Molecular Characterization of Tomato (Solanum lycopersicum L.) Accessions under Drought Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Effect of Drought on Tomato Accessions at Germination Stage
2.2. Field Trial
2.3. Vegetative Traits
2.4. Determination of Proline Content
2.5. Morphological Characteristics
2.6. Statistical Analysis
2.6.1. Drought Data Analysis
2.6.2. Morphological Data Analysis
2.7. DNA Extraction and Simple Sequence Repeat (SSR) Assays
2.8. PCR Amplification and Product Electrophoresis
2.9. Data Scoring
2.10. Functional Assignments for Gene-Associated SSRs in Tomato
2.11. Putative Tissue Expression Pattern, Subcellular Localization, Root Cell Types and Tissues of Our Target Genes
3. Results
3.1. The Effects of Drought on Tomato Accessions at the Seedling Stage
3.2. Morphological Characterization among Tomato Accessions
3.3. Genetic Variation among Tomato Accessions Revealed by SSRs
3.4. UPGMA Dendrogram and Similarity
3.5. The Functional Analysis of the Associated Genes with SSRs in Tomato
3.6. Putative Tissue Expression Pattern of Genes S. lycopersicum Transcript Expression
3.7. Putative Subcellular Localizations of the Genes Based on S. lycopersicum Transcript Expression
3.8. Putative Root Cell Types and Tissues Specific to the Genes Based on S. lycopersicum Transcript Expression
4. Discussion
4.1. Drought Tolerance
4.2. Morphological Characteristics
4.3. Molecular Level
4.4. Putative Tissue Expression Analyses of Our Target Gene-Associated SSR Markers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knapp, S.; Bohs, L.; Nee, M.; Spooner, D.M. Solanaceae—A model for linking genomics with biodiversity. Comp. Funct. Genomics 2004, 5, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, M.H.; Alamri, S.; Alsubaie, Q.D.; Ali, H.M.; Khan, M.N.; Al-Ghamdi, A.; Ibrahim, A.A.; Alsadon, A. Exogenous nitric oxide alleviates sulfur deficiency-induced oxidative damage in tomato seedlings. Nitric Oxide 2020, 94, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Gonias, E.D.; Ganopoulos, I.; Mellidou, I.; Bibi, A.C.; Kalivas, A.; Mylona, P.V.; Osanthanunkul, M.; Tsaftaris, A.; Madesis, P.; Doulis, A.G. Exploring genetic diversity of tomato (Solanum lycopersicum L.) germplasm of genebank collection employing SSR and SCAR markers. Genet. Resour. Crop Evol. 2019, 66, 1295–1309. [Google Scholar] [CrossRef]
- Foolad, M.R. Genome mapping and molecular breeding of tomato. Int. J. Plant Genom. 2007, 2007, 64358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeem, M.; Shahzad, K.; Saqib, S.; Shahzad, A.; Nasrullah; Younas, M.; Afridi, M. The Solanum melongena COP1LIKE manipulates fruit ripening and flowering time in tomato (Solanum lycopersicum). J. Plant Growth Regul. 2022, 96, 14. [Google Scholar] [CrossRef]
- Reynolds, M.; Dreccer, F.; Trethowan, R. Drought-adaptive traits derived from wheat wild relatives and landraces. J. Exp. Bot. 2007, 58, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Casanas, F.; Simo, J.; Casals, J.; Prohens, J. Toward an Evolved Concept of Landrace. Front. Plant Sci. 2017, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- Makhadmeh, I.M.; Thabet, S.G.; Ali, M.; Alabbadi, B.; Albalasmeh, A.; Alqudah, A.M. Exploring genetic variation among Jordanian Solanum lycopersicon L. landraces and their performance under salt stress using SSR markers. J. Genet. Eng. Biotechnol. 2022, 20, 45. [Google Scholar] [CrossRef]
- Brake, M.H.; Al-Gharaibeh, M.A.; Hamasha, H.R.; Sakarneh, N.S.A.; Alshomali, I.A.; Migdadi, H.M.; Qaryouti, M.M.; Haddad, N.J. Assessment of genetic variability among Jordanian tomato landrace using inter-simple sequence repeats markers. Jordan J. Biol. Sci. 2021, 14, 91–95. [Google Scholar]
- Foolad, M.R.; Zhang, L.P.; Subbiah, P. Genetics of drought tolerance during seed germination in tomato: Inheritance and QTL mapping. Genome 2003, 46, 536–545. [Google Scholar] [CrossRef]
- Cattivelli, L.; Rizza, F.; Badeck, F.W.; Mazzucotelli, E.; Mastrangelo, A.M.; Francia, E.; Mare, C.; Tondelli, A.; Stanca, A.M. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Res. 2008, 105, 1–14. [Google Scholar] [CrossRef]
- Bargali, K.; Tewari, A. Growth and water relation parameters in drought-stressed Coriaria nepalensis seedlings. J. Arid. Environ. 2004, 58, 505–512. [Google Scholar] [CrossRef]
- Thabet, S.G.; Alqudah, A.M. Crops and Drought. In eLS; John Wiley & Sons, Ltd., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 1–8. [Google Scholar]
- Takele, A. Seedling emergence and of growth of sorghum genotypes under variable soil moisture deficit. Acta Agron. Hung. 2000, 48, 95–102. [Google Scholar] [CrossRef]
- Dhanda, S.S.; Sethi, G.S.; Behl, R.K. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J. Agron. Crop Sci. 2004, 190, 6–12. [Google Scholar] [CrossRef]
- Kashiwagi, J.; Krishnamurthy, L.; Upadhyaya, H.D.; Krishna, H.; Chandra, S.; Vadez, V.; Serraj, R. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 2005, 146, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Jabran, K.; Awan, S.I.; Abbas, A.; Ehsanullah; Zulkiffal, M.; Acet, T.; Farooq, J.; Rehman, A. Morpho-physiological diversity and its implications for improving drought tolerance in grain sorghum at different growth stages. Aust. J. Crop Sci. 2011, 5, 308–317. [Google Scholar]
- Wahb-Allah, M.A.; Alsadon, A.A.; Ibrahim, A.A. Drought tolerance of several tomato genotypes under greenhouse conditions. World Appl. Sci. J. 2011, 15, 933–940. [Google Scholar]
- Ovesna, J.; Poláková, K.; Leišová, L. DNA analyses and their applications in plant breeding. Czech J. Genet. Plant Breed. 2002, 38, 29. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Gupta, V.K.; Misra, A.K.; Modi, D.R.; Pandey, B.K. Potential of Molecular Markers in Plant Biotechnology. Plant Omics 2009, 2, 141–162. [Google Scholar]
- Ezekiel, C.N.; Nwangburuka, C.C.; Ajibade, O.A.; Odebode, A.C. Genetic diversity in 14 tomato (Lycopersicon esculentum Mill.) varieties in Nigerian markets by RAPD-PCR technique. Afr. J. Biotechnol. 2011, 10, 4961–4967. [Google Scholar]
- Tautz, D.; Renz, M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 1984, 12, 4127–4138. [Google Scholar] [CrossRef] [Green Version]
- Soranzo, N.; Provan, J.; Powell, W. An example of microsatellite length variation in the mitochondrial genome of conifers. Genome 1999, 42, 158–161. [Google Scholar] [CrossRef]
- Farooq, S.; Azam, F. Molecular markers in plant breeding-I: Concepts and characterization. Pak. J. Biol. Sci. 2002, 5, 1135–1140. [Google Scholar] [CrossRef] [Green Version]
- Pearson, C.E.; Sinden, R.R. Trinucleotide repeat DNA structures: Dynamic mutations from dynamic DNA. Curr. Opin. Struct. Biol. 1998, 8, 321–330. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, Z.; Cao, X.; Jiang, F.L. Genetic diversity of cultivated and wild tomatoes revealed by morphological traits and SSR markers. Genet. Mol. Res. 2015, 14, 13868–13879. [Google Scholar] [CrossRef]
- EL-Mansy, A.B.; Abd El-Moneim, D.; ALshamrani, S.M.; Alsafhi, F.A.; Abdein, M.A.; Ibrahim, A.A. Genetic Diversity Analysis of Tomato (Solanum lycopersicum L.) with Morphological, Cytological, and Molecular Markers under Heat Stress. Horticulturae 2021, 7, 65. [Google Scholar] [CrossRef]
- Cotti, C. Molecular Markers for the Assessment of Genetic Variability in Threatened Plant Species. Ph.D Thesis, University of Bologna, Department of Experimental Evolutionary Biology, Bologna, Italy, 2008. [Google Scholar] [CrossRef]
- Sardaro, M.L.; Marmiroli, M.; Maestri, E.; Marmiroli, N. Genetic characterization of Italian tomato varieties and their traceability in tomato food products-Sardaro-2012-Food Science & Nutrition-Wiley Online Library. Food Sci. Nutr 2013, 1, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Sacco, A.; Ruggieri, V.; Parisi, M.; Festa, G.; Rigano, M.M.; Picarella, M.E.; Mazzucato, A.; Barone, A. Exploring a Tomato Landraces Collection for Fruit-Related Traits by the Aid of a High-Throughput Genomic Platform. PLoS ONE 2015, 10, e0137139. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zou, Q.D.; Qi, S.Y.; Wang, X.F.; Wu, Y.Y.; Liu, N.; Zhang, Y.M.; Zhang, Z.J.; Li, H.T. Analysis of genetic diversity and population structure in a tomato (Solanum lycopersicum L.) germplasm collection based on single nucleotide polymorphism markers. Genet. Mol. Res. 2016, 15, 1–12. [Google Scholar] [CrossRef]
- Liu, S.; Cantrell, R.G.; McCarty, J.C.; Stewart, J.M. Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci. 2000, 40, 1459–1469. [Google Scholar] [CrossRef]
- Raveendren, T.J.B.; Reviews, M.B. Molecular marker technology in cotton. Biotechnol. Mol. Biol. Rev. 2008, 3, 32–45. [Google Scholar]
- Shiri, M. Identification of informative simple sequence repeat (SSR) markers for drought tolerance in maize. Afr. J. Biotechnol. 2011, 10, 16414–16420. [Google Scholar] [CrossRef]
- Tam, S.M.; Mhiri, C.; Vogelaar, A.; Kerkveld, M.; Pearce, S.R.; Grandbastien, M.A. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor. Appl. Genet. 2005, 110, 819–831. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Amaresan, N.; Sankaranarayanan, A. Estimation of Proline Content in Plant Tissues. In Plant-Microbe Interactions: Laboratory Techniques; Senthilkumar, M., Amaresan, N., Sankaranarayanan, A., Eds.; Springer: New York, NY, USA, 2021; pp. 95–98. [Google Scholar]
- He, C.; Poysa, V.; Yu, K.J.T. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor. Appl. Genet. 2003, 106, 363–373. [Google Scholar] [CrossRef]
- Asif, M.; Rahman, M.; Mirza, J.; Zafar, Y. High resolution metaphor agarose gel electrophoresis for genotyping with microsatellite markers. Pak. J. Agric. Sci. 2008, 45, 75–79. [Google Scholar]
- Anderson, J.A.; Churchill, G.A.; Autrique, J.E.; Tanksley, S.D.; Sorrells, M.E. Optimizing parental selection for genetic linkage maps. Genome 1993, 36, 181–186. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the Amount of Ecologic Association between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Rohlf, F.J. NTSYSpc Numerical Taxonomy and Multivariate Analysis System Version 2.0 User Guide; Exeter Software Publishers Ltd.: Setauket, NY, USA, 1998. [Google Scholar]
- Fucile, G.; Di Biase, D.; Nahal, H.; La, G.; Khodabandeh, S.; Chen, Y.; Easley, K.; Christendat, D.; Kelley, L.; Provart, N.J. ePlant and the 3D data display initiative: Integrative systems biology on the world wide web. PLoS ONE 2011, 6, e15237. [Google Scholar] [CrossRef]
- Kimura, M.; Crow, J.F. The number of alleles that can be maintained in a finite population. Genetics 1964, 49, 725. [Google Scholar] [CrossRef]
- Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef] [Green Version]
- Lewontin, R.C. Testing the theory of natural selection. Nature 1972, 236, 181–182. [Google Scholar] [CrossRef]
- Luo, C.; He, X.H.; Chen, H.; Ou, S.J.; Gao, M.P. Analysis of diversity and relationships among mango cultivars using Start Codon Targeted (SCoT) markers. Biochem. Syst. Ecol. 2010, 38, 1176–1184. [Google Scholar] [CrossRef]
- Vurayai, R.; Emongor, V.; Moseki, B. Effect of water stress imposed at different growth and development stages on morphological traits and yield of bambara groundnuts (Vigna subterranea L. Verdc). Am. J. Plant Physiol. 2011, 6, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Yücel, D.; Anlarsal, A.; Mart, D.; Yücel, C. Effects of drought stress on early seedling growth of chickpea (Cicer arietinum L.) genotypes. World Appl. Sci. J. 2010, 11, 478–485. [Google Scholar]
- Vasquez-Robinet, C.; Mane, S.P.; Ulanov, A.V.; Watkinson, J.I.; Stromberg, V.K.; De Koeyer, D.; Schafleitner, R.; Willmot, D.B.; Bonierbale, M.; Bohnert, H.J.; et al. Physiological and molecular adaptations to drought in Andean potato genotypes. J. Exp. Bot. 2008, 59, 2109–2123. [Google Scholar] [CrossRef] [Green Version]
- Mastrangelo, A.; Rascio, A.; Mazzucco, L.; Russo, M.; Cattivelli, L.; Di Fonzo, N. Series A. Molecular aspects of abiotic stress resistance in durum wheat. Options Méditerranéennes Ser. A 2000, 40, 207–213. [Google Scholar]
- Ranc, N.; Munos, S.; Santoni, S.; Causse, M. A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC Plant Biol. 2008, 8, 130. [Google Scholar] [CrossRef] [Green Version]
- Brdar-Jokanović, M.; Girek, Z.; Pavlović, S.; Ugrinović, M.; Zdravković, J. Traits related to drought tolerance in tomato accessions of different growth type and fruit size. J. Anim. Plant Sci. 2017, 27, 869–876. [Google Scholar]
- Korir, N.K.; Diao, W.; Tao, R.; Li, X.; Kayesh, E.; Li, A.; Zhen, W.; Wang, S. Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers. Genet. Mol. Res. 2014, 13, 43–53. [Google Scholar] [CrossRef]
- Abd El-Hady, E.A.; Haiba, A.A.; Abd El-Hamid, N.R.; Rizkalla, A.A. Phylogenetic diversity and relationships of some tomato varieties by electrophoretic protein and RAPD analysis. J. Am. Sci. 2010, 6, 434–441. [Google Scholar]
- Benor, S.; Zhang, M.Y.; Wang, Z.F.; Zhang, H.S. Assessment of genetic variation in tomato (Solanum lycopersicum L.) inbred lines using SSR molecular markers. J. Genet. Genom. 2008, 35, 373–379. [Google Scholar] [CrossRef]
- Smulders, M.J.M.; Bredemeijer, G.; RusKortekaas, W.; Arens, P.; Vosman, B. Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor. Appl. Genet. 1997, 94, 264–272. [Google Scholar] [CrossRef]
- Rajput, S.G.; Plyler-Harveson, T.; Santra, D.K.J.A.J.o.P.S. Development and characterization of SSR markers in proso millet based on switchgrass genomics. Am. J. Plant Sci. 2014, 5, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.; Devey, M.E. Occurrence and inheritance of microsatellites in Pinus radiata. Genome 1994, 37, 977–983. [Google Scholar] [CrossRef]
- Vargas, J.E.E.; Aguirre, N.C.; Coronado, Y.M. Study of the genetic diversity of tomato (Solanum spp.) with ISSR markers. Revista Ceres 2020, 67, 199–206. [Google Scholar] [CrossRef]
- Alzahib, R.H.; Migdadi, H.M.; Al Ghamdi, A.A.; Alwahibi, M.S.; Afzal, M.; Elharty, E.H.; Alghamdi, S.S. Exploring Genetic Variability among and within Hail Tomato Landraces Based on Sequence-Related Amplified Polymorphism Markers. Diversity 2021, 13, 135. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef]
- Dominguez, R.; Holmes, K.C. Actin structure and function. Annu. Rev. Biophys. 2011, 40, 169–186. [Google Scholar] [CrossRef] [Green Version]
- Nie, W.F.; Wang, J. Actin-Related Protein 4 Interacts with PIE1 and Regulates Gene Expression in Arabidopsis. Genes 2021, 12, 520. [Google Scholar] [CrossRef]
- McKinney, E.C.; Kandasamy, M.K.; Meagher, R.B. Arabidopsis contains ancient classes of differentially expressed actin-related protein genes. Plant Physiol. 2002, 128, 997–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Questions and future challenges. Trends Plant Sci. 2004, 10, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki, H.; Sakamoto, T.; Sato, Y.; Matsuoka, M. Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15. Plant Cell 2001, 13, 2085–2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, Y.; Hirochika, H.; Kurata, N. Organ-specific alternative transcripts of KNOX family class 2 homeobox genes of rice. Gene 2002, 288, 41–47. [Google Scholar] [CrossRef]
- Clark, S.E.; Jacobsen, S.E.; Levin, J.Z.; Meyerowitz, E.M. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 1996, 122, 1567–1575. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Khurana, J.P.; Jain, M. Characterization of Rice Homeobox Genes, OsHOX22 and OsHOX24, and Over-expression of OsHOX24 in Transgenic Arabidopsis Suggest Their Role in Abiotic Stress Response. Front Plant Sci. 2016, 7, 627. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Nishimura, A.; Tamaoki, M.; Kuba, M.; Tanaka, H.; Iwahori, S.; Matsuoka, M. The conserved KNOX domain mediates specificity of tobacco KNOTTED1-type homeodomain proteins. Plant Cell 1999, 11, 1419–1432. [Google Scholar] [CrossRef] [Green Version]
- Liscum, E.; Reed, J.W. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol. Biol. 2002, 49, 387–400. [Google Scholar] [CrossRef]
- Kulaeva, O.N.; Prokoptseva, O.S. Recent advances in the study of mechanisms of action of phytohormones. Biochemistry 2004, 69, 233–247. [Google Scholar] [CrossRef]
- Kang, C.; He, S.; Zhai, H.; Li, R.; Zhao, N.; Liu, Q. A Sweetpotato Auxin Response Factor Gene (IbARF5) Is Involved in Carotenoid Biosynthesis and Salt and Drought Tolerance in Transgenic Arabidopsis. Front Plant Sci. 2018, 9, 1307. [Google Scholar] [CrossRef]
- Bouzroud, S.; Gouiaa, S.; Hu, N.; Bernadac, A.; Mila, I.; Bendaou, N.; Smouni, A.; Bouzayen, M.; Zouine, M. Auxin Response Factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS ONE 2018, 13, e0193517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Zhu, X.; Liu, X.; Wu, C.; Yu, C.; Hu, G.; Chen, L.; Chen, R.; Bouzayen, M.; Zouine, M.; et al. Knockout of Auxin Response Factor SlARF4 Improves Tomato Resistance to Water Deficit. Int. J. Mol. Sci. 2021, 22, 3347. [Google Scholar] [CrossRef] [PubMed]
- Salehin, M.; Li, B.; Tang, M.; Katz, E.; Song, L.; Ecker, J.R.; Kliebenstein, D.J.; Estelle, M. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat. Commun. 2019, 10, 4021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, K.; Tsugita, A.; Dalzoppo, D.; Vilbois, F.; Schurmann, P. Further characterization and amino acid sequence of m-type thioredoxins from spinach chloroplasts. Eur. J. Biochem. 1986, 154, 197–203. [Google Scholar] [CrossRef]
- Daie, J. Cytosolic fructose-1,6-bisphosphatase: A key enzyme in the sucrose biosynthetic pathway. Photosynth Res. 1993, 38, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Jacquot, J.J.; Lancelin, J.M.; Meyer, Y. Thioredoxins: Structure and function in plant cells. New Phytol. 1997, 136, 543–570. [Google Scholar] [CrossRef]
- Li, D.; Roberts, R.J.C. Human Genome and Diseases: WD-repeat proteins: Structure characteristics, biological function, and their involvement in human diseases. Cell. Mol. Life Sci. CMLS 2001, 58, 2085–2097. [Google Scholar] [CrossRef]
- Datta, S.; Ikeda, T.; Kano, K.; Mathews, F.S. Structure of the phenylhydrazine adduct of the quinohemoprotein amine dehydrogenase from Paracoccus denitrificans at 1.7 Å resolution. Acta Crystallogr. Sect. D Biol. Crystallogr. 2003, 59, 1551–1556. [Google Scholar] [CrossRef]
- Ishikawa, M.; Kiba, T.; Chua, N.H. The Arabidopsis SPA1 gene is required for circadian clock function and photoperiodic flowering. Plant J. 2006, 46, 736–746. [Google Scholar] [CrossRef]
- Maier, A.; Schrader, A.; Kokkelink, L.; Falke, C.; Welter, B.; Iniesto, E.; Rubio, V.; Uhrig, J.F.; Hulskamp, M.; Hoecker, U. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J. 2013, 74, 638–651. [Google Scholar] [CrossRef]
- Cirillo, V.; D’Amelia, V.; Esposito, M.; Amitrano, C.; Carillo, P.; Carputo, D.; Maggio, A. Anthocyanins are Key Regulators of Drought Stress Tolerance in Tobacco. Biology 2021, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa-Gomez, J.; San Martin-Hernandez, C.; Heredia, J.B.; Leon-Felix, J.; Osuna-Enciso, T.; Muy-Rangel, M.D. Anthocyanin Induction by Drought Stress in the Calyx of Roselle Cultivars. Molecules 2020, 25, 1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yacoubi, I.; Hamdi, K.; Fourquet, P.; Bignon, C.; Longhi, S. Structural and Functional Characterization of the ABA-Water Deficit Stress Domain from Wheat and Barley: An Intrinsically Disordered Domain behind the Versatile Functions of the Plant Abscissic Acid, Stress and Ripening Protein Family. Int. J. Mol. Sci. 2021, 22, 2314. [Google Scholar] [CrossRef]
- Hamdi, K.; Brini, F.; Kharrat, N.; Masmoudi, K.; Yakoubi, I. Abscisic Acid, Stress, and Ripening (TtASR1) Gene as a Functional Marker for Salt Tolerance in Durum Wheat. Biomed. Res. Int. 2020, 2020, 7876357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Accession No. | Region of Location | No. | Accession No. | Region of Location |
---|---|---|---|---|---|
1 | JOR111 | Kharja/Irbid | 24 | JOR972 | Rhaba/Irbid |
2 | JOR112 | Kharja/Irbid | 25 | JOR973 | Rhaba/Irbid |
3 | JOR950 | Kharja/Irbid | 26 | JOR974 | Rhaba/Irbid |
4 | JOR951 | Kharja/Irbid | 27 | JOR975 | Rhaba/Irbid |
5 | JOR952 | Al-al/Irbid | 28 | JOR976 | Rhaba/Irbid |
6 | JOR953 | Al-al/Irbid | 29 | JOR977 | Rhaba/Irbid |
7 | JOR954 | Al-al/Irbid | 30 | JOR978 | Rhaba/Irbid |
8 | JOR955 | Kharja/Irbid | 31 | JOR979 | Rhaba/Irbid |
9 | JOR956 | Qasfa | 32 | JOR980 | Rhaba/Irbid |
10 | JOR957 | Hebras/Irbid | 33 | JOR981 | Rhaba/Irbid |
11 | JOR958 | Hebras/Irbid | 34 | JOR982 | Afra/Tafileh |
12 | JOR959 | Sakib/Jarash | 35 | JOR984 | Afra/Tafileh |
13 | JOR960 | Anjara/Ajloun | 36 | JOR985 | Abel/Tafileh |
14 | JOR961 | Shtafina/Ajloun | 37 | JOR986 | Abel/Tafileh |
15 | JOR962 | AAfna-Ain Jannah/Ajloun | 38 | JOR987 | Abel//Tafileh |
16 | JOR963 | Afna-Ain Jannah/Ajloun | 39 | JOR988 | Ain Al-Baida/TafilehTafileh |
17 | JOR964 | Rhaba/Irbid | 40 | JOR989 | Ain Al-Baida/Tafileh |
18 | JOR965 | Rhaba/Irbid | 41 | JOR990 | Ain Al-Baida/Tafileh |
19 | JOR966 | Rhaba/Irbid | 42 | JOR991 | Ain Al-Baida/Tafileh |
20 | JOR967 | Rhaba/Irbid | 43 | JOR992 | Ain Al-Baida/Tafileh |
21 | JOR968 | Rhaba/Irbid | 44 | JOR993 | Ain Al-Baida/Tafileh |
22 | JOR970 | Rhaba/Irbid | 45 | JOR994 | Ain Al-Baida/Tafileh |
23 | JOR971 | Rhaba/Irbid | 46 | JOR995 | Rashadeyeh/Tafileh |
SSR Name | Primer Sequence (5′~3′) | Expected Fragment Size (bp) | Melting Temperature Tm (°C) |
---|---|---|---|
LEat018 | F: CGG CGT ATT CAA ACT CTT GG R: GCG GAC CTT TGT TTT GGT GA | 120 | 46.7 |
LEct 004 | F: AGC CAC CCA TCA CAA AGA TT R: GTC GCA CTA TCG GTC ACG TA | 354 | 44.6 |
LEta 014 | F: ACA AAC TCA AGA TAA GTA AGA GC R: GTG AAT TGT GTT TTA ACA | 120 | 44.8 |
LEta020 | F: AAC GGT GGA AAC TAT TGAAAG G R: CAC CAC CAA ACC CAT CGT C | 175 | 46 |
CT114 | F: ATA TTG CTT AGG CGT CAT CCA R: TTG AAA CCA GCC GTT GC | 1125 | 58 |
Asr2 | F: AGA GAA GCA ATA CAA TAGGC T R: TAT TAG ACA AAA CAT AGAGTC C | 520 | 52 |
SSR Marker | Locus | Sample Size | Ne* | H* | Average H* | PIC | I* |
---|---|---|---|---|---|---|---|
LEat018 | 139 | 36 | 1.52 | 0.34 | 0.34 | 0.34 | 0.52 |
132 | 36 | 1.26 | 0.21 | 0.20 | 0.36 | ||
128 | 36 | 1.95 | 0.49 | 0.48 | 0.68 | ||
LEct004 | 364 | 34 | 1.60 | 0.38 | 0.43 | 0.37 | 0.56 |
350 | 34 | 1.99 | 0.49 | 0.49 | 0.69 | ||
Lea014 | 175 | 36 | 1.38 | 0.27 | 0.27 | 0.28 | 0.45 |
190 | 36 | 1.38 | 0.27 | 0.28 | 0.45 | ||
LEta020 | 223 | 36 | 1.75 | 0.43 | 0.36 | 0.42 | 0.62 |
217 | 36 | 1.65 | 0.39 | 0.39 | 0.58 | ||
206 | 36 | 1.34 | 0.25 | 0.25 | 0.42 | ||
CT114 | 1170 | 36 | 1.69 | 0.41 | 0.41 | 0.60 | |
Asr2 | 536 | 36 | 1.00 | 0.00 | 0.00 | 0.00 | |
Mean | 36 | 1.55 | 0.33 | 0.33 | 0.49 |
SSR Name | Total Bands/Primers | No. of Loci | Monomorphic Loci | Polymorphic Loci | Polymorphism % |
---|---|---|---|---|---|
LEat018 | 46 | 3 | 0 | 3 | 100 |
LEct004 | 40 | 2 | 0 | 2 | 100 |
Lea014 | 46 | 2 | 0 | 2 | 100 |
LEta020 | 46 | 3 | 0 | 3 | 100 |
CT114 | 33 | 1 | 0 | 1 | 100 |
Asr2 | 36 | 1 | 1 | 0 | 0 |
Total | 247 | 12 | 1 | 11 |
SSR Name | Solyc Gene | Annotation Result |
---|---|---|
LEat018 | Solyc11g005330 | ACTIN_RELATED PROTEIN contains Interpro domain IPR004000 (actin family domain). |
LEct004 | Solyc02g089940 | HOMEOBOX PROTEIN TRANSCRIPTION FACTORS contain Interpro domain(s) IPR009057(Homeodomain-like), IPR006563 (POX domain), IPR008422 (homeobox KN domain), IPR016039 (thiolase-like), and IPR001356 (homeobox domain). |
LEta014 | Solyc03g031970 | AUXIN RESPONSE FACTOR 8 contains Interpro domain(s) IPR003340 (B3 DNA binding domain), IPR010525 (auxin response factor), IPR003311 (AUX/IAA protein), and IPR015300 (DNA-binding pseudobarrel domain). |
LEta020 | Solyc01g097450 | THIOREDOXIN FAMILY TRP26 contains Interpro domain(s) IPR008979 (galactose-binding domain-like) and IPR010400 (PITH domain). |
CT114 | Solyc10g011690 | Protein suppressor of PHYA-105 1 (SPA1) contains Interpro domain(s) IPR000719 (protein kinase domain), IPR017986 (WD40 repeat-containing domain), IPR002290 (serine/threonine/dual-specificity protein kinase, catalytic domain), IPR001680 (WD40 repeat), IPR015943 (WD40/YVTN repeat-like-containing domain), and IPR011009 (protein kinase-like domain). |
Asr2 | Solyc04g071580 | ABA/WDS-induced protein (ABA_WDS) contains Interpro domain IPR003496 (ABA/WDS-induced protein). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhadmeh, I.; Albalasmeh, A.A.; Ali, M.; Thabet, S.G.; Darabseh, W.A.; Jaradat, S.; Alqudah, A.M. Molecular Characterization of Tomato (Solanum lycopersicum L.) Accessions under Drought Stress. Horticulturae 2022, 8, 600. https://doi.org/10.3390/horticulturae8070600
Makhadmeh I, Albalasmeh AA, Ali M, Thabet SG, Darabseh WA, Jaradat S, Alqudah AM. Molecular Characterization of Tomato (Solanum lycopersicum L.) Accessions under Drought Stress. Horticulturae. 2022; 8(7):600. https://doi.org/10.3390/horticulturae8070600
Chicago/Turabian StyleMakhadmeh, Ibrahim, Ammar A. Albalasmeh, Mohammed Ali, Samar G. Thabet, Walaa Ali Darabseh, Saied Jaradat, and Ahmad M. Alqudah. 2022. "Molecular Characterization of Tomato (Solanum lycopersicum L.) Accessions under Drought Stress" Horticulturae 8, no. 7: 600. https://doi.org/10.3390/horticulturae8070600
APA StyleMakhadmeh, I., Albalasmeh, A. A., Ali, M., Thabet, S. G., Darabseh, W. A., Jaradat, S., & Alqudah, A. M. (2022). Molecular Characterization of Tomato (Solanum lycopersicum L.) Accessions under Drought Stress. Horticulturae, 8(7), 600. https://doi.org/10.3390/horticulturae8070600