Advances in Breeding, Bioprospecting, and In Vitro Culture of Laelia Orchid Species
Abstract
:1. Introduction
2. Laelia Genus as a Biocultural Resource and Source of Variability for Orchid Breeding and Metabolite Bioprospecting
3. In Vitro Culture of Laelia Species
3.1. Asymbiotic Seed Germination
3.2. Callus Culture
3.3. In Vitro Conservation
3.4. PLBs Proliferation
3.5. Organogenesis-Mediated Regeneration
3.6. Somatic Embryogenesis
4. Summary and Perspectives
Author Contributions
Funding
Conflicts of Interest
Appendix A
Bigeneric Hybrids | Trigeneric Hybrids | Tetrageneric Hybrids | Pentageneric Hybrids | Hexageneric Hybrids |
---|---|---|---|---|
x Barkeria = Laeliokeria | x Barkeria x Cattleya = Laeliocattkeria | x Brassavola x Broughtonia x Cattleya = Otaara | x Brassavola x Broughtonia x Cattleya x Epidendrum = Hattoriara | x Brassavola x Cattleya x Caularthron x Guarianthe x Rhyncholaelia = Andersonara |
x Brassavola = Brassolaelia | x Barkeria x Caularthron = Caulaeliokeria | x Brassavola x Cattleya x Encyclia = Bergmanara | x Brassavola x Broughtonia x Cattleya x Myrmecophila = Siebertara | x Brassavola x Cattleya x Encyclia x Guarianthe x Ryncholaelia = Maumeneara |
x Broughtonia = Laelonia | x Brassavola x Cattleya = Brassolaeliocattleya | x Brassavola x Cattleya x Guarianthe = Garlippara | x Brassavola x Broughtonia x Cattleya x Prosthechea = Keishunara | x Brassavola x Cattleya x Myrmecophila x Pseudolaelia x Rhycholaelia = Paulandmarystormara |
x Cattleya = Laeliocattleya | x Brassalova x Caularthron = Marvingerberara | x Brassavola x Cattleya x Myrmecophila = Jellesmaara | x Brassavola x Cattleya x Caularthron x Guarianthe = Ghillanyara | x Broughtonia x Cattleya x Caularthron x Encyclia x Psychilis x Rhyncholaelia = Warasara |
x Caularthron = Caudalaelia | x Brassalova x Guarianthe = Guarilaelivola | x Brassavola x Cattleya x Rhyncholaelia = Keyesara | x Brassavola x Cattleya x Caularthron x Guarianthe = Ghillanyara | x Broughtonia x Cattleya x Caularthron x Guarianthe x Rhyncholaelia = Dodara |
x Domingoa = Laegoa | x Brassvola x Rhyncholaelia = Rhynchovolaelia | x Brassalova x Caularthron x Guarianthe = Millerara | x Brassavola x Cattleya x Caularthron x Mrmecophila = Rolfwihelmara | x Cattleya x Caularthron x Epidendrum x Guarianhe x Rhyncholaelia = Dormanara |
x Encyclia = Encylaelia | x Broughtonia x Cattleya = Laeliocatonia | x Broughtonia x Cattleya x Caularthron = Williamcookara | x Brassavola x Cattleya x Domingoa x Epidendrum = Kawamotoara | x Cattleya x Caularthron x Guarianthe x Myrmecophila x Rhyncholaelia = Kautskyara |
x Epidendrum = Epilaelia | x Broughtonia x Guarianthe = Brolaelianthe | x Broughtonia x Cattleya x Encyclia = Sevillaara | x Brassavola x Cattleya x Encyclia x Guarianthe = Pynaertara | x Cattleya x Caularthron x Guarianthe x Psychilis x Ryncholaelia = Marycrawleystormara |
x Euchile = Euchilaelia | x Cattleya x Caularthron = Laeliocatarthron | x Broughtonia x Cattleya x Epidendrum = Jewellara | x Brassavola x Cattleya x Encyclia x Prosthechea = Orpetara | |
x Guarianthe = Laelianthe | x Cattleya x Encyclia = Catcylaelia | x Broughtonia x Cattleya x Guarianthe = Janssensara | x Brassavola x Cattleya x Myrmecophila x Prosthechea = Roezlara | |
x Leptotes = Leptolaelia | x Cattleya x Epidendrum = Epilaeliacattleya | x Broughtonia x Cattleya x Rhyncholaelia = Viesara | x Brassavola x Cattleya x Myrmecophila x Pseudolaelia = Hayataara | |
x Myrmecophila = Myrmecolaelia | x Cattleya x Euchile = Eucatlaelia | x Broughtonia x Caularthron x Guarianthe = Aberconwayara | x Broughtonia x Cattleya x Caularthron x Guarianthe = Denisara | |
x Oerstedella = Oerstelaelia | x Cattleya x Guarianthe = Laeliocatanthe | x Cattleya x Caularthron x Encyclia = Lebaudyara | x Broughtonia x Cattleya x Encyclia x Rhyncholaelia = Bettsara | |
x Prosthechea = Proslia | x Cattleya x Myrmecophila = Myrmecatlaelia | x Cattleya x Caularthron x Epidendrum = Pendletonara | x Broughtonia x Cattleya x Guarianthe x Rhyncholaelia = Dunstervilleara | |
x Psychilis = Laechilis | x Cattleya x Psychilis = Psylaeliacattleya | x Cattleya x Caularthron x Guarianthe = Ledienara | x Cattleya x Caularthron x Guarianthe x Rhyncholaelia = Jackfowlieara | |
x Rhyncholaelia = Laelirhynchos | x Cattleya x Rhyncholaelia = Rhyncatlaelia | x Cattleya x Caularthron x Myrmecophila = Hasskarlara | x Cattleya x Encyclia x Guarianthe x Rhyncholaelia = Devriessara | |
x Caularthron x Encyclia = Encyarthrolia | x Cattleya x Caularthron x Rhyncholaelia = Meloara | |||
x Caularthron x Epidendrum = Epicaulaelia | x Cattleya x Caularthron x Schomburgkia = Georgefara | |||
x Caularthron x Guarianthe = Guarilaeliarthron | x Cattleya x Encyclia x Epidendrum = Bernardara | |||
x Caularthron x Schomburgia = Schomcaulaelia | x Cattleya x Encyclia x Guarianthe = Stricklandara | |||
x Epidendrum x Guarianthe = Laeliadendranthe | x Cattleya x Encyclia x Prosthechea = Mylamara | |||
x Epidendrum x Rhyncholaelia = Rhyndenlia | x Cattleya x Encyclia x Rhyncholaelia = Appletonara | |||
x Euchile x Guarianthe = Eulaelianthe | x Cattleya x Epidendrum x Guarianthe = Pabstara | |||
x Guarianthe x Prosthechea = Laerianchea | x Cattleya x Epidendrum x Oerstedella = Rafinesqueara | |||
x Guarianthe x Rhyncholaelia = Rhynchoguarlia | x Cattleya x Guarianthe x Prosthechea = Obrienara | |||
x Guarianthe x Schomburgia = Guarlaeburkgia | x Cattleya x Guarianthe x Rhyncholaelia = Rechingerara | |||
x Myrmecophila x Rhyncholaelia = Rhycopelia | x Cattleya x Guarianthe x Schomburgkia = Ottoara | |||
x Prosthechea x Rhyncholaelia = Rhynchothechlia | x Cattleya x Myrmecophila x Rhyncholaelia = Claudiasauledaara |
References
- Niu, Z.; Xue, Q.; Zhu, S.; Sun, J.; Liu, W.; Ding, X. The Complete plastome sequences of four orchid species: Insights into the evolution of the Orchidaceae and the utility of plastomic mutational hotspots. Front. Plant Sci. 2017, 8, 715. [Google Scholar] [CrossRef] [Green Version]
- Smidt, E.C.; Páez, M.Z.; Vieira, L.D.N.; Viruel, J.; De Baura, V.A.; Balsanelli, E.; Maltempi de Souza, E.; Chase, M.W. Characterization of sequence variability hotspots in Cranichideae plastomes (Orchidaceae, Orchidoideae). PLoS ONE 2020, 15, e227991. [Google Scholar] [CrossRef]
- Li, C.; Dong, N.; Zhao, Y.; Wu, S.; Liu, Z.; Zhai, J. A review for the breeding of orchids: Current achievements and prospects. Hortic. Plant J. 2021, 7, 380–392. [Google Scholar] [CrossRef]
- Mulgaonka, M.S.; Shraddha, R. Ethnobotany of orchids: A review. In Proceedings of the National Conference on New and Emerging Trends in Bioinformatics and Taxonomy—‘NETBT 2015’, Thane, India, 14–15 January 2015; pp. 59–61. [Google Scholar]
- Hinsley, A.; De Boer, H.J.; Fay, M.F.; Gale, S.W.; Gardiner, L.M.; Gunasekara, R.S.; Phelps, J. A review of the trade in orchids and its implications for conservation. Bot. J. Linn. Soc. 2018, 186, 435–455. [Google Scholar] [CrossRef]
- Fay, M.F. Orchid conservation: How can we meet the challenges in the twenty-first century? Bot. Stud. 2018, 59, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gale, S.W.; Fischer, G.A.; Cribb, P.J.; Fay, M.F. Orchid conservation: Bridging the gap between science and practice. Bot. J. Linn. Soc. 2018, 186, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Halbinger, F.; Soto, M. Laelias of Mexico. Orquídea (México DF) 1997, 15, 1–160. [Google Scholar]
- De, L.C.; Rao, A.N.; Rajeevan, P.K.; Pathak, P. Orchid improvement—An overview. J. Orchid. Soc. India 2014, 28, 35–45. [Google Scholar]
- Lindley, J. The Genera and Species of Orchidaceous Plants; Ridgways: London, UK, 1831; p. 115. [Google Scholar]
- Peraza-Flores, L.N.; Carnevali, G.; van den Berg, C. A molecular phylogeny of the Laelia alliance (Orchidaceae) and a reassessment of Laelia and Schomburgkia. Taxon 2016, 65, 1249–1262. [Google Scholar] [CrossRef]
- Soto, M.A. Laelia. Genera Orchidacearum, Vol. 4. Epidendroideae, Part 1; Pridgeon, A.M., Cribb, P.J., Chase, M.W., Rasmussen, F.N., Eds.; Oxford University Press: Oxford, UK, 2005; pp. 265–271. [Google Scholar]
- Salazar, G.A.; Jiménez-Machorro, R.; Huerta, H.M.; Hágsater, E. A new species and a new natural hybrid of Laelia (Orchidaceae) from Oaxaca, Mexico. Phytotaxa 2014, 178, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Solano, R.; Huerta-Espinosa, H.; Cruz-García, G.; Ortíz-Riveros, F. A new natural hybrid in the genus Laelia (Orchidaceae) from Oaxaca, Mexico. Phytotaxa 2019, 402, 232–240. [Google Scholar] [CrossRef]
- Cetzal-Ix, W.; Carnevali, G.; Jiménez-Machorro, R.; Pérez-García, E.A. Laelia × meavei: A new natural hybrid between L. dawsonii fo. dawsonii and L. rubescens fo. peduncularis (Orchidaceae: Laeliinae) from Oaxaca, Mexico. Phytotaxa 2020, 446, 81–94. [Google Scholar] [CrossRef]
- Almanza-Álvarez, J.; Garibay-Orijel, R.; Salgado-Garciglia, R.; Fernández-Pavía, S.P.; Lappe-Oliveras, P.; Arellano-Torres, E.; Ávila-Díaz, I. Identification and control of pathogenic fungi in neotropical valued orchids (Laelia spp.). Trop. Plant Pathol. 2017, 42, 339–351. [Google Scholar] [CrossRef]
- Sarabia-Ochoa, M.E.; Ávila-Díaz, I.; Carlos-Gómez, A.; Salgado-Garciglia, R. Callus growth and plant regeneration in Laelia speciosa (Orchidaceae). Lankesteriana 2010, 10, 13–18. [Google Scholar]
- Hernández-Muñoz, S.; Pedraza-Santos, M.E.; López, P.A.; Cruz-Torres, E.D.L.; Fernández-Pavía, S.P.; Martínez-Palacios, A.; Martínez-Trujillo, M. DL50 and GR50 determination with gamma rays (60CO) on in vitro Laelia autumnalis protocorms. Agrociencia 2017, 51, 507–524. [Google Scholar]
- Fordyce, F. A look at Laelia anceps and its modern hybrids. Orchid Dig. 2005, 17–20. [Google Scholar]
- Cardoso, J.C.; Martinelli, A.P.; Teixeira da Silva, J.A. A novel approach for the selection of Cattleya hybrids for precocious and season-independent flowering. Euphytica 2016, 210, 143–150. [Google Scholar] [CrossRef]
- De, L.C. Varietal wealth in orchids. Bioti. Res. Today 2020, 2, 40–46. [Google Scholar]
- Santos-Hernández, L.; Martinez-García, M.; Campos, J.E.; Aguirre, L. In vitro propagation of Laelia albida (Orchidaceae) for conservation and ornamental purposes in Mexico. HortScience 2005, 40, 439–442. [Google Scholar] [CrossRef] [Green Version]
- Lee-Espinosa, H.E.; Laguna-Cerda, A.; Murguía-González, J.; Iglesias-Andreu, L.; García-Rosas, B.; Escobedo-López, D.; Martínez-Ocampo, Y.; Barredo-Pool, F.; Santana-Buzzy, N. Un protocolo de embriogénesis somática para la regeneración y caracterización in vitro de Laelia anceps ssp. dawsonii. Rev. Fitotec. Mex. 2010, 33, 323–332. [Google Scholar] [CrossRef]
- Salazar-Rojas, V.; Herrera-Cabrera, E.; Flores-Palacios, A.; Ocampo-Fletes, I. Traditional use and conservation of the “calaverita” Laelia anceps subsp. dawsonii f. chilapensis Soto-Arenas at Chilapa, Guerrero, México. Lankesteriana 2007, 7, 368–370. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; Halbinger, F.; Salazar, G. Laelia aurea, nueva especie del noroeste de México. Orquídea 1990, 12, 41–46. [Google Scholar]
- Beltrán-Rodríguez, L.A.; Martínez-Rivera, B.; Paulo-Maya, A. Etnoecología de la flor de Catarina—Laelia autumnalis (La Llave & Lex.) Lindl.)—(orchidaceae) en una comunidad campesina al sur del estado de Morelos, México: Conservando un recurso y preservando saberes populares. Etnobiología 2012, 10, 1–17. [Google Scholar]
- Bernal, R.; Gradstein, S.R.; Celis, M. (Eds.) Catálogo de Plantas y Líquenes de Colombia; Instituto de Ciencias Naturales, Universidad Nacional de Colombia: Bogotá, Colombia, 2019; Available online: http://catalogoplantasdecolombia.unal.edu.co (accessed on 14 January 2022).
- de Castro Cantuária, P.; Santiago Medeiros, T.D.; Lima e Silva, R.B.; Ferreira Cantuária, M.; de Castro Cantuária, P.; Vilar da Costa-Neto, S.; Furtado Negrão, M. Flora da área de proteção ambiental da fazendinha (amapá): Orchidaceae. Biota Amazon. 2021, 11, 52–59. [Google Scholar] [CrossRef]
- García-González, R.; Enríquez-del Valle, J.R.; Rodríguez-Ortiz, G.; Campos-Angeles, G.V.; Pérez-García, E.A.; Ruiz-Luna, J. Mineral salts and growth regulators for micropropagation of Laelia halbingeriana Salazar & Soto Arenas. Int. J. Agric. Nat. Resour. 2020, 47, 105–116. [Google Scholar] [CrossRef]
- Jones, H.G. Nomenclatural Revision of the West Indian Species of Schomburgkia (Orchid.). Bull. Torrey Bot. Club 1976, 103, 117. [Google Scholar] [CrossRef]
- Seidel-Júnior, D.; Venturieri, G.A. Ex vitro acclimatization of Cattleya forbesii and Laelia purpurata seedlings in a selection of substrates. Acta Scientiarum. Agron. 2011, 33, 97–103. [Google Scholar] [CrossRef] [Green Version]
- García-González, A.; Riverón-Giró, F.B. Proliferación natural de Laelia rubescens (Orchidaceae) en un área suburbana de Pinar del Río, Cuba. Bot. Sci. 2015, 93, 185–188. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.O. The validity of the Genus Schomburgkia. Darwiniana 1941, 5, 74–77. [Google Scholar]
- Tropicos.org. Missouri Botanical Garden. Available online: https://tropicos.org (accessed on 6 January 2022).
- Vergara-Galicia, J.; Castillo-España, P.; Villalobos-Molina, R.; Estrada-Soto, S. Vasorelaxant effect of Laelia speciosa and Laelia anceps: Two orchids as potential sources for the isolation of bioactive molecules. J. Appl. Pharm. Sci. 2013, 3, 34. [Google Scholar] [CrossRef]
- Vergara-Galicia, J.; Ortiz-Andrade, R.; Rivera-Leyva, J.; Castillo-España, P.; Villalobos-Molina, R.; Ibarra-Barajas, M.; Estrada-Soto, S. Vasorelaxant and antihypertensive effects of methanolic extract from roots of Laelia anceps are mediated by calcium-channel antagonism. Fitoterapia 2010, 81, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Galicia, J.; Ortiz-Andrade, R.; Castillo-España, P.; Ibarra-Barajas, M.; Gallardo-Ortiz, I.; Villalobos-Molina, R.; Estrada-Soto, S. Antihypertensive and vasorelaxant activities of Laelia autumnalis are mainly through calcium channel blockade. Vasc. Pharmacol. 2008, 49, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Belloto, A.C.; Souza, G.K.; Perin, P.C.; Schuquel, I.T.A.; Santin, S.M.O.; Chiavelli, L.U.R.; Garcia, F.P.; Kaplum, V.; Rodrigues, J.H.S.; Scariot, D.B.; et al. Crispoic acid, a new compound from Laelia marginata (Orchidaceae), and biological evaluations against parasites, human cancer cell lines and Zika virus. Nat. Prod. Res. 2018, 24, 2916–2921. [Google Scholar] [CrossRef] [PubMed]
- Krahl, A.H.; de Holanda, A.; Krahl, D.; Martucci, M.; Gobbo Neto, L.; Webber, A.; Pansarin, E. Study of the reproductive biology of an Amazonian Heterotaxis (Orchidaceae) demonstrates the collection of resin like material by stingless bees. Plant Syst. Evol. 2019, 305, 281–291. [Google Scholar] [CrossRef]
- He, C.; Teixeira da Silva, J.A.; Wang, H.; Si, C.; Zhang, M.; Zhang, X.; Li, M.; Tan, J.; Duan, J. Mining MYB transcription factors from the genomes of orchids (Phalaenopsis and Dendrobium) and characterization of an orchid R2R3-MYB gene involved in water-soluble polysaccharide biosynthesis. Sci. Rep. 2019, 9, 13818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Zhang, G.; Teixeira da Silva, J.A.; Yang, Z.; Duan, J. The β-1, 3-galactosetransferase gene DoGALT2 is essential for stigmatic mucilage production in Dendrobium officinale. Plant Sci. 2019, 287, 110179. [Google Scholar] [CrossRef]
- Berdan, F.F.; Stark, E.A.; Sahagún, J.D. Production and use of orchid adhesives in Aztec Mexico: The domestic context. Archeol. Pap. Am. Anthropol. Assoc. 2009, 9, 148–156. [Google Scholar] [CrossRef]
- Cox-Tamay, L.D. Un Pegamento a Base de Orquídeas. Desde el Herbario CICY. 2014, Volume 6, pp. 32–34. Available online: https://www.cicy.mx/Documentos/CICY/Desde_Herbario/2014/2014-03-27-Didier.pdf (accessed on 26 September 2021).
- Thorpe, T.A. History of plant tissue culture. Mol. Biotechnol. 2007, 37, 169–180. [Google Scholar] [CrossRef]
- Gantait, S.; Mitra, M. Applications of synthetic seed technology for propagation, storage, and conservation of orchid germplasms. In Synthetic Seeds; Faisal, M., Alatar, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 301–321. [Google Scholar]
- Cardoso, J.C.; Zanello, C.A.; Chen, J.T. An overview of orchid protocorm-like bodies: Mass propagation, biotechnology, molecular aspects, and breeding. Int. J. Mol. Sci. 2020, 1, 985. [Google Scholar] [CrossRef] [Green Version]
- Dolce, N.R.; Medina, R.D.; Terada, G.; González-Arnao, M.T.; Flachsland, E.A. In vitro propagation and germplasm conservation of wild orchids from South America. In Orchid Biology: Recent Trends & Challenges; Khasim, S., Hegde, S., González-Arnao, M., Thammasiri, K., Eds.; Springer: Singapore, 2020; pp. 37–94. [Google Scholar]
- Pujasatria, G.C.; Miura, C.; Kaminaka, H. In Vitro Symbiotic Germination: A Revitalized Heuristic Approach for Orchid Species Conservation. Plants 2020, 9, 1742. [Google Scholar] [CrossRef] [PubMed]
- Yam, T.W.; Arditti, J. History of orchid propagation: A mirror of the history of biotechnology. Plant Biotechnol. Rep. 2009, 3, 1–56. [Google Scholar] [CrossRef] [Green Version]
- Lavrentyeva, A.M.; Ivannikov, R.V. In vitro propagation of Cattleya Lindl. and Laelia species. Lankesteriana 2007, 7, 147–149. [Google Scholar] [CrossRef] [Green Version]
- Tinoco-Juárez, M.S.; Mata-Rosas, M. Adquisición de competencia para la micropagación de Stanhopea tigrina, Laelia anceps, Epidendrum veroscriptum y Cattleya x Esbetts (Orchidaceae). Lankesteriana 2007, 7, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Mosqueda, M.A.; Cruz-Cruz, C.A.; Atlahua-Temoxtle, J.; Bello-Bello, J.J. In vitro conservation and regeneration of Laelia anceps Lindl. S. Afr. J. Bot. 2020, 121, 219–223. [Google Scholar] [CrossRef]
- Lee-Espinosa, H.E.; Laguna-Cerda, A.; Murguía-González, J.; Elorza-Martínez, P.; Iglesias-Andreau, L.G.; García-Rosas, B.; Barredo-Pool, F.A.; Santana-Buzzy, N. Regeneración in vitro de Laelia anceps ssp. dawsonii. Rev. UDO Agrícola 2007, 7, 58–67. [Google Scholar]
- Castillo-Pérez, L.J.; Maldonado-Miranda, J.J.; Alonso-Castro, Á.J.; Carranza-Álvarez, C. Efecto de 6-bencilaminopurina y nitrato de potasio sobre la micropropagación in vitro de Laelia anceps subsp. anceps (Orchidaceae). Biotecnia 2020, 22, 32–38. [Google Scholar] [CrossRef]
- Santos-Pérez, U.I.; Pedraza-Santos, M.E.; Salgado-Garciglia, R.; Martínez-Palacios, A.; Chávez-Bárcenas, A.T.; González-Arnao, M.T. Efectividad de métodos para desinfestar semillas de Laelia autumnalis para la conservación en nitrógeno líquido. Nova Sci. 2019, 11, 8. [Google Scholar] [CrossRef]
- Nava, J.; Jimenez-Aparicio, A.; de Jesús-Sanchez, A.; Arenas-Ocampo, M.L.; Ventura-Zapata, E.; Evangelista-Lozano, S. Estudio de la morfología y aclimatación de plantas de Laelia eyermaniana RCHB. f. generadas in vitro. Polibotánica 2011, 32, 107–117. [Google Scholar]
- Gonçalves, L.D.M.; Prizão, E.C.; Milaneze-Gutierre, M.A.; Mangolin, C.A.; da Silva Machado, M.D.F.P. Use of complex supplements and light-differential effects for micropropagation of Hadrolaelia purpurata (=Laelia purpurata) and Encyclia randii orchids. Acta Sci. Agron. 2012, 34, 459–463. [Google Scholar] [CrossRef] [Green Version]
- Potisek, M.C.; Sarmiento, M.; Puc, L.N. Germinación de Semillas y su Establecimiento In Vitro de Laelia rubescens Lindley y Epidendrum Stamfordianum Batem; Reporte Anual de Ciencia y Tecnología; INIFAP CIR-SURESTE Campeche: Campeche, Mexico, 1996; pp. 187–192. [Google Scholar]
- Mayo-Mosqueda, A.; Maceda-López, L.F.; Andrade-Canto, S.B.; Noguera-Savelli, E.; Caamal-Velázquez, H.; Cano-Sosa, J.S.; Alatorre-Cobos, F. Efficient protocol for in vitro propagation of Laelia rubescens Lindl. from asymbiotic seed germination. S. Afr. J. Bot. 2020, 133, 264–272. [Google Scholar] [CrossRef]
- Ávila-Díaz, I.; Oyama, K.; Gómez-Alonso, C.; Salgado-Garciglia, R. In vitro propagation of the endangered orchid Laelia speciosa. PCTOC 2009, 99, 335–343. [Google Scholar] [CrossRef]
- Aguilar-Morales, M.A.; López-Escamilla, A.L. Germinación in vitro de Laelia speciosa (Kunth) Schltr., una herramienta para su conservación ex situ. In Estudios científicos en el estado de Hidalgo y zonas aledañas; Pulido-Flores, G., Monks, S., Eds.; Zea Books: Lincoln, NE, USA, 2013; Volume 2, pp. 18–24. [Google Scholar]
- Antonietti, D.; Buttini, S.; da Costa Zonetti, P.; Guimarães, A.T.; Stefanello, S. Plant growth of Laelia tenebrosa Rolfe treated with gibberellic acid and grown on different substrates. IDESIA (Chile) 2014, 32, 7–11. [Google Scholar] [CrossRef]
- Arditti, J.; Ghani, A.K.A. Numerical and physical properties of orchid seeds and their biological implications. New Phytol. 2000, 145, 367–421. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A. Asymbiotic seed germination in orchids: Role of organic additives. Int. J. Adv. Res. Sci. Eng. Technol. 2016, 3, 143–147. [Google Scholar] [CrossRef]
- Menchaca, R.A.; Ramos, J.M.; Moreno, D.; Luna, M.; Mata, M.; Vázquez, L.M.; Lozano, M.A. Germinación in vitro de híbridos de Vanilla planifolia y V. pompona. Rev. Colomb. Biotecnol. 2011, 13, 80–84. [Google Scholar]
- Raya-Montaño, Y.A.; Carrillo-Castañeda, G.; Pedraza-Santos, M.E.; Corona-Torres, T.; Carrillo-Salazar, J.A.; Alcantar-González, G. Propagación in vitro de Laelia halbingeriana. Rev. Mex. Cienc. Agric. 2011, 2, 539–553. [Google Scholar]
- Teixeira da Silva, J. Orchids: Advances in tissue culture, genetics, phytochemistry and transgenic biotechnology. Floric. Ornam. Biotechnol. 2013, 7, 1–52. [Google Scholar]
- Dirks-Mulder, A.; Ahmed, I.; uit het Broek, M.; Krol, L.; Menger, N.; Snier, J.; van Winzum, A.; de Wolf, A.; van’t Wout, M.; Zeegers, J.J.; et al. Morphological and molecular characterization of orchid fruit development. Front. Plant Sci. 2019, 10, 137. [Google Scholar] [CrossRef] [PubMed]
- Bertoncelli, D.J.; Alves, G.A.C.; Hoshino, R.T.; Freiria, G.H.; Furlan, F.F.; Stegani, V.; Faria, R.T.D. In vitro development of endangered Laelia marginata Lindl. in growth media containing different nitrate/ammonium ratios. Ornam. Hortic. 2017, 23, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Knudson, L. A new nutrient solution for the germination of orchid seeds. Am. Orchid Soc. Bull. 1946, 15, 214–217. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Biol. Plant 1962, 15, 473–497. [Google Scholar]
- Semiarti, E.; Setiari, N.; Astutiningrum, W.D.; Nurliana, S.; Mose, W. The effect of peptone on embryo development of orchid during in vitro culture. In Proceedings of the 1st International Conference on Tropical Agriculture; Thane, India, 14–15 January 2015, Isnansetyo, A., Nuringtyas, T., Eds.; Springer: Cham, Switzerland, 2017; pp. 85–93. [Google Scholar]
- Arditti, J. Fundamentals of Orchid Biology; John Wiley and Sons: Hoboken, NJ, USA, 1992; p. 691. [Google Scholar]
- Shekarriz, P.; Kafi, M.; Deilamy, S.D.; Mirmasoumi, M. Coconut water and peptone improve seed germination and protocorm like body formation of hybrid Phalaenopsis. Agric. Sci. Dev. 2014, 3, 317–322. [Google Scholar]
- Kaur, S.; Bhutani, K.K. Organic growth supplement stimulants for in vitro multiplication of Cymbidium pendulum (Roxb.) Sw. Hortic. Sci. 2012, 39, 47–52. [Google Scholar] [CrossRef]
- Utami, E.; Hariyanto, S.; Manuhara, Y. In vitro propagation of the endangered medicinal orchid, Dendrobium lasianthera J.J.Sm through mature seed culture. Asian Pac. J. Trop. Biomed. 2017, 7, 406–410. [Google Scholar] [CrossRef]
- Lee, K.; Seo, P.J. Dynamic epigenetic changes during plant regeneration. Trends Plant Sci. 2018, 23, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Efferth, T. Biotechnology applications of plant callus cultures. Engineering 2019, 5, 50–59. [Google Scholar] [CrossRef]
- Mitsukuri, K.; Mori, G.; Johkan, M.; Mishiba, K.I.; Morikawa, T.; Oda, M. Effects of explant source and dark-preconditioning on adventitious bud formation in Neofinetia falcata HH Hu in vitro. J. Jpn. Soc. Hortic. Sci. 2009, 78, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.C. Plant regeneration from callus culture of an endangered orchid, Geodorum densiflorum. Acta Hortic. 2010, 878, 175–178. [Google Scholar] [CrossRef]
- Budisantoso, I.; Amalia, N.; Kamsinah, K. In vitro callus induction from leaf explants of Vanda sp stimulated by 2, 4-D. Biosaintifika 2017, 9, 492–497. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Liu, X.; da Silva, J.A.T.; Wang, H.; Peng, T.; Zhang, M.; Duan, J. Characterization of LEA genes in Dendrobium officinale and one gene in induction of callus. J. Plant Physiol. 2021, 258, 153356. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Shahzad, A.; da Silva, J.A.T. Synseed technology—A complete synthesis. Biotechnol. Adv. 2013, 31, 186–207. [Google Scholar] [CrossRef] [PubMed]
- Lambardi, M.; Shaarawi, S. Importance of in vitro culture for developing cryopreservation strategies of woody plants. Acta Hortic. 2017, 1187, 177–188. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Bonnart, R.; Volk, G.M. Challenges in implementing plant shoot tip cryopreservation technologies. PCTOC 2021, 144, 21–34. [Google Scholar] [CrossRef]
- Wang, M.R.; Lambardi, M.; Engelmann, F.; Pathirana, R.; Panis, B.; Volk, G.M.; Wang, Q.C. Advances in cryopreservation of in vitro-derived propagules: Technologies and explant sources. PCTOC 2021, 144, 7–20. [Google Scholar] [CrossRef]
- Popova, E.; Kim, H.H.; Saxena, P.K.; Engelmann, F.; Pritchard, H.W. Frozen beauty: The cryobiotechnology of orchid diversity. Biotechnol. Adv. 2016, 34, 380–403. [Google Scholar] [CrossRef]
- Vendrame, W.A. Cryopreservation. In Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols; Springer Protocols Handbooks; Lee, Y.I., Yeung, E.T., Eds.; Humana Press: New York, NY, USA, 2018; pp. 283–302. [Google Scholar]
- Wu, R.Y.; Chang, S.Y.; Hsieh, T.F.; Chuang, K.C.; Ting, I.; Lai, Y.H.; Chang, Y.S. Cryopreservation of orchid genetic resources by desiccation: A case study of Bletilla formosana. In Cryopreservation in Eukaryotes; Marco-Jiménez, F., Akdemir, H., Eds.; IntechOpen: London, UK, 2016; p. 1731. [Google Scholar]
- Durán-Mendoza, E. Latencia Secundaria y Viabilidad de Semillas de Laelia speciosa (H. B. K.) Schlt (Orchidaceae) Durante su Conservacion. Master’s Thesis, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico, 2007. [Google Scholar]
- Rahmah, S.; Mubbarakh, S.A.; Sinniah, U.R.; Subramaniam, S. Effects of droplet-vitrification on Brassidium Shooting Star’s orchid protocorm-like bodies (PLBs). Sci. Hortic. 2015, 197, 254–260. [Google Scholar] [CrossRef]
- Chaireok, S.; Thammasiri, K.; Meesawat, U. Vitrification-based cryopreservation of protocorm-like bodies of endangered lady’s slipper orchid: Paphiopedilum niveum Rchb. Stein. CryoLetters 2016, 37, 154–162. [Google Scholar] [PubMed]
- González-Arnao, M.T.; Hernández-Ramírez, F.; Dolce, N.R.; Rascón-Díaz, M.P.; Cruz-Cruz, C.A. Cryobiotechnological studies in Vanilla: The orchid of multi-industrial uses. In Orchid Biology: Recent Trends & Challenges; Khasim, S., Hegde, S., González-Arnao, M., Thammasiri, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 21–35. [Google Scholar]
- Pereira, S.T.S.; Vendrame, W.A.; Pivetta, K.F.L.; Sorgato, J.C.; de Faria, R.T. Efficiency of cryoprotectors for cryopreservation of two orchid species from Americas. Rodriguésia 2021, 72, 1–10. [Google Scholar] [CrossRef]
- Kim, H.H.; Lee, Y.G.; Shin, D.J.; Ko, H.C.; Gwang, J.G.; Cho, E.G.; Engelmann, F. Development of alternative plant vitrification solutions in droplet-vitrification procedures. Cryoletters 2009, 30, 320–334. [Google Scholar] [CrossRef]
- Agrawal, A.; Singh, S.; Malhotra, E.V.; Meena, D.P.S.; Tyagi, R.K. In vitro conservation and cryopreservation of clonally propagated horticultural species. In Conservation and Utilization of Horticultural Genetic Resources; Rajasekharan, P., Rao, V., Eds.; Springer: Singapore, 2019. [Google Scholar]
- Murthy, H.N.; Paek, K.Y.; Park, S.Y. Micropropagation of orchids by using bioreactor technology. In Orchid Propagation: From Laboratories to Greenhouses-Methods and Protocols; Springer Protocols Handbooks; Lee, Y.I., Yeung, E.T., Eds.; Humana Press: New York, NY, USA, 2018; pp. 195–208. [Google Scholar]
- Ekmekçigil, M.; Bayraktar, M.; Akkuş, Ö.; Gürel, A. High-frequency protocorm-like bodies and shoot regeneration through a combination of thin cell layer and RITA® temporary immersion bioreactor in Cattleya forbesii Lindl. PCTOC 2019, 136, 465–466. [Google Scholar] [CrossRef] [Green Version]
- Chin, C.K.; Stanly, C.; Muniandy, A.; Ramanathan, S.; Murugaiyah, V.; Chew, B.L.; Subramaniam, S. Protocorm-like bodies (PLBs) of Dendrobium Sabin Blue: A novel source for in vitro production of dendrobine and anthocyanin. Vitr. Cell. Dev. Biol.-Plant 2021, 57, 874–882. [Google Scholar] [CrossRef]
- Ordóñez-De la Cruz, J.E. Propagación In Vitro de la Flor de la Candelaria Laelia superbiens Lindl. (Orchidaceae). Bachelor’s Thesis, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico, 2015. [Google Scholar]
- Gómez-Martínez, H.A. Cultivo In Vitro de Laelia gouldiana Rchb. F. (Orchidaceae), Especie Endémica de México, Extinta en la Naturaleza. Bachelor’s Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2009. [Google Scholar]
- Sharma, K.K.; Thorpe, T.A. Asexual embryogenesis in vascular plants in nature. In In Vitro Embryogenesis in Plants. Current Plant Science and Biotechnology in Agriculture; Thorpe, T.A., Ed.; Springer: Dordrecht, The Netherlands, 1995; Volume 20, pp. 17–72. [Google Scholar]
- Wu, G.Y.; Wei, X.L.; Wang, X.; Wei, Y. Induction of somatic embryogenesis in different explants from Ormosia henryi Prain. Plant Cell Tiss. Organ Cult. 2020, 142, 229–240. [Google Scholar] [CrossRef]
- Lee-Espinosa, H.E.; Murguía-González, J.; Laguna-Cerda, A.; García-Rosas, B.; Gámez-Pastrana, M.R.; Galindo-Tovar, M.E.; Landero-Tórres, I.; Iglesias, L.; Santana-Buzzy, N. Encapsulación de embriones somáticos de Laelia anceps ssp. dawsonii para la producción de semilla sintética. Rev. Chapingo. Ser. Hortic. 2009, 15, 33–40. [Google Scholar] [CrossRef]
- Yue, W.; Ming, Q.L.; Lin, B.; Rahman, K.; Zheng, C.J.; Han, T.; Qin, L.P. Medicinal plant cell suspension cultures: Pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit. Rev. Biotechnol. 2016, 36, 215–232. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Kumaria, S. Precursor-induced bioaccumulation of secondary metabolites and antioxidant activity in suspension cultures of Dendrobium fimbriatum, an orchid of therapeutic importance. S. Afr. J. Bot. 2020, 135, 137–143. [Google Scholar] [CrossRef]
Species/Local Names | Inflorescence Characteristics | Breeding Use | References |
---|---|---|---|
L. albida Bateman ex Lindl. “Huichila”, “Lirio de San Francisco” (Lily of San Francisco), “Monjitas” (Little nuns), “Tzicxóchitl”, “Flor de tatanachtle”. | 10–90 cm long, with flowers (21–30 × 10–20 mm) with petals and sepals white or cream and lip-pale to dark-rose colored. With sweet strong honey fragrance. | >15 F1 hybrids reported. | [8,22] |
L. anceps sp. anceps “Calaverita” (Little skull), “Lirio de todos los Santos” (Lily of All the Saints”. | 25–75 cm long, with big and showy flowers (73–120 × 55–80 mm) that ranges in color from completely white to dark rose-purple. Sweet and weak fragrance. | >150 F1 hybrids reported. | [8,23] |
L. anceps ssp. dawsonii J. Anderson “Huichila”. | 40–70 cm long, with big and showy flowers (73–130 × 55–90 mm), than vary in color from white to pale pink, with thin or heavily marked purple lines the lip throat. Weak, sweet and floral fragrance. | Not reported. | [8,24] |
L. aurea A.V.Navarro The golden Laelia. | 10–40 cm long, with showy flowers (70–110 × 70–130 mm) with sulfur-yellow to golden-yellow sepals and petals. Weak fragrance, similar to roses. | 1 intrageneric hybrid with L. speciosa. | [8,25] |
L. autumnalis (Lex.) Lindl. “Flor de las ánimas” (Flower of all souls), “Flor de todos santos” (Flower of All the Saints), “Flor de encino” (Oak flower), “Flor de la calavera” (Flower of the skull), “Lirio de San Francisco” (Lily of San Francisco). | 40–100 cm long, with big and showy flowers (38–67 × 14–27 mm), with sepals and sepals rosy-purple or lilac color. Weak to strong fragrance. | >26 F1 hybrids. | [8,26] |
L. crawshayana Rchb.f. “Lirio” (Lily) | 10–70 cm long, with big, showy and rosy flowers (38–53 × 20–28 mm). Pleasant fragrance. | Not reported. | [8] |
L. elata (Schltr.) J.M.H.Shaw Not known. | 55 cm long, with big, showy and pink flowers. | Not reported. | [27] |
L. eyermaniana Rchb.f. “Kiki”, “Flor de peña” (Flower of the cliff), “Flor” or Lirio de San Miguel” (Flower or Lily of San Miguel), Eyerman’s Laelia. | 20–100 cm long, with big and showy, flowers (30–48 × 16–27 mm), with rosy or lilac color petals and sepals. Floral and intense fragrance. | Not reported. | [8] |
L. furfuracea Lindl. “Lirio de San Francisco” (Lily of San Francisco), “Monja” (nun), “Gihtsl”. | 15–28 cm long, with big, showy, rosy or rosy-lilac flowers (37–48 × 20–35 mm). Harsh fragrance, similar to ordinary soap. | 3 hybrids. | [8] |
L. gloriosa (Rchb.f.) L.O.Williams The glorious Schomburgkia | 120 cm long, with big and showy flowers, with colors that varies from pale cream to bright yellow. | Not reported. | [28] |
L. gouldiana Rchb.f. “Santorum”, “Flor de Muerto” (Flower of the dead), “Monjitas” (Little nuns). | 40–75 cm long, with big, showy flowers (46–54 × 26–30 mm) with sepals and petals with fiery purple or dark magenta color. Intense floral-aromatic fragrance. | 13 F1 hybrids. | [8] |
L. halbingeriana Salazar & Soto Arenas Not known. | 48–70 cm long, with big, showy, and lilac flowers (60–80 × 11–15 mm) with reticulate magenta veining. | Not reported. | [29] |
L. heidii (Carnevali) Van den Berg & M.W.Chase Not known. | Flowers (50 mm long) with pink floral bracts. | Not reported. | [27] |
L. lueddemannii (Prill.) L.O.Williams. Not known. | 45–100 cm long, flowers (26–39 × 5–7.8 mm) with brown to chocolate-colored petals and sepals, with purple lip. With fragrance. | Not reported. | [27] |
L. lyonsii (Lindl.) L.O.Williams Not known. | 1.5 m long, flowers (30–50 long), with purple-spotted white petals. | Not reported. | [30] |
L. marginata (Lindl.) L.O.Williams Not known. | 60–110 cm long, flowers with sepals and petals chestnut brown | Not reported. | [30] |
L. moyobambae (Schltr.) C.Schweinf. Moyobamba Schomburgkia | More than 30 cm long, with flowers (15 × 9 mm), petals with lip rose-colored, and sepals brown with yellow margins. | Not reported. | [30] |
Laelia × oaxacana Salazar & R.Jiménez Not known. | 80–135 cm long, with flowers with rosy-lilac sepals and petals. | Not reported. | [13] |
L. purpurata Lindl. & Paxton Purple-stained Laelia | 30–37.5 cm long, showy flowers with variable color depending on horticultural forms: sepals, petals and lip ranking from white to pink color. With anise fragrance. | Not reported. | [31] |
L. rosea (Linden ex. Lindl.) C.Schweinf The rosy Schomburgkia | 60 cm long, with rosy-pink flowers (4–5.1 × 14 mm). | Not reported | [27] |
L. rubescens Lindl. “Flor de Jesús” (Flower of Jesus), “Huichila rosada”, “Flor de la Concepción” (Flower of the Conception). | 15–75 cm long, flowers (26–44 × 9–7 mm) with white, slightly rosy or rosy lilac coloration. Weak and floral fragrance. | >50 F1 artificial hybrids and 2 natural hybrids. | [8,32] |
L. schultzei (Schltr.) J.M.H.Shaw Schultze’s Schomburgkia | 60–100 mm long, flowers with pink floral bracts. | Not reported. | [27] |
L. speciosa (Kunth) Schltr “Flor de Mayo” (May’s flower), “Estrella de Belén”, “Flor de Todos los Santos” (Flower of All the Saints). | 15–25 cm long, with 1–2 large and showy flowers (60–90 × 25–50 mm) with a pale to dark pink-lilac to purplish coloration. Weak fragrance that resembles that of violets. | 19 artificial hybrids. | [8] |
L. splendida (Schltr.) L.O.Williams The splendid Schomburgkia. | 55 cm long, flowers (100 mm long) with violet and dark copper-colored floral bracts. | Not reported. | [33] |
L. superbiens Lindl. The gorgeous Schomburgkia. | 75–120 cm long, with big and showy flowers (60–102 × 9–16 mm), with variation in color but mostly with dark color (tepals rose-lilac, with purple violet lines in sepals). Weak, soap-like fragrance. | 8 artificial hybrids. | [8] |
Laelia × tlaxiacoensis Solano & Cruz-García Not known. | 33–57.5 cm long, with rose-lilac or magenta flowers. | Not reported. | [14] |
L. undulata (Lindl.) L.O.Williams The undulate Schomburgkia. | 60–180 cm long, with showy flowers with pinky floral bracts. With fragrance. | Not reported. | [33] |
L. weberbaueriana (Kraenzl.) C.Schweinf Weberbauer’s Schomburgkia. | 80 cm long, with flowers with brown-pink floral bracts. | Not reported. | [34] |
Species/ Source of Explant | Medium Composition | Incubation Conditions | Key Results | References |
---|---|---|---|---|
Asymbiotic germination | ||||
L. albida Mature seeds. | KC medium + potato starch (20 g·L−1). | 24 ± 2 °C, photoperiod 16 h light/8 h dark, and 35 µmol m2 s−1 for radiation. | 70–90% germination. | [22] |
L. anceps Immature seeds. | KC medium + peptone (2 mg·L−1), potassium hummate (50 mg·L−1), and activated charcoal (1 mg·L.1). | 25–26 °C, photoperiod 16 h light/8 h dark, and relative moisture of air 70%. | ND. | [50] |
L. anceps ND. | MS medium. | ND. | ND. | [51] |
L. anceps ND. | 0.5X MS medium. | 25 ± 2 °C and 50 μmol m−2 s−1 for radiation. | ND. | [52] |
L. anceps ssp. dawsonii Mature seeds. | MS, KC media + NAA, BAP, and IAA 2 mg·L−1 of each. | Photoperiod 16 h light/8 h dark and 22 µmol m2 s−1 for radiation. | 100% germination. | [53] |
L. anceps ssp. dawsonii Mature seeds. | MS medium. | 25 °C, photoperiod 16 h light/8 h dark. | 95% germination. | [54] |
L. autumnalis ND. | MS medium. | Photoperiod 16 h light/8 h dark and 45 µm m−2 s−1 for radiation. | ND. | [18] |
L. autumnalis ND. | MS medium. | 24 ± 1 °C, photoperiod 16 h light/8 h dark, and 40 µmol m−2 s−1 for radiation. | ND. | [55] |
L. eyermaniana Mature seeds. | 0.5X MS medium. | 25 ± 1 °C, photoperiod 16 h light/8 h dark 25, and 46 µmol m−2 s−1 for radiation. | ND. | [56] |
L. purpurata ND. | KC medium + banana pulp (90 g·L−1). | ND. | ND. | [57] |
L. rubescens Mature seeds. | MS medium. | 25 °C, photoperiod 16 h light/8 h dark. | 62.5% germination. | [58] |
L. rubescens Immature seeds. | KC medium + peptone (2 mg·L−1), potassium hummate (50 mg·L−1), and activated charcoal (1 g·L−1). | 25–26 °C, photoperiod 16 h light/8 h dark. | ND. | [50] |
L. rubescens Immature and mature seeds. | MS, 0.5X MS, KC, VW media, Phytamax. | 25–26 °C, photoperiod 16 h light/8 h dark, and 40 µmol m−2 s−1 for radiation. | 88% germination. | [59] |
L. speciosa Mature seeds. | MS medium. | Photoperiod 16 h light/8 h dark and 130 µmol m−2 s−1 for radiation. | 60% germination. | [60] |
L. speciosa Mature seeds. | MS medium. | Photoperiod 16 h light/8 h dark and 130 µmol m−2 s−1 for radiation. | ND. | [17] |
L. speciosa Immature seeds. | MS, 0.5X MS media. | 24 ± 2 °C, photoperiod 16 h light/8 h dark, and 43 µmol m−2 s−1 for radiation. | 100% germination. | [61] |
L. tenebrosa ND. | MS medium. | ND. | [62] | |
Callus formation | ||||
L. anceps ssp. dawsonii Seeds. | MS medium + NAA, BAP, and IAA 2 mg·L−1 of each. | Photoperiod 16 h light/8 h dark and 33.78 µmol m−2 s−1 for radiation. | Embryogenic friable callus. | [53] |
L. speciosa Leaf segments obtained from in vitro plants. | MS medium + BAP (2.5 mg·L−1) | 25 ± 1 °C, photoperiod 16 h light/8 h dark, and 36 µmol m−2 s−1 for radiation. | High-quality callus with a light green appearance. | [17] |
PLBs proliferation | ||||
L. anceps Seeds. | KC medium + of peptone (2 mg·L−1), potassium hummate (50 mg·L−1), and activated charcoal (1 mg·L−1). | 25–26 °C, photoperiod 16 h light/8 h dark, and relative moisture of air 70%. | Protocorm formation at bases of leaf primordiums and bud squamules. | [50] |
L. anceps Protocorms. | MS medium + BAP (3 mg·L−1). | 25 ± 2 °C, photoperiod 16 h light/8 h dark, and 50 µmol m−2 s−1 for radiation. | Formation of 50.6 PLBs by explant. | [51] |
L. rubescens Seeds. | KC medium + peptone (2 mg·L−1), potassium hummate (50 mg·L−1), and activated charcoal (1 mg·L−1). | 25–26 °C, photoperiod 16 h light/8 h dark, and relative moisture of air 70%. | Protocorm formation at bases of leaf primordiums and bud squamules. | [50] |
L. speciosa Leaves | MS medium + 2.5 mg·L−1 NAA and 1 mg·L−1 BAP. | Photoperiod 16 h light/8 h dark and 36 µmol m−2 s−1 for radiation. | Development of seedlings was successfully obtained in MS supplemented with 0.5 mg·L−1 of NAA and 0.1 mg·L−1 of gibberellic acid. | [17] |
Somatic embryogenesis | ||||
L. anceps ssp.dawsonii Seeds. | MS medium + NAA, BAP, KIN, and IAA 2 mg·L−1 of each. | Photoperiod 16 h light/8 h dark and 20.2 µmol m−2 s−1 for radiation. | High number of somatic embryos after 3 subcultures (45 day of each). | [53] |
L. anceps ssp. dawsonii Seeds. | MS medium + NAA, BAP, and IAA 2 mg·L−1 of each. | Photoperiod 16 h light/8 h dark and 33.8 µmol m−2 s−1 for radiation. | High multiplication rate of somatic embryos after 8 weeks of subculturing. | [23] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayo-Mosqueda, A.; García-Hernández, E.; Noguera-Savelli, E.; Cetzal-Ix, W.; Alatorre-Cobos, F. Advances in Breeding, Bioprospecting, and In Vitro Culture of Laelia Orchid Species. Horticulturae 2022, 8, 103. https://doi.org/10.3390/horticulturae8020103
Mayo-Mosqueda A, García-Hernández E, Noguera-Savelli E, Cetzal-Ix W, Alatorre-Cobos F. Advances in Breeding, Bioprospecting, and In Vitro Culture of Laelia Orchid Species. Horticulturae. 2022; 8(2):103. https://doi.org/10.3390/horticulturae8020103
Chicago/Turabian StyleMayo-Mosqueda, Alberto, Eleazar García-Hernández, Eliana Noguera-Savelli, William Cetzal-Ix, and Fulgencio Alatorre-Cobos. 2022. "Advances in Breeding, Bioprospecting, and In Vitro Culture of Laelia Orchid Species" Horticulturae 8, no. 2: 103. https://doi.org/10.3390/horticulturae8020103