Lemongrass Growth, Essential Oil, and Active Substances as Affected by Water Deficit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetative Growth Characters
2.2. Relative Leaf Greenness
2.3. Proline Content
2.4. Essential Oil Extraction and GC Analysis
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crisp, P.A.; Ganguly, D.; Eichten, S.R.; Borevitz, J.O.; Pogson, B.J. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Sci. Adv. 2016, 2, e1501340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Saikia, J.; Sarma, R.K.; Dhandia, R.; Yadav, A.; Bharali, R.; Gupta, V.K.; Saikia, R. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci. Rep. 2018, 8, 3560. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, S.; Sawant, K. Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breed. 2013, 132, 21–32. [Google Scholar] [CrossRef]
- Rahdari, P.; Hoseini, S.M. Drought stress: A review. Int. J. Agron. Plant Prod. 2012, 3, 443–446. [Google Scholar]
- Nezhadahmadi, A.; Hossain Prodhan, Z.; Faruq, G. Drought tolerance in wheat. Sci. World J. 2013, 2013, 610721. [Google Scholar] [CrossRef] [Green Version]
- Zlatev, Z.; Lidon, F.C. An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir. J. Food Agric. 2012, 24, 57–72. [Google Scholar]
- Ding, Y.; Tao, Y.; Zhu, C. Emerging roles of MicroRNAs in the mediation of drought stress response in plants. J. Exp. Bot. 2013, 64, 3077–3086. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [Green Version]
- Hirt, H.; Shinozaki, K. Plant Responses to Abiotic Stress; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Salehi-lisar, S.Y.; Motafakkerazad, R.; Hossain, M.M.; Rahman, I.M.M. Water Stress in Plants: Causes, Effects and Responses, Water Stress; Md, I., Rahman, M., Eds.; InTech: London, UK, 2012. [Google Scholar]
- Madhava Rao, K.V.; Raghavendra, A.S.; Janardhan Reddy, K. Physiology and Molecular Biology of Stress Tolerance in Plants; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Soliman, W.S.; Salaheldin, S.; Amer, H.M. Chemical composition evaluation of Egyptian lemongrass, Cymbopogon citratus, essential oil. Int. J. Sci. Eng. Res. 2017, 8, 630–634. [Google Scholar]
- Slaughter, A.; Daniel, X.; Flors, V.; Luna, E.; Hohn, B.; Mauch-Mani, B. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 2012, 158, 835–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Han, M.; Yang, L.-m.; Li, Y.; Sun, Z.; Zhang, T. Changes in the physiological characteristics and baicalin biosynthesis metabolism of Scutellaria baicalensis Georgi under drought stress. Ind. Crops Prod. 2018, 122, 473–482. [Google Scholar] [CrossRef]
- Khademian, R.; Yaghoubian, I. Growth of chick pea (Cicer arietinum) in response to salicylic acid under drought stress. J. Biodiv. Environ. Sci. 2018, 12, 255–263. [Google Scholar]
- Pintó-Marijuan, M.; Cotado, A.; Fleta-Soriano, E.; Munné-Bosch, S. Drought stress memory in the photosynthetic mechanisms of an invasive CAM species, Aptenia cordifolia. Photosynth. Res. 2017, 131, 241–253. [Google Scholar] [CrossRef]
- Kulak, M. Recurrent drought stress effects on essential oil profile of Lamiaceae plants: An approach regarding stress memory. Ind. Crops Prod. 2020, 154, 112695. [Google Scholar] [CrossRef]
- Rojek, K.; Serefko, A.; Poleszak, E.; Szopa, A.; Wróbel, A.; Guz, M.; Xiao, J.; Skalicka-Woźniak, K. Neurobehavioral properties of Cymbopogon essential oils and its components. Phytochem. Rev. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Kumar, V.S.; Inamdar, M.N.; Viswanatha, G.L. Protective effect of lemongrass oil against dexamethasone induced hyperlipidemia in rats: Possible role of decreased lecithin cholesterol acetyl transferase activity. Asian Pac. J. Trop. Med. 2011, 4, 658–660. [Google Scholar] [CrossRef] [Green Version]
- Shah, G.; Shri, R.; Panchal, V.; Sharma, N.; Singh, B.; Mann, A.S. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemongrass). J. Adv. Pharm. Technol. Res. 2011, 2, 3–8. [Google Scholar] [CrossRef]
- de Mello, V.; Prata, M.C.; da Silva, M.R.; Daemon, E.; da Silva, L.S.; Guimarães, F.D.G.; de Mendonça, A.É.; Folly, E.; Vilela, F.M.P.; Amaral, L.H.d.; et al. Acaricidal properties of the formulations based on essential oils from Cymbopogon winterianus and Syzygium aromaticum plants. Parasitol. Res. 2014, 113, 4431–4437. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Ferhat, M.A.; Kameli, A.; Saidi, F.; Kebir, H.T. Lemon grass (Cymbopogon citratus) essential oil as a potent antiinflammatory and antifungal drugs. Libyan J. Med. 2014, 9, 25431. [Google Scholar] [CrossRef]
- Macedo, I.T.; Oliveira, L.M.; Ribeiro, W.L.; dos Santos, J.M.L.; Silva, K.D.C.; Filho, J.V.D.A.; Camurça-Vasconcelos, A.L.F.; Bevilaqua, C.M.L. Anthelmintic activity of Cymbopogon citratus against Haemonchus contortus. Rev. Bras. Parasitol. Vet. 2015, 24, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Santos Serafim, M.M.; Ferreira Silva, H.B.; Rios, R.; Pires de Oliveira, A.; Vilany Queiroz Carneiro, N.; Santos Costa, R.; Alves, W.S.; Souza, F.-L.M.; Velozo, E.d.S.; de Souza, S.A.; et al. The anti-allergic activity of Cymbopogon citratus is mediated via inhibition of nuclear factor kappa B (Nf-Kappab) activation. BMC Complement. Altern. Med. 2015, 15, 168. [Google Scholar]
- Sagradas, J.; Costa, G.; Figueirinha, A.; Castel-Branco, M.; Cabrita, A.M.S.; Figueiredo, I.V.; Batista, M.T. Gastroprotective effect of Cymbopogon citratus infusion on acute ethanol-induced gastric lesions in rats. J. Ethnopharm. 2015, 173, 134–138. [Google Scholar] [CrossRef]
- Lara, V.M.; Carregaro, A.B.; Santurio, D.F.; Sá, M.F.D.; Santurio, J.M.; Alves, S.H. Antimicrobial susceptibility of Escherichia coli strains isolated from Alouatta spp. Feces to essential oils. Evid. Based Complement. Altern. Med. 2016, 2016, 1643762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhila, A. Essential Oil-Bearing Grasses: The Genus Cymbopogon; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Chanthal, S.; Prachakoli, S.; Ruangviriyachai, C. Influence of extraction methodologies on the analysis of five major volatile aromatic compounds of citronella grass and lemongrass grown in Thailand. J. AOAC Int. 2012, 95, 763–772. [Google Scholar] [CrossRef]
- Francisco, V.; Figueirinha, A.; Neves, B.M.; García-Rodríguez, C.; Lopes, M.C.; Cruz, M.T.; Batista, M.T. Cymbopogon citratus as source of new and safe anti-inflammatory drugs: Bio-guided assay using lipo-polysaccharide-stimulated macrophages. J. Ethnopharmacol. 2011, 133, 818–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, L.H.C.; Machad, C.B.S.; Pereira, L.K.; Bolzan, A. Extrac-tion of lemongrass essential oil with dense carbon dioxide. J. Supercrit. Fluids 2001, 21, 33–39. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice-Hall of Indian Private: New Delhi, India, 1973; p. 498. [Google Scholar]
- Black, C.A.; Evans, D.O.; Ensminger, E.L.; White, J.L.; Clark, F.E.; Dinauer, R.C. Methods of Soil Analysis; Part 2. Chemical and Microbiological Properties, 2nd ed.; Soil Science Society of America Book Series: Madison, WI, USA, 1982. [Google Scholar]
- Soliman, W.S.; El-Shaieny, A.A.H. Effect of saline water on germination and early growth stage of five Apiaceae species. Afr. J. Agric. Res. 2014, 9, 713–719. [Google Scholar] [CrossRef] [Green Version]
- Clevenger, J.F. Apparatus for determination of volatile oil. J. Am. Pharm. Assoc. 1928, 17, 34. [Google Scholar] [CrossRef]
- Hendawy, S.F.; Omer, E.A.; El-Gohary, A.E.; El-Gendy, A.G.; Hussein, M.S.; Salaheldin, S.; Soliman, W.S. Effect of Soil and Irrigation Water Salinity in the Productivity and Essential Oil Constituents of Chamomile (Chamomilla recutita L). J. Essent. Oil-Bear. Plants 2019, 22, 962–971. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; Iowa State University Press: Ames, IA, USA, 1989. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wily: Hoboken, NJ, USA, 1984; p. 680. [Google Scholar]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signaling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef] [PubMed]
- Soliman, W.S.; Fujimori, M.; Tase, K.; Sugiyama, S. Oxidative stress and physiological damage under prolonged heat stress in C3 grass Lolium perenne. Grassl. Sci. 2011, 57, 101–106. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 26, 217037. [Google Scholar] [CrossRef] [Green Version]
- Arbona, V.; Manzi, M.; de Ollas, C.; Gómez-Cadenas, A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 4885–4911. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef] [Green Version]
- Keyvan, S. The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J. Anim. Plant Sci. 2010, 8, 1051–1060. [Google Scholar]
- Tavares, F.; Costa, G.; Francisco, V.; Liberal, J.; Figueirinha, A.; Lopes, M.C.; Cruz, M.T.; Batista, M.T. Cymbopogon citratus industrial waste as a potential source of bioactive compounds. J. Sci. Food Agric. 2015, 95, 2652–2659. [Google Scholar] [CrossRef]
- Ganjewala, D. Cymbopogon essential oil composition and bio-actives. Int. J. Essent. Oil Therap. 2009, 3, 1–10. [Google Scholar]
1—Physical Analysis | |||
Sand % | 94.67 | ||
Silt % | 2.27 | ||
Clay % | 3.07 | ||
Soil Texture | Sandy | ||
2—Chemical Analysis | |||
pH | 8.25 | E.C. (ds/m) | 0.25 |
Soluble Cations meq/L | Soluble Anions meq/L | ||
Na+ | 17.74 | CO−3 | 0.00 |
K+ | 7.51 | HCO−3 | 4.67 |
Ca++ | 2.08 | Cl- | 2.33 |
Mg++ | 0.53 |
Irrigation Intervals | First Season (2018) | Second Season (2019) | ||
---|---|---|---|---|
1st Cut | 2nd Cut | 1st Cut | 2nd Cut | |
number of tillers | ||||
5 days | 88.0 ± 1.73 a | 147.0 ± 3.46 a | 28.0 ± 1.15 a | 70.0 ± 2.89 a |
10 days | 76.5 ± 3.75 b | 101.5 ± 4.91 b | 20.0 ± 1.15 b | 45.0 ± 2.89 b |
15 days | 61.5 ± 0.87 c | 85.0 ± 5.20 c | 17.0 ± 1.73 c | 36.3 ± 0.88 c |
20 days | 56.0 ± 0.00 d | 81.0 ± 9.81 c | 19.0 ± 1.73 c | 33.0 ± 1.73 d |
fresh herb weight per plant (g) | ||||
5 days | 218.7 ± 7.7 a | 307.6 ± 4.6 a | 172.4 ± 5.5 a | 419.7 ± 17.7 a |
10 days | 146.9 ± 22.8 b | 229.4 ± 0.1 b | 125.5 ± 10.3 b | 249.9 ± 10.1 b |
15 days | 85.3 ± 8.9 c | 169.9 ± 3.9 | 77.7 ± 2.8 | 78.3 ± 0.4 |
20 days | 71.3 ± 6.1 d | 163.1 ± 10.1 | 63.0 ± 1.7 | 76.7 ± 8.3 |
dry herb weight per plant (g) | ||||
5 days | 42.5 ± 1.44 a | 45.0 ± 0.26 a | 42.9 ± 8.46 a | 136.7 ± 6.99 a |
10 days | 30.9 ± 2.92 b | 36.7 ± 1.13 b | 43.6 ± 1.99 a | 45.5 ± 1.93 b |
15 days | 27.6 ± 1.47 c | 32.4 ± 1.04 c | 27.6 ± 5.46 c | 36.6 ± 0.92 c |
20 days | 21.8 ± 3.75 d | 31.1 ± 0.81 c | 22.3 ± 3.44 c | 34.6 ± 2.45 c |
fresh herb yield per hectare (ton) | ||||
5 days | 10.93 ± 0.38 a | 15.38 ± 0.23 a | 8.63 ± 0.27 a | 20.98 ± 0.89 a |
10 days | 7.35 ± 1.14 b | 11.48 ± 0.00 b | 6.28 ± 0.52 b | 12.50 ± 0.51 b |
15 days | 4.27 ± 0.44 c | 8.49 ± 0.19 c | 3.88 ± 0.14 c | 3.92 ± 0.02 c |
20 days | 3.57 ± 0.31 d | 8.15 ± 0.51 c | 3.15 ± 0.09 d | 3.83 ± 0.41 c |
dry herb yield per hectare (ton) | ||||
5 days | 2.13 ± 0.07 a | 2.25 ± 0.01 a | 2.15 ± 0.42 a | 6.83 ± 0.35 a |
10 days | 1.55 ± 0.14 b | 1.83 ± 0.05 b | 2.18 ± 0.10 a | 2.28 ± 0.10 b |
15 days | 1.38 ± 0.07 c | 1.62 ± 0.05 c | 1.38 ± 0.27 b | 1.83 ± 0.04 c |
20 days | 1.10 ± 0.19 d | 1.55 ± 0.04 c | 1.12 ± 0.17 b | 1.73 ± 0.12 c |
Irrigation Intervals | First Season (2018) | Second Season (2019) | ||
---|---|---|---|---|
1st Cut | 2nd Cut | 1st Cut | 2nd Cut | |
Essential oil (%) | ||||
5 days | 0.67 ± 0.05 a | 1.13 ± 0.07 a | 0.82 ± 0.02 a | 1.03 ± 0.12 a |
10 days | 0.90 ± 0.06 b | 1.27 ± 0.07 b | 1.11 ± 0.16 b | 1.00 ± 0.12 a |
15 days | 1.10 ± 0.12 c | 1.23 ± 0.03 b | 1.40 ± 0.12 c | 1.03 ± 0.07 a |
20 days | 0.89 ± 0.14 b | 1.03 ± 0.09 a | 1.47 ± 0.13 c | 1.83 ± 0.62 b |
Essential oil content per plant (mL) | ||||
5 days | 1.46 ± 0.14 a | 3.49 ± 0.25 a | 1.41 ± 0.02 a | 4.37 ± 0.63 a |
10 days | 1.31 ± 0.19 ab | 2.90 ± 0.15 b | 1.37 ± 0.16 a | 2.51 ± 0.36 b |
15 days | 0.93 ± 0.03 b | 2.10 ± 0.10 c | 1.10 ± 0.13 b | 0.81 ± 0.05 d |
20 days | 0.64 ± 0.14 b | 1.70 ± 0.25 d | 0.93 ± 0.09 c | 1.44 ± 0.50 c |
Essential oil yield per hectare (L) | ||||
5 days | 73.3 ± 6.66 a | 174.5 ± 12.45 a | 70.5 ± 1.15 a | 218.3 ± 31.44 a |
10 days | 65.4 ± 9.28 ab | 145.2 ± 7.42 b | 68.5 ± 7.91 a | 125.6 ± 18.08 b |
15 days | 46.2 ± 1.60 b | 104.8 ± 5.11 c | 54.8 ± 6.42 b | 40.4 ± 2.46 d |
20 days | 32.1 ± 7.02 b | 85.1 ± 12.47 d | 46.2 ± 4.43 c | 71.9 ± 25.12 c |
RT | Name | 5 Days | 10 Days | 15 Days | 20 Days |
---|---|---|---|---|---|
7.397 | β-myrcene | 7.31 | 6.97 | 7.22 | 5.95 |
8.498 | trans-β-Ocimene | 0.14 | 0.23 | 0.21 | 0.61 |
8.679 | Benzeneacetaldehyde | --- | 0.1 | 0.06 | --- |
8.767 | β-ocimene | 0.41 | 0.2 | 0.16 | 0.21 |
8.898 | Geranyl isovalerate | 0.1 | 0.11 | 0.09 | 0.1 |
10.093 | 1,6-octadien-3-ol,3,7-dimethyl- | 1.63 | 1.95 | 1.76 | 1.77 |
10.255 | photocitral B | 0.18 | 0.31 | 0.25 | 0.26 |
10.524 | 4-methyl-3-(1-methylethylidene)-cyclohexene | 0.32 | 0.39 | 0.26 | 0.3 |
11.281 | epiphotocitral A | 0.39 | 0.25 | 0.21 | 0.24 |
11.406 | Geraniolene | 0.46 | 0.6 | 0.49 | 0.57 |
11.575 | photocitral A | 0.35 | 0.49 | 0.63 | 0.71 |
11.976 | Verbenol | 1.33 | 2 | 1.71 | 1.51 |
12.476 | pulegone | 2.08 | 2.84 | 2.53 | 2.58 |
13.658 | (R)-Citronellol | 0.25 | 0.22 | 0.28 | 0.91 |
13.733 | citronellol | 0.45 | 0.7 | 0.6 | 0.56 |
14.096 | Citral B (Neral) | 31.48 | 28.78 | 30.44 | 31.2 |
14.371 | Geraniol | 3.2 | 4.56 | 4.06 | 3.88 |
14.816 | Cital A (Geranial) | 35.01 | 28.45 | 30.94 | 33.09 |
15.028 | Epoxy-linalooloxide | 0.7 | 0.31 | 0.29 | 0.59 |
15.166 | 2-undecanone | 0.15 | 0.23 | 0.19 | 0.17 |
15.816 | Neric acid | --- | 0.71 | 0.21 | 1.06 |
16.448 | Geranic acid | 0.46 | 0.68 | 0.78 | 0.94 |
16.967 | 3,7-dimethy-,(z)-3,7-dimethy-2,6-octadien-1-ol | 2.7 | 2.75 | 3.48 | 2.77 |
17.656 | 2-ethylidene-6-methyl-3,5-Heptadienal | 0.26 | 0.22 | 0.35 | 0.28 |
17.724 | caryophyllene | 0.91 | 0.23 | 0.71 | 0.15 |
17.962 | α-Bergamotene | 0.32 | 0.32 | 0.2 | 0.21 |
18.882 | 2-Tridecanone | 0.42 | 0.5 | 0.34 | 0.29 |
19.832 | Geranyl acetate | 0.24 | 0.28 | 0.13 | 0.13 |
20.302 | caryophyllene oxide | 0.18 | 0.2 | 0.17 | 0.81 |
20.771 | 1H-cycloprop[e]azulene | 0.73 | 0.74 | 0.67 | 0.54 |
21.309 | γ-Selinene | 0.31 | 0.13 | 0.12 | 0.1 |
Total identifications | 92.47 | 86.45 | 89.54 | 92.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, N.; Abdou, M.A.H.; Salaheldin, S.; Soliman, W.S. Lemongrass Growth, Essential Oil, and Active Substances as Affected by Water Deficit. Horticulturae 2022, 8, 250. https://doi.org/10.3390/horticulturae8030250
Mahmoud N, Abdou MAH, Salaheldin S, Soliman WS. Lemongrass Growth, Essential Oil, and Active Substances as Affected by Water Deficit. Horticulturae. 2022; 8(3):250. https://doi.org/10.3390/horticulturae8030250
Chicago/Turabian StyleMahmoud, Nourhan, Mahmoud A. H. Abdou, Sabri Salaheldin, and Wagdi Saber Soliman. 2022. "Lemongrass Growth, Essential Oil, and Active Substances as Affected by Water Deficit" Horticulturae 8, no. 3: 250. https://doi.org/10.3390/horticulturae8030250
APA StyleMahmoud, N., Abdou, M. A. H., Salaheldin, S., & Soliman, W. S. (2022). Lemongrass Growth, Essential Oil, and Active Substances as Affected by Water Deficit. Horticulturae, 8(3), 250. https://doi.org/10.3390/horticulturae8030250