A Study of Scion Phenotypes in Pummelo Grafted onto a New Citrus Rootstock Citrus junos ‘Pujiang Xiangcheng’
Abstract
:1. Introduction
2. Material and Methods
2.1. Experiment Site and Plant Material
2.2. Growth Measurement
2.3. Chlorophyll Contents Determination
2.4. Photosynthetic Characteristics Determination
2.5. Endogenous Phytohormone Determination
2.6. Fruit Harvested and Quality Determination
2.7. Data Analysis
3. Results
3.1. The Growth of ‘Guanxi Miyou’ Grafted onto Three Citrus Rootstocks
3.2. Chlorophyll Contents
3.3. Photosynthesis Characteristics
3.4. Phytohormone Content
3.5. Fruit Quality
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Xu, Y.; Jiang, X.; Yu, H.; Jia, H.; Tan, C.; Hu, G.; Hu, Y.; Rao, M.J.; Deng, X. Genome of a citrus rootstock and global DNA demethylation caused by heterografting. Hortic. Res.-Engl. 2021, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Ahsan, M.U.; Frank, M.H. Getting to the root of grafting-induced traits. Curr. Opin. Plant Biol. 2021, 59, 101988. [Google Scholar] [CrossRef] [PubMed]
- Warschefsky, E.J.; Klein, L.L.; Frank, M.H.; Chitwood, D.H.; Londo, J.P.; von Wettberg, E.J.B.; Miller, A.J. Rootstocks: Diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci. 2016, 21, 418–437. [Google Scholar] [CrossRef] [PubMed]
- Morales, J.; Bermejo, A.; Navarro, P.; Forner-Giner, M.Á.; Salvador, A. Rootstock effect on fruit quality, anthocyanins, sugars, hydroxycinnamic acids and flavanones content during the harvest of blood oranges ‘Moro’ and ‘Tarocco Rosso’ grown in Spain. Food Chem. 2021, 342, 128305. [Google Scholar] [CrossRef]
- Dubey, A.K.; Sharma, R.M. Effect of rootstocks on tree growth, yield, quality and leaf mineral composition of lemon (Citrus limon (L.) Burm.). Sci. Hortic. 2016, 200, 131–136. [Google Scholar] [CrossRef]
- Du, W.; Hussain, S.B.; Jin, L.; Liu, X.; Li, R.; Han, Z.; Liu, Y.; Pan, Z.; Peng, S. Characteristics of boron distribution in the ‘Newhall’ navel orange plant with two root systems. Plant Physiol. Biochem. 2021, 167, 42–48. [Google Scholar] [CrossRef]
- Fan, Y.; Li, Z.; Xie, B.; Liang, X.; Huang, X. A study of shoot growth, leaf photosynthesis, and nutrients in ‘lingfengjing’litchi grafted onto seedlings of different cultivars. Horticulturae 2022, 8, 282. [Google Scholar] [CrossRef]
- Balfagón, D.; Rambla, J.L.; Granell, A.; Arbona, V.; Gómez-Cadenas, A. Grafting improves tolerance to combined drought and heat stresses by modifying metabolism in citrus scion. Environ. Exp. Bot. 2022, 195, 104793. [Google Scholar] [CrossRef]
- Continella, A.; Pannitteri, C.; La Malfa, S.; Legua, P.; Distefano, G.; Nicolosi, E.; Gentile, A. Influence of different rootstocks on yield precocity and fruit quality of ‘Tarocco Scirè’ pigmented sweet orange. Sci. Hortic. 2018, 230, 62–67. [Google Scholar] [CrossRef]
- Sau, S.; Ghosh, S.N.; Sarkar, S.; Gantait, S. Effect of rootstocks on growth, yield, quality, and leaf mineral composition of Nagpur mandarin (Citrus reticulata Blanco.), grown in red lateritic soil of West Bengal, India. Sci. Hortic. 2018, 237, 142–147. [Google Scholar] [CrossRef]
- Emmanouilidou, M.G.; Kyriacou, M.C. Rootstock-modulated yield performance, fruit maturation and phytochemical quality of ‘Lane Late’ and ‘Delta’ sweet orange. Sci. Hortic. 2017, 225, 112–121. [Google Scholar] [CrossRef]
- Deng, M.; Lin, Y.; Dong, L.; Jia, X.; Shen, Y.; Liu, L.; Chi, J.; Huang, F.; Zhang, M.; Zhang, R. Physicochemical and functional properties of dietary fiber from pummelo (Citrus grandis L. Osbeck) and grapefruit (Citrus paradisi Mcfad.) cultivars. Food Biosci. 2021, 40, 100890. [Google Scholar] [CrossRef]
- Zhu, S.; Nong, J.; Luo, G.; Li, Q.; Wang, F.; Jiang, D.; Zhao, X. Varied tolerance and different responses of five citrus rootstocks to acid stress by principle component analysis and orthogonal analysis. Sci. Hortic. 2021, 278, 109853. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, Q.; Yang, J.; Xie, G.; Liu, J. PtrCDPK10 of Poncirus trifoliata functions in dehydration and drought tolerance by reducing ROS accumulation via phosphorylating PtrAPX. Plant Sci. 2020, 291, 110320. [Google Scholar] [CrossRef] [PubMed]
- Ming, R.; Zhang, Y.; Wang, Y.; Khan, M.; Dahro, B.; Liu, J.H. The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. New Phytol. 2021, 229, 2730–2750. [Google Scholar] [CrossRef]
- He, W.; Xie, R.; Wang, Y.; Chen, Q.; Wang, H.; Yang, S.; Luo, Y.; Zhang, Y.; Tang, H.; Gmitter, F.G.; et al. Comparative transcriptomic analysis on compatible/incompatible grafts in Citrus. Hortic. Res.-Engl. 2022, 9, uhab072. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wang, Y.; Chen, Q.; Sun, B.; Tang, H.; Pan, D.; Wang, X. Dissection of the mechanism for compatible and incompatible graft combinations of Citrus grandis (L.) Osbeck (‘Hongmian Miyou’). Int. J. Mol. Sci. 2018, 19, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bevington, K.B. Development of union abnormalities in grafts between lemon (Citrus limon) and Poncirus trifoliata. Aust. J. Agr. Res. 1976, 27, 661. [Google Scholar] [CrossRef]
- Dong, T.; Xi, L.; Xiong, B.; Qiu, X.; Huang, S.; Xu, W.; Wang, J.; Wang, B.; Yao, Y.; Duan, C. Drought resistance in Harumi tangor seedlings grafted onto different rootstocks. Funct. Plant Biol. 2021, 48, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cao, J.; Su, M.; Feng, G.; Xu, Y.; Yi, H. Genome-wide comprehensive analysis of transcriptomes and small RNAs offers insights into the molecular mechanism of alkaline stress tolerance in a citrus rootstock. Hortic. Res.-Engl. 2019, 6, 33. [Google Scholar] [CrossRef]
- Fu, X.; Huang, X.; Chen, T.; Zhang, J.; Wang, Y.; Chen, Q.; Lei, Q.; Tang, H.; Wang, X. A new citrus rootstock ‘Pujiang Xiangcheng’ (Citrus junos). J. Fruit Sci. 2017, 37, 917–920. [Google Scholar] [CrossRef]
- Zhu, S.; Huang, T.; Yu, X.; Hong, Q.; Xiang, J.; Zeng, A.; Gong, G.; Zhao, X. The effects of rootstocks on performances of three late-ripening navel orange varieties. J. Integr. Agric. 2020, 19, 1802–1812. [Google Scholar] [CrossRef]
- Liao, L.; Li, Y.; Bi, X.; Xiong, B.; Wang, X.; Deng, H.; Zhang, M.; Sun, G.; Jin, Z.; Huang, Z. Transcriptome analysis of Harumi tangor fruits: Insights into interstock-mediated fruit quality. Front. Plant Sci. 2022, 13, 995913. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Wang, G.; Li, Y.; Shen, X.; Chen, X.; Song, F.; Wu, S.; Chen, Q.; Mao, Z. Replanting affects the tree growth and fruit quality of gala apple. J. Integr. Agric. 2014, 13, 1699–1706. [Google Scholar] [CrossRef] [Green Version]
- López-Ortega, G.; García-Montiel, F.; Bayo-Canha, A.; Frutos-Ruiz, C.; Frutos-Tomás, D. Rootstock effects on the growth, yield and fruit quality of sweet cherry cv. ‘Newstar’ in the growing conditions of the region of Murcia. Sci. Hortic. 2016, 198, 326–335. [Google Scholar] [CrossRef]
- Habibi, F.; Liu, T.; Folta, K.; Sarkhosh, A. Physiological, biochemical, and molecular aspects of grafting in fruit trees. Hortic. Res.-Engl. 2022, 9, uhac032. [Google Scholar] [CrossRef]
- Pérez-Grajales, M.; Pérez-Reyes, T.Q.; Cruz-Álvarez, Ó.; Castro-Brindis, R.; Martínez-Damián, M.T. Compatibility of the rootstock CM-334 and its response on the yield, physicochemical quality and content of capsaicinoids in Capsicum pubescens. Itea-Inf. Tec. Econ. Ag. 2021, 117, 332–346. [Google Scholar] [CrossRef]
- Thomas, H.R.; Frank, M.H. Connecting the pieces: Uncovering the molecular basis for long-distance communication through plant grafting. New Phytol. 2019, 223, 582–589. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, J.M.; Bermejo, A.; Navarro, P.; Quiñones, A.; Salvador, A. Effect of rootstock on citrus fruit quality: A review. Food Rev. Int. 2021; ahead-of-print. 1–19. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, Y.; Shan, D.; Shi, K.; Wang, L.; Li, Q.; Wang, N.; Zhou, J.; Yao, J.; Xue, Y. MdWRKY9 overexpression confers intensive dwarfing in the M26 rootstock of apple by directly inhibiting brassinosteroid synthetase MdDWF4 expression. New Phytol. 2018, 217, 1086–1098. [Google Scholar] [CrossRef]
- Raiol-Junior, L.L.; de Carvalho, E.V.; Moreira, A.S.; Marques, J.P.R.; Stuchi, E.S.; Peña, L.; Girardi, E.A. Graft compatibility classification within aurantioideae based on biometric traits and the anatomy of graft union. Agriculture 2022, 12, 76. [Google Scholar] [CrossRef]
- Goldschmidt, E.E. Plant grafting: New mechanisms, evolutionary implications. Front. Plant Sci. 2014, 5, 727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mademba-Sy, F.; Lemerre-Desprez, Z.; Lebegin, S. Use of flying dragon trifoliate orange as dwarfing rootstock for citrus under tropical climatic conditions. Hortscience 2012, 47, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Opazo, I.; Toro, G.; Salvatierra, A.; Pastenes, C.; Pimentel, P. Rootstocks modulate the physiology and growth responses to water deficit and long-term recovery in grafted stone fruit trees. Agric. Water Manag. 2020, 228, 105897. [Google Scholar] [CrossRef]
- Zhou, Y.; Tian, X.; Yao, J.; Zhang, Z.; Wang, Y.; Zhang, X.; Li, W.; Wu, T.; Han, Z.; Xu, X. Morphological and photosynthetic responses differ among eight apple scion-rootstock combinations. Sci. Hortic. 2020, 261, 108981. [Google Scholar] [CrossRef]
- Bhusal, N.; Han, S.; Yoon, T. Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus × domestica Borkh.). Sci. Hortic. 2019, 246, 535–543. [Google Scholar] [CrossRef]
- Nowicka, B.; Ciura, J.; Szymańska, R.; Kruk, J. Improving photosynthesis, plant productivity and abiotic stress tolerance–current trends and future perspectives. J. Plant Physiol. 2018, 231, 415–433. [Google Scholar] [CrossRef]
- Martinez-Cuenca, M.R.; Primo-Capella, A.; Quinones, A.; Bermejo, A.; Forner-Giner, M.A. Rootstock influence on iron uptake responses in Citrus leaves and their regulation under the Fe paradox effect. PeerJ 2017, 5, e3553. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Ediger, D. Rootstocks with different vigor influenced scion–water relations and stress responses in ambro-siatm apple trees (Malus Domestica var. Ambrosia). Plants 2021, 10, 614. [Google Scholar] [CrossRef]
- Aloni, B.; Cohen, R.; Karni, L.; Aktas, H.; Edelstein, M. Hormonal signaling in rootstock–scion interactions. Sci. Hortic. 2010, 127, 119–126. [Google Scholar] [CrossRef]
- Albacete, A.; Martinez-Andujar, C.; Martinez-Perez, A.; Thompson, A.J.; Dodd, I.C.; Perez-Alfocea, F. Unravelling rootstockxscion interactions to improve food security. J. Exp. Bot. 2015, 66, 2211–2226. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Yang, Y.; Tao, S.; Wang, Y.; Yuan, H.; Sharma, A.; Wang, X.; Shen, C.; Yan, D.; Zheng, B. Identification and expression analysis of auxin-responsive GH3 family genes in Chinese hickory (Carya cathayensis) during grafting. Mol. Biol. Rep. 2020, 47, 4495–4506. [Google Scholar] [CrossRef] [PubMed]
- Saravana, K.R.; Gao, L.X.; Yuan, H.W.; Xu, D.B.; Liang, Z.; Tao, S.C.; Guo, W.B.; Yan, D.L.; Zheng, B.S.; Edqvist, J. Auxin enhances grafting success in Carya cathayensis (Chinese hickory). Planta 2018, 247, 761–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, S.; Curk, F.; Anjum, M.A.; Pailly, O.; Tison, G. Performance evaluation of common clementine on various citrus rootstocks. Sci. Hortic. 2013, 150, 278–282. [Google Scholar] [CrossRef]
- Chaparro-Zambrano, H.N.; Velásquez-Ramírez, H.A.; Ordúz-Rodríguez, J.O. Evaluation of ‘Arrayana’ tangerine (Citrus reticulata Blanco) grafted onto different rootstocks in tropical lowlands of Colombian Orinoquia, 2005-2011 (second cycle). Agronomía 2017, 35, 29–34. [Google Scholar] [CrossRef]
- McCollum, G.; Bowman, K.D. Rootstock effects on fruit quality among ‘Ray Ruby’ grapefruit trees grown in the Indian River District of Florida. Hortscience 2017, 52, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Grosser, J.W.; Gmitter, F.G., Jr.; Charles, A.S.; Wang, Y. Effects of scion/rootstock combination on flavor quality of orange juice from Huanglongbing (HLB)-affected trees: A two-year study of the targeted metabolomics. J. Agric. Food Chem. 2020, 68, 3286–3296. [Google Scholar] [CrossRef]
- Barry, G.H.; Castle, W.S.; Davies, F.S. Rootstocks and plant water relations affect sugar accumulation of citrus fruit via osmotic adjustment. J. Am. Soc. Hortic. Sci. 2004, 129, 881–889. [Google Scholar] [CrossRef]
Graft Combination | Survival Rate (%) | Scion Length (cm) | Rootstock Diameter (cm) | Scion Diameter (cm) | New Branches Number | Summer Shoot Length (cm) |
---|---|---|---|---|---|---|
Gx/Cj | 93.55 | 52.33 ± 10.26 b | 1.65 ± 0.21 b | 1.69 ± 0.11 b | 2.8 b | 6.57 b |
Gx/Pt | 87.88 | 55.40 ± 14.46 b | 1.70 ± 0.26 b | 1.62 ± 0.19 b | 3.9 b | 7.36 b |
Gx/Cg | 90.62 | 72.53 ± 20.66 a | 2.02 ± 0.50 a | 2.11 ± 0.20 a | 5.4 a | 11.85 a |
Year | Graft Combinations | TSS (%) | TS (mg·g−1) | TA (g·100 mL−1) | Vc (mg·100 mL−1) | TSS-to-Acid Ratio |
---|---|---|---|---|---|---|
2020 | Gx/Cj | 12.24 ± 0.23 a | 129.28 ± 5.19 a | 0.78 ± 0.03 b | 31.60 ± 0.62 a | 15.68 ± 0.76 a |
Gx/Pt | 11.41 ± 0.02 ab | 121.33 ± 5.05 a | 0.85 ± 0.02 ab | 33.33 ± 1.19 a | 13.41 ± 0.38 ab | |
Gx/Cg | 10.94 ± 0.24 b | 93.85 ± 3.81 b | 0.95 ± 0.07 a | 29.14 ± 3.77 a | 11.61 ± 0.57 b | |
2021 | Gx/Cj | 11.84 ± 0.22 a | 111.57 ± 3.01 ab | 0.82 ± 0.02 a | 29.48 ± 0.85 a | 14.52 ± 0.38 a |
Gx/Pt | 11.24 ± 0.10 b | 113.01 ± 5.53 a | 0.87 ± 0.03 a | 27.90 ± 0.82 a | 13.00 ± 0.52 ab | |
Gx/Cg | 10.57 ± 0.04 c | 96.13 ± 3.69 b | 0.89 ± 0.03 a | 28.04 ± 1.50 a | 11.92 ± 0.38 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, R.; He, W.; Chai, J.; Luo, L.; Wang, Y.; Chen, Q.; Tang, H.; Wang, X. A Study of Scion Phenotypes in Pummelo Grafted onto a New Citrus Rootstock Citrus junos ‘Pujiang Xiangcheng’. Horticulturae 2022, 8, 1039. https://doi.org/10.3390/horticulturae8111039
Xie R, He W, Chai J, Luo L, Wang Y, Chen Q, Tang H, Wang X. A Study of Scion Phenotypes in Pummelo Grafted onto a New Citrus Rootstock Citrus junos ‘Pujiang Xiangcheng’. Horticulturae. 2022; 8(11):1039. https://doi.org/10.3390/horticulturae8111039
Chicago/Turabian StyleXie, Rui, Wen He, Jiufeng Chai, Liang Luo, Yan Wang, Qing Chen, Haoru Tang, and Xiaorong Wang. 2022. "A Study of Scion Phenotypes in Pummelo Grafted onto a New Citrus Rootstock Citrus junos ‘Pujiang Xiangcheng’" Horticulturae 8, no. 11: 1039. https://doi.org/10.3390/horticulturae8111039
APA StyleXie, R., He, W., Chai, J., Luo, L., Wang, Y., Chen, Q., Tang, H., & Wang, X. (2022). A Study of Scion Phenotypes in Pummelo Grafted onto a New Citrus Rootstock Citrus junos ‘Pujiang Xiangcheng’. Horticulturae, 8(11), 1039. https://doi.org/10.3390/horticulturae8111039