Development of an Improved Micropropagation Protocol for Red-Fleshed Pitaya ‘Da Hong’ with and without Activated Charcoal and Plant Growth Regulator Combinations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Culture Establishment
2.2. Shoot Regeneration and Root Induction Using AC, NAA, and BAP
2.3. Acclimatization
2.4. Data Analysis and Statistics
3. Results
3.1. Effects of NAA Alone on Shoot Regeneration and Root Induction
3.2. The Combined Effects of AC, NAA, and BAP on Shoot Regeneration and Root Induction
3.3. Pairwise Correlations between Growth Characteristics of Shoots and Roots
3.4. Cultivated Duration and Acclimatization
4. Discussion
4.1. Effects of NAA Alone on Shoot Regeneration and Root Induction
4.2. The Combined Effects of AC, NAA, and BAP on Shoot Regeneration and Root Induction
4.3. Pairwise Correlations between Growth Characteristics of Shoots and Roots
4.4. Cultivated Duration and Acclimatization
4.5. The Potential to Reduce Disease Risk in Plantlets and Renew Infected Orchards
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zee, F.; Yen, C.-R.; Nishina, M. Pitaya (dragon fruit, strawberry pear). Fruits Nuts 2004, 9, 1–3. [Google Scholar]
- Chien, Y.-C.; Chang, J.-C. Net houses effects on microclimate, production, and plant protection of white-fleshed pitaya. HortScience 2019, 54, 692–700. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.-C.; Chang, J.-C. High temperature suppresses fruit/seed set and weight, and cladode regreening in red-fleshed ‘Da Hong’ pitaya (Hylocereus polyrhizus) under controlled conditions. HortScience 2020, 55, 1259–1264. [Google Scholar] [CrossRef]
- Chu, Y.-C.; Chang, J.-C. Regulation of floral bud development and emergence by ambient temperature under a long-day photoperiod in white-fleshed pitaya (Hylocereus undatus). Sci. Hortic. 2020, 271, 109479. [Google Scholar] [CrossRef]
- Jiang, Y.-L.; Yang, W.-J. Development of integrated crop management systems for pitaya in Taiwan. In Improving Pitaya Production and Marketing; Jiang, Y.-L., Liu, P.-C., Huang, P.H., Eds.; Food Fertilizer Technology Center Press: Taipei, Taiwan, 2015; pp. 73–78. [Google Scholar]
- Chiu, Y.C.; Lin, C.P.; Hsu, M.C.; Liu, C.P.; Chen, D.Y.; Liu, P.C. Cultivation and Management of Pitaya; Taiwan Agricultural Research Institute: Tainan, Taiwan, 2015; p. 93.
- Liao, J.Y.; Chang, C.A.; Yan, C.R.; Chen, Y.C.; Deng, T.C. Detection and incidence of Cactus Virus X on pitaya in Taiwan. Plant Pathol. Bull. 2003, 12, 225–234. [Google Scholar]
- Chuang, M.F.; Ni, H.F.; Yang, H.R.; Shu, S.L.; Lai, S.Y.; Jiang, Y.L. First report of stem canker disease of pitaya (Hylocereus undatus and H. polyrhizus) caused by Neoscytalidium dimidiatum in Taiwan. Plant Dis. 2012, 96, 906. [Google Scholar] [CrossRef]
- Valencia-Botín, A.J.; Kokubu, H.; Ruiz, D.R. A brief overview on pitahaya (Hylocereus spp.) diseases. J. Prof. Assoc. Cactus 2013, 15, 42–48. [Google Scholar] [CrossRef]
- Lin, C.-P.; Ann, P.-J.; Huang, H.-C.; Chang, J.-T.; Tsai, J.-N. Anthracnose of pitaya (Hylocereus spp.) caused by Colletotrichum spp., a new postharvest disease in Taiwan. J. Taiwan Agric. Res. 2017, 66, 171–183. [Google Scholar] [CrossRef]
- Zakaria, L. Diversity of colletotrichum species associated with anthracnose disease in tropical fruit crops—A review. Agriculture 2021, 11, 297. [Google Scholar] [CrossRef]
- Evallo, E.; Taguiam, J.D.; Balendres, M.A. A brief review of plant diseases caused by Cactus virus X. Crop Protect. 2021, 143, 105566. [Google Scholar] [CrossRef]
- Zimmermann, H.G.; Granata, G. Insect pests and diseases. In Cacti: Biology and Uses; Nobel, P.S., Ed.; University of California Press: Berkeley, CA, USA, 2002; pp. 235–254. [Google Scholar]
- Lema-Rumińska, J.; Kulus, D. Micropropagation of cacti—A review. Haseltonia 2014, 19, 46–63. [Google Scholar] [CrossRef]
- Chohan, S.; Perveen, R.; Abid, M.; Naqvi, A.H.; Naz, S. Management of seed borne fungal diseases of tomato: A review. Pak. J. Phytopathol. 2017, 29, 193–200. [Google Scholar] [CrossRef]
- Cassells, A.C. Pathogen and biological contamination management in plant tissue culture: Phytopathogens, vitro pathogens, and vitro pests. In Plant Cell Culture Protocols, 3rd ed.; Loyola-Vargas, V.M., Ochoa-Alejo, N., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 57–80. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Dahanayake, N.; Ranawake, A.L. Regeneration of dragon fruit (Hylecereus undatus) plantlets from leaf and stem explants. Trop. Agric. Res. Ext. 2011, 14, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Sheng, W.K.W.; Sundarasekar, J.; Sathasivam, K.; Subramaniam, S. Effects of plant growth regulators on seed germination and callus induction of Hylocereus costaricensis. Pak. J. Bot. 2016, 48, 977–982. [Google Scholar]
- Pérez-Molphe-Balch, E.; del Socorro Santos-Díaz, M.; Ramírez-Malagón, R.; Ochoa-Alejo, N. Tissue culture of ornamental cacti. Sci. Agric. 2015, 72, 540–561. [Google Scholar] [CrossRef] [Green Version]
- De Feria, M.; Rojas, D.; Reyna, M.; Quiala, E.; Solìs, J.; Zurita, F. In vitro propagation of Hylocereus purpusii Britton & Rose, a mexican species in danger of extinction. Biotecnol. Veg. 2012, 12, 77–83. [Google Scholar]
- Hua, Q.; Chen, P.; Liu, W.; Ma, Y.; Liang, R.; Wang, L.; Wang, Z.; Hu, G.; Qin, Y. A protocol for rapid in vitro propagation of genetically diverse pitaya. Plant Cell Tissue Organ. Cult. 2014, 120, 741–745. [Google Scholar] [CrossRef]
- Mohamed-Yasseen, Y. Micropropagation of pitaya (Hylocereus undatus Britton et Rose). Vitr. Cell. Dev. Biol. Plant 2002, 38, 427–429. [Google Scholar] [CrossRef]
- Suman, K.; Rani, A.R.; Reddy, P.V. Response of dragon fruit (Hylocereus undatus) explants on MS media with growth regulators under in vitro for mass multiplication. Agric. Update 2017, 12, 2371–2375. [Google Scholar]
- Trivellini, A.; Lucchesini, M.; Ferrante, A.; Massa, D.; Orlando, M.; Incrocci, L.; Mensuali-Sodi, A. Pitaya, an attractive alternative crop for mediterranean region. Agronomy 2020, 10, 1065. [Google Scholar] [CrossRef]
- Yu, H.-L.; Zhang, W.; Zhu, Y.-Y. Studies on rapid propagation technology of stem segments in vitro of Hongxianmi Hylocereus undatus. J. Anhui Agric. Sci. 2009, 37, 3951–3952. [Google Scholar] [CrossRef]
- Kari, R.; Lukman, A.L.; Zainuddin, R.; Ja’afar, H. Basal media for in vitro germination of red-purple dragon fruit Hylocereus polyrhizus. J. Agrobiotechnol. 2010, 1, 87–93. [Google Scholar]
- Qin, J.; Wang, Y.; He, G.; Chen, L.; He, H.; Cheng, X.; Xu, K.; Zhang, D. High-efficiency micropropagation of dormant buds in spine base of red pitaya (Hylocereus polyrhizus) for industrial breeding. Int. J. Agric. Biol. 2017, 19, 193–198. [Google Scholar] [CrossRef]
- Bidabadi, S.S.; Jain, S.M. Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants 2020, 9, 702. [Google Scholar] [CrossRef]
- Wang, P.J.; Huang, L.C. Beneficial effects of activated charcoal on plant tissue and organ cultures. In Vitro 1976, 12, 260–262. [Google Scholar] [CrossRef]
- Santos-Díaz, M.S.; Pérez-Molphe, E.; Ramírez-Malagón, R.; Núñez-Palenius, H.G.; Ochoa-Alejo, N. Mexican threatened cacti: Current status and strategies for their conservation. In Species Diversity and Extinction; Tepper, G.H., Ed.; Nova Science Publishers, Inc. Press: New York, NY, USA, 2010; pp. 1–60. [Google Scholar]
- Thomas, T.D. The role of activated charcoal in plant tissue culture. Biotechnol. Adv. 2008, 26, 618–631. [Google Scholar] [CrossRef]
- Pérez Molphe Balch, E.; Reyes, M.E.P.; Amador, E.V.; Rangel, E.M.; del Rocío Morones Ruiz, L.; Lizalde-Viramontes, H.J. Micropropagation of 21 species of mexican cacti by axillary proliferation. Vitr. Cell. Dev. Biol. Plant 1998, 34, 131–135. [Google Scholar] [CrossRef]
- Peng, L.-C.; Qu, S.-P.; Su, Y.; Zhang, Y.-P.; Wang, L.-H. Study on rapid propagation of Hylocereus undatus by two steps. Southwest China J. Agric. Sci. 2014, 27, 2529–2533. [Google Scholar]
- Lee, Y.-C.; Chang, J.-C. Effect of MS strengths and fruit storage duration at 4 °C on ‘Da Hong’ pitaya seed germination. HortScience, 2022; manuscript in preparation. [Google Scholar]
- Abramoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Mauseth, J.D.; Halperin, W. Hormonal control of organogenesis in Opuntia polyacantha (Cactaceae). Am. J. Bot. 1975, 62, 869–877. [Google Scholar] [CrossRef]
- Rubluo, A.; Marín-Hernández, T.; Duval, K.; Vargas, A.; Márquez-Guzmán, J. Auxin induced morphogenetic responses in long-term in vitro subcultured Mammillaria san-angelensis Sánchez-Mejorada (Cactaceae). Sci. Hortic. 2002, 95, 341–349. [Google Scholar] [CrossRef]
- Viñas, M.; Fernández-Brenes, M.; Azofeifa, A.; Jiménez, V.M. In vitro propagation of purple pitahaya (Hylocereus costaricensis [F.A.C. Weber] Britton & Rose) cv. Cebra. Vitr. Cell. Dev. Biol. Plant 2012, 48, 469–477. [Google Scholar]
- Clayton, P.W.; Hubstenberger, J.F.; Phillips, G.C.; Butler-Nance, S.A. Micropropagation of members of the Cactaceae subtribe Cactinae. J. Am. Soc. Hortic. Sci. 1990, 115, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Angulo-Bejarano, P.I.; Paredes-López, O. Development of a regeneration protocol through indirect organogenesis in prickly pear cactus (Opuntia ficus-indica (L.) Mill). Sci. Hortic. 2011, 128, 283–288. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Hahn, E.-J.; Yeung, E.C.; Paek, K.-Y. Lateral root development and saponin accumulation as affected by IBA or NAA in adventitious root cultures of Panax ginseng C.A. Meyer. Vitr. Cell. Dev. Biol. Plant 2003, 39, 245–249. [Google Scholar] [CrossRef]
- Elmongy, M.S.; Cao, Y.; Zhou, H.; Xia, Y. Root development enhanced by using indole-3-butyric acid and naphthalene acetic acid and associated biochemical changes of in vitro azalea microshoots. J. Plant Growth Regul. 2018, 37, 813–825. [Google Scholar] [CrossRef]
- Mendes, A.F.S.; Cidade, L.C.; Otoni, W.C.; Soares-Filho, W.S.; Costa, M.G.C. Role of auxins, polyamines and ethylene in root formation and growth in sweet orange. Biol. Plant. 2011, 55, 375–378. [Google Scholar] [CrossRef]
- Pan, M.J.; van Staden, J. The use of charcoal in in vitro culture—A review. Plant Growth Regul. 1998, 26, 155–163. [Google Scholar] [CrossRef]
- Pan, M.J.; van Staden, J. Effect of activated charcoal, autoclaving and culture media on sucrose hydrolysis. Plant Growth Regul. 1999, 29, 135–141. [Google Scholar] [CrossRef]
- De Cortázar, V.G.; Nobel, P.S. Biomass and fruit production for the prickly pear cactus, Opuntia ficus-indica. J. Am. Soc. Hortic. Sci. 1992, 117, 558–562. [Google Scholar] [CrossRef] [Green Version]
- Mauseth, J.D. Theoretical aspects of surface-to-volume ratios and water-storage capacities of succulent shoots. Am. J. Bot. 2000, 87, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Malda, G.; Backhaus, R.A.; Martin, C. Alterations in growth and crassulacean acid metabolism (CAM) activity of in vitro cultured cactus. Plant Cell Tissue Organ. Cult. 1999, 58, 1–9. [Google Scholar] [CrossRef]
- Yi, R.H.; Lin, Q.L.; Mo, J.J.; Wu, F.F.; Chen, J. Fruit internal brown rot caused by Neoscytalidium dimidiatum on pitahaya in Guangdong province, China. Australas. Plant Dis. Notes 2015, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Masyahit, M.; Sijam, K.; Awang, Y.; Satar, M.G.M. The first report of the occurrence of anthracnose disease caused by Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. on dragon fruit (Hylocereus spp.) in peninsular Malaysia. Am. J. Appl. Sci. 2009, 6, 902–912. [Google Scholar]
- Maule, A.J.; Wang, D. Seed transmission of plant viruses: A lesson in biological complexity. Trends Microbiol. 1996, 4, 153–158. [Google Scholar] [CrossRef]
- Ni, H.-F.; Huang, C.-W.; Hsu, S.-L.; Lai, S.-Y.; Yang, H.-R. Pathogen characterization and fungicide screening of stem canker of pitaya. J. Taiwan Agric. Res. 2013, 62, 225–234. [Google Scholar]
- Gebeyaw, M. Review on: Impact of seed-borne pathogens on seed quality. Am. J. Plant Biol. 2020, 5, 77–81. [Google Scholar] [CrossRef]
- Cisneros, A.; Tel-Zur, N. Genomic analysis in three Hylocereus species and their progeny: Evidence for introgressive hybridization and gene flow. Euphytica 2013, 194, 109–124. [Google Scholar] [CrossRef]
Treatment Label | PGRs 1 (mg/L) | ||
---|---|---|---|
NAA supplemented in MS medium | |||
AC | NAA | BAP | |
CS | -- | -- | -- |
TS01 | -- | 0.05 | -- |
TS02 | -- | 0.10 | -- |
TS03 | -- | 0.20 | -- |
AC, NAA, and BAP supplemented in MS medium | |||
AC | NAA | BAP | |
CM01 | -- | -- | -- |
CM02 | 200 | -- | -- |
TM01 | 200 | 0.05 | -- |
TM02 | 200 | 0.05 | 1.00 |
TM03 | 200 | 0.05 | 2.00 |
TM04 | 200 | 0.05 | 4.00 |
TM05 | 200 | 0.10 | -- |
TM06 | 200 | 0.10 | 1.00 |
TM07 | 200 | 0.10 | 2.00 |
TM08 | 200 | 0.10 | 4.00 |
TM09 | 200 | 0.20 | -- |
TM10 | 200 | 0.20 | 1.00 |
TM11 | 200 | 0.20 | 2.00 |
TM12 | 200 | 0.20 | 4.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-C.; Chang, J.-C. Development of an Improved Micropropagation Protocol for Red-Fleshed Pitaya ‘Da Hong’ with and without Activated Charcoal and Plant Growth Regulator Combinations. Horticulturae 2022, 8, 104. https://doi.org/10.3390/horticulturae8020104
Lee Y-C, Chang J-C. Development of an Improved Micropropagation Protocol for Red-Fleshed Pitaya ‘Da Hong’ with and without Activated Charcoal and Plant Growth Regulator Combinations. Horticulturae. 2022; 8(2):104. https://doi.org/10.3390/horticulturae8020104
Chicago/Turabian StyleLee, Yu-Chi, and Jer-Chia Chang. 2022. "Development of an Improved Micropropagation Protocol for Red-Fleshed Pitaya ‘Da Hong’ with and without Activated Charcoal and Plant Growth Regulator Combinations" Horticulturae 8, no. 2: 104. https://doi.org/10.3390/horticulturae8020104
APA StyleLee, Y. -C., & Chang, J. -C. (2022). Development of an Improved Micropropagation Protocol for Red-Fleshed Pitaya ‘Da Hong’ with and without Activated Charcoal and Plant Growth Regulator Combinations. Horticulturae, 8(2), 104. https://doi.org/10.3390/horticulturae8020104