; Waheed, M.A.; Juned, A.S. Extraction and determination of antioxidant activity of Withania somnifera Dunal. Eur. J. Exp. Biol. 2013, 3, 502–507. [Google Scholar]
- Gadzovska, S.; Maury, S.; Delaunay, A.; Spasenoski, M.; Hagège, D.; Courtois, D.; Joseph, C. The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tissue Organ Cult. 2013, 113, 25–39. [Google Scholar] [CrossRef]
- Gadzovska, S.; Maury, S.; Delaunay, A.; Spasenoski, M.; Joseph, C.; Hagege, D. Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell Tissue Organ Cult. 2007, 89, 1–13. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, Y.; Lin, X.M.; Dong, Y.Y.; Christie, P. Soil contamination and plant uptake of heavy metals at polluted sites in China. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2003, 38, 823–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.-H.; Kim, D.-H.; Shin, S.-J. Bioaccumulation and Physiological, Response of Five Willows to Toxic Levels of Cadmium and Zinc. Soil Sediment Contam. 2013, 22, 241–255. [Google Scholar] [CrossRef]
- Bajraktari, D.; Bauer, B.; Kavrakovski, Z.; Zeneli, L. Correlation between Environmental Pollution and Metals Accumulation in Salix alba L. (Fam. Salicaceae). Agric. Conspec. Sci. 2019, 84, 95–101. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soil and Plants, 4th ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2011. [Google Scholar]
- Lindsay, W.L. Chemical Equilibria in Soils; John Wiley and Sons: New York, NY, USA, 1979. [Google Scholar]
- Dragun, J. Element adsorption and mobility in soil. In The Soil Chemistry of Hazardous Materials; Hazardous Materials Control Research Institute: Silver Spring, MD, USA, 1988. [Google Scholar]
- Shehu, I.; Bajraktari, N.; Demaku, S.; Bekolli, A.; Malsiu, A. The Study of Absorption of Heavy Metals from the Soil at Some Vegetables in Anadrinia Region in Kosovo. Int. J. Pharm. Sci. Rev. Res. 2016, 40, 324–329. [Google Scholar]
- WHO. Permissible Limits of Heavy Metals in Soil and Plants; WHO: Geneva, Switzerland, 1996. [Google Scholar]
- Hooda, P.S. Trace Elements in Soils; Wiley: Hoboken, NJ, USA, 2010; Volume 28, p. 443. [Google Scholar]
- Güne, A.; Alpaslan, M.; Ina, L.A. Plant Growth and Fertilizer; Pub. No: 1539; Univ. Agriculture Ankara: Ankara, Turkey, 2004. [Google Scholar]
- Cicek, A.; Koparal, A.S. Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tuncbilek Thermal Power Plant. Chemosphere 2004, 57, 1031–1036. [Google Scholar] [CrossRef]
- Dutch Target and Intervention Values, 2000 (the New Dutch List). Available online: https://www.esdat.net/environmental%20standards/dutch/annexs_i2000dutch%20environmental%20standards.pdf (accessed on 10 January 2022).
- Holmgren, G.G.S.; Meyer, M.W.; Chaney, R.L.; Daniels, R.B. Cadmium, lead, zinc, copper, and in agricultural soils of the United States of America. J. Environ. Qual. 1993, 22, 335–348. [Google Scholar] [CrossRef]
- Lokeshwari, H.; Chandrappa, G.T. Impact of heavy metal contamination of Bellandur Lake on soil and cultivated vegetation. Curr. Sci. 2006, 91, 622–627. [Google Scholar]
- Sparling, D.W.; Lowe, T.P. Environmental Hazards of Aluminum to Plants, Invertebrates, Fish and Wildlife. Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 1996; Volume 145. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995. [Google Scholar]
- Bajraktari, D.; Petrovska, B.B.; Zeneli, L.; Dimitrovska, A.; Kavrakovski, Z. Soil chemical evaluation and power plant ash impact on chemical properties of Salix alba L. (Fam. Salicaceae): The impact of bioaccumulation. Toxicol. Res. Appl. 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Klang-Westin, E.; Eriksson, J. Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant Soil 2003, 249, 127–137. [Google Scholar] [CrossRef]
- Vandecasteele, B.; De Vos, B.; Tack, F.M.G. Cadmium and Zinc uptake by volunteer willow species and elder rooting in polluted dredged sediment disposal sites. Sci. Total Environ. 2002, 299, 191–205. [Google Scholar] [CrossRef]
- Benavides, M.P.; Gallego, S.M.; Tomaro, M.L. Cadmium toxicity in plants. Braz. J. Plant Physiol. 2005, 17, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Morrison, R.S.; Brooks, R.D.; Reeves, R.D.; Malaise, F.; Iiorowitz, P.; Aronson, M.; Merrian, G.R. The diverse chemical forms of heavy metals in tissue extracts of metallophytes from Shaba province, Zaire. Photochem 1981, 20, 155–158. [Google Scholar] [CrossRef]
- Le Bot, J.; Goss, M.; Carvalho, M.J.G.P.R.; Van Beusichem, M.L.; Kirkby, E.A. The significance of the magnesium to manganese ratio in plant tissues for growth and alleviation of manganese toxicity in tomato (Lycopersicon esculentum) and wheat (Triticum aestivum) plants. Plant Soil 1990, 124, 205–210. [Google Scholar] [CrossRef]
- Dt, O.; Aa, A.; Oe, O. Heavy Metal Concentrations in Plants and Soil along Heavy Traffic Roads in North Central Nigeria. J. Environ. Anal. Toxicol. 2015, 5, 6. [Google Scholar] [CrossRef]
- Salt, D.E.; Kato, N.; Kramer, U.; Smith, R.D.; Raskin, I. The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In Phytoremediation of Contaminated Soil and Water; Terry, N., Banuelos, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 189–200. [Google Scholar]
- Herrero, E.M.; López-Gonzálvez, A.; Ruiz, M.A.; Lucas-García, J.A.; Barbas, C. Uptake and distribution of zinc, cadmium, lead and copper in Brassica napus var. oleífera and Helianthus annus grown in contaminated soils. Int. J. Phytoremediat. 2003, 3, 153–167. [Google Scholar] [CrossRef]
- Choi, J.M.; Pak, C.H.; Lee, C.W. Micronutrient toxicity in French marigold. J. Plant Nutr. 1996, 2019, 901–916. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Sarbatly, R.; Bono, A. Phytochemical antioxidants for health and medicine—A move towards nature. Biotechnol. Mol. Biol. 1996, 1, 97–104. [Google Scholar]
- Tahirović, A.; Bašić, N. Determination of phenolic content and antioxidant properties of methanolic extracts from Viscum album ssp. album Beck. Bull. Chem. Technol. Bosnia Herzeg. 2017, 49, 25–30. [Google Scholar]
- Shao, Y. Phytochemischer Atlas der Schweizer Weiden. Ph.D. Thesis, University of Zürich (CH), Zürich, Switzerland, 1991. [Google Scholar]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman, G.M.; Hussien, N.N.; Marzoog, T.R.; Awad, H.A. Phenolic content, Antioxidant, Antimicrobial and Cytotoxic activities of ethanol extract of Salix alba. Am. J. Biochem. Biotechnol. 2013, 9, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Oram, B. Metals in the Environment, Water Rsearch Center. 2020. Available online: https://water-research.net/index.php/metals-in-the-environment (accessed on 15 January 2022).
- Dasa, B.H.; Swarnakar, A.K. Mobility of Heavy Metals in Soils and Wastewater from Landfill, Sarona, Raipur, Chhattisgarh, India. J. Univ. Shanghai Sci. Technol. 2020, 21, 372–381. [Google Scholar]
- Shala, A.; Sallaku, F.; Shala, A.; Ukaj, S. The effects of industrial and agricultural activity on the water quality of the Sitnica River (Kosovo). Geoadria 2015, 20, 13–21. [Google Scholar] [CrossRef]
- Mertens, J.; Smolders, E. Zinc. Heavy Metals in Soils; Environmental Pollution Book Series (EPOL); Springer: Berlin/Heidelberg, Germany, 2012; Volume 22, pp. 465–493. [Google Scholar]
- FAO Soils Bulletins. Available online: https://www.fao.org/3/x5872e/x5872e0i.htm (accessed on 20 December 2021).
- Popoviciu, D.R.; Ticuţa, N. Copper, manganese and zinc bioaccumulation in three common woody species from black sea coastal area. UPB Sci. Bull. Ser. B 2018, 80, 49–56. [Google Scholar]
- Băbău, A.M.C.; Micle, V.; Damian, G.E.; Sur, I.M. Sustainable Ecological Restoration of Sterile Dumps Using Robinia pseudoacacia. Sustainability 2021, 13, 14021. [Google Scholar] [CrossRef]
Al | As | Cr | Cu | Fe | Ni | Zn | Pb | |
---|---|---|---|---|---|---|---|---|
Mean | 0.346 | 0.01 | 0.011 | 0.014 | 0.314 | 0.049 | 0.093 | 0.417 |
Minimum | 0.163 | 0.0019 | 0.006 | 0.011 | 0.069 | 0.029 | 0.071 | 0.299 |
Maximum | 0.99 | 0.022 | 0.037 | 0.024 | 1.571 | 0.078 | 0.122 | 0.642 |
Count | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 4 |
Al | As | Cd | Cr | Cu | Fe | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|
Mean | 15,698.4 | 37.67 | 14.85 | 24.27 | 58.85 | 16,975.67 | 95.04 | 185.22 | 226.7 |
Minimum | 12,021.88 | 20.29 | 9.83 | 18.07 | 29.88 | 13,216.97 | 66.74 | 84.2 | 99.23 |
Maximum | 19,279.32 | 78.36 | 22.23 | 35.85 | 100.02 | 20,399 | 129.59 | 667.97 | 948.71 |
Count | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Al | Ca | Cd | Cr | Cu | Fe | Mg | Mn | Ni | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 371.19 | 12,191.66 | 0.62 | 1.28 | 9.1 | 385.47 | 1306 | 123.13 | 7.69 | 87.77 |
Minimum | 67.79 | 5260 | 0.09 | 0.89 | 5.09 | 66.79 | 840 | 19.68 | 6.49 | 56.39 |
Maximum | 894.77 | 22,280 | 4.49 | 1.89 | 28.66 | 910.75 | 1680 | 392.75 | 10.09 | 140.94 |
Count | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Variable | Observations | Minimum | Maximum | Mean | Std. Deviation |
---|---|---|---|---|---|
TP | 30 | 12.633 | 80.537 | 39.282 | 17.953 |
TF | 30 | 9.252 | 67.479 | 28.222 | 15.333 |
CHLa | 30 | 13.733 | 86.287 | 38.099 | 18.496 |
CHLb | 30 | 26.068 | 71.504 | 49.240 | 10.564 |
CAR | 30 | 42.264 | 152.585 | 94.976 | 27.190 |
CUPRAC | 30 | 92.927 | 454.651 | 228.537 | 100.480 |
FRAP | 30 | 89.616 | 504.368 | 317.189 | 116.852 |
DPPH | 30 | 31.280 | 164.263 | 82.742 | 39.155 |
Al | Ca | Cd | Cr | Cu | Fe | Mg | Mn | Ni | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
Al | 1 | |||||||||
Ca | 0.316 | 1 | ||||||||
Cd | - | 0.458 | 1 | |||||||
Cr | 0.893 | 0.321 | - | 1 | ||||||
Cu | - | - | - | - | 1 | |||||
Fe | 0.880 | 0.444 | 0.392 | 0.793 | 0.145 | 1 | ||||
Mg | - | 0.564 | - | - | 0.307 | 0.313 | 1 | |||
Mn | - | −0.398 | - | - | - | - | - | 1 | ||
Ni | 0.883 | - | - | 0.801 | - | - | - | - | 1 | |
Zn | - | - | - | - | - | - | - | - | 0.327 | 1 |
r | Al | Cd | Cr | Cu | Fe | Ni | Zn | Ca | Mg | Mn | TP | TF | CHL a | CHL b | CAR | CUPRAC | FRAP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | 0.195 | ||||||||||||||||
Cr | 0.893 | 0.154 | |||||||||||||||
Cu | 0.061 | 0.136 | 0.140 | ||||||||||||||
Fe | 0.880 | 0.392 | 0.793 | 0.145 | |||||||||||||
Ni | 0.883 | 0.043 | 0.801 | 0.152 | 0.790 | ||||||||||||
Zn | 0.253 | −0.132 | 0.109 | −0.210 | 0.149 | 0.327 | |||||||||||
Ca | 0.316 | 0.458 | 0.321 | −0.018 | 0.444 | 0.166 | 0.190 | ||||||||||
Mg | 0.177 | 0.229 | 0.205 | 0.307 | 0.313 | 0.141 | 0.060 | 0.564 | |||||||||
Mn | 0.097 | −0.058 | 0.157 | 0.054 | 0.106 | 0.199 | −0.276 | −0.398 | −0.048 | ||||||||
TP | −0.184 | −0.033 | −0.171 | 0.009 | −0.293 | −0.359 | −0.176 | 0.106 | −0.226 | −0.441 | |||||||
TF | −0.266 | 0.022 | −0.327 | −0.067 | −0.365 | −0.424 | −0.081 | 0.177 | −0.293 | −0.546 | 0.889 | ||||||
CHL a | −0.256 | −0.094 | −0.267 | −0.096 | −0.361 | −0.287 | 0.012 | −0.401 | −0.339 | 0.274 | −0.076 | −0.006 | |||||
CHL b | 0.074 | 0.086 | 0.176 | 0.045 | −0.078 | 0.034 | 0.078 | −0.047 | −0.215 | 0.138 | −0.053 | 0.008 | 0.665 | ||||
CAR | −0.070 | 0.081 | −0.049 | −0.229 | −0.162 | −0.125 | −0.042 | 0.226 | −0.246 | −0.265 | 0.594 | 0.617 | −0.058 | 0.332 | |||
CUPRAC | −0.281 | 0.026 | −0.329 | −0.012 | −0.379 | −0.432 | −0.165 | 0.137 | −0.257 | −0.482 | 0.882 | 0.902 | −0.026 | −0.059 | 0.540 | ||
FRAP | −0.361 | 0.089 | −0.423 | 0.058 | −0.411 | −0.429 | −0.077 | 0.112 | −0.205 | −0.512 | 0.845 | 0.922 | 0.030 | −0.023 | 0.577 | 0.910 | |
DPPH | −0.274 | 0.106 | −0.320 | 0.042 | −0.321 | −0.432 | −0.125 | 0.234 | −0.156 | −0.590 | 0.886 | 0.952 | −0.111 | −0.077 | 0.568 | 0.939 | 0.933 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajraktari, D.; Bauer, B.; Zeneli, L. Antioxidant Capacity of Salix alba (Fam. Salicaceae) and Influence of Heavy Metal Accumulation. Horticulturae 2022, 8, 642. https://doi.org/10.3390/horticulturae8070642
Bajraktari D, Bauer B, Zeneli L. Antioxidant Capacity of Salix alba (Fam. Salicaceae) and Influence of Heavy Metal Accumulation. Horticulturae. 2022; 8(7):642. https://doi.org/10.3390/horticulturae8070642
Chicago/Turabian StyleBajraktari, Demush, Biljana Bauer, and Lulzim Zeneli. 2022. "Antioxidant Capacity of Salix alba (Fam. Salicaceae) and Influence of Heavy Metal Accumulation" Horticulturae 8, no. 7: 642. https://doi.org/10.3390/horticulturae8070642
APA StyleBajraktari, D., Bauer, B., & Zeneli, L. (2022). Antioxidant Capacity of Salix alba (Fam. Salicaceae) and Influence of Heavy Metal Accumulation. Horticulturae, 8(7), 642. https://doi.org/10.3390/horticulturae8070642