Conversion of Oil Palm By-Products into Value-Added Products through Oyster Mushroom (Pleurotus ostreatus) Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pure Culture Isolation
2.2. Spawn Preparation
2.3. Substrate Preparation
2.4. Physicochemical Properties of Substrates
2.5. Cultivation of Mushroom
2.6. Agronomic Performance of Mushroom
2.7. Mushroom Sample Preparation
2.8. Proximate Analysis of Mushroom
2.8.1. Determination of Moisture Content
2.8.2. Determination of Ash Content
2.8.3. Determination of Crude Protein
2.8.4. Determination of Crude Fibre
2.8.5. Determination of Crude Lipid
2.8.6. Determination of Beta Glucan Content
2.9. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Substrate
3.2. Growth and Yield of Mushroom
3.3. Nutritional Properties of Mushrooms
3.3.1. Proximate Composition of Fruiting Bodies
3.3.2. Beta Glucan Content of Fruiting Bodies
3.3.3. Correlation between Physicochemical Properties of Substrate and Agronomic Performance of Pleurotus ostreatus
3.3.4. Correlation between Physicochemical Properties of Substrate and Nutritional Properties of Pleurotus ostreatus
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haimid, M.T.; Rahim, H. Understanding the mushroom industry and its marketing strategies for fresh produce in Malaysia. Econ. Technol. Manag. Rev. 2013, 8, 27–37. [Google Scholar]
- Das, A.; Sengupta, A.; Ghosh, T. Nutrition, therapeutics and environment impact of oyster mushrooms: A low cost proteinaceous source. J. Gynecol. Womens Health 2019, 14, 555876. [Google Scholar] [CrossRef]
- Gashaw, G.; Fassil, A.; Fuad, A. Evaluation of the antibacterial activity of Pleurotus spp. cultivated on different agricultural wastes in Chiro, Ethiopia Getachew. Indian J. Agric. Res. 2021, 55, 289–295. [Google Scholar]
- Vetvicka, V.; Gover, O.; Karpovsky, M.; Hayby, H.; Danay, O.; Ezov, N.; Hadar, Y.; Schwartz, B. Immune-modulating activities of glucans extracted from Pleurotus ostreatus and Pleurotus eryngii. J. Funct. Foods 2019, 54, 81–91. [Google Scholar] [CrossRef]
- Patel, Y.; Naraian, R.; Singh, V.K. Medicinal properties of Pleurotus species (Oyster mushroom): A Review. World J. Fungal Plant Biol. 2012, 3, 1–12. [Google Scholar]
- Iwalokun, B.A.; Usen, U.A.; Otunba, A.A.; Olukoya, D.K. Comparative phytochemical evaluation, antimicrobial and antioxidant properties of Pleurotus ostreatus. Afr. J. Biotechnol. 2007, 6, 1732–1739. [Google Scholar] [CrossRef] [Green Version]
- Rosmiza, M.; Davies, W.; Aznie, R.C.; Jabil, M.; Mazdi, M. Prospects for increasing commercial mushroom production in Malaysia: Challenges and opportunities. Mediterr. J. Soc. Sci. 2016, 7, 406–415. [Google Scholar] [CrossRef]
- Ali, M.F.; Akber, M.A.; Smith, C.; Aziz, A.A. The dynamics of rubber production in Malaysia: Potential impacts, challenges and proposed interventions. For. Policy Econ. 2021, 127, 102449. [Google Scholar] [CrossRef]
- Abdullah, N.; Sulaiman, F.; Aliasak, Z. A case study of pyrolysis of oil palm wastes in Malaysia. AIP Conf. Proc. 2013, 1528, 331–336. [Google Scholar]
- Awalludin, M.F.; Sulaiman, O.; Hashim, R.; Nadhari, W.N.A.W. An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renew. Sustain. Energy Rev. 2015, 50, 1469–1484. [Google Scholar] [CrossRef]
- Thongklang, N.; Luangharn, T. Testing agricultural wastes for the production of Pleurotus ostreatus. Mycosphere 2016, 7, 766–772. [Google Scholar] [CrossRef]
- Tesfaw, A.; Tadesse, A.; Kiros, G. Optimization of oyster (Pleurotus ostreatus) mushroom cultivation using locally available substrates and materials in Debre Berhan, Ethiopia. J. Appl. Biol. Biotechnol. 2015, 3, 15–20. [Google Scholar]
- Fufa, B.K.; Tadesse, B.A.; Tulu, M.M. Cultivation of Pleurotus ostreatus on agricultural wastes and their combination. Int. J. Agron. 2021, 2021, 1465597. [Google Scholar] [CrossRef]
- Muswati, C.; Simango, K.; Tapfumaneyi, L.; Mutetwa, M.; Ngezimana, W. The effects of different substrate combinations on growth and yield of oyster mushroom (Pleurotus ostreatus). Int. J. Agron. 2021, 2021, 9962285. [Google Scholar] [CrossRef]
- Lee, A.M.L.; Chin, C.F.S.; Seelan, J.S.S.; Lee, H.H.; Rakib, M.R.M. Effect of physicochemical properties of oil- palm-waste-based substrates on mycelia growth rate of Pleurotus ostreatus. Trans. Sci. Technol. 2021, 8, 317–323. [Google Scholar]
- Aljuboori, A.H.R. Oil palm biomass residue in Malaysia: Availability and sustainability. Int. J. Biomass Renew. 2013, 2, 13–18. [Google Scholar]
- Mihilall, Y.; Mudhoo, A.; Mohee, R. Development of a new substrate for the cultivation of the Pleurotus sajor-caju mushroom through controlled composting. Dyn. Soil Dyn. Plant 2011, 5, 82–92. [Google Scholar]
- Almomany, A.M.; Khalaf, N.; Masaed, A.L. Impact of Physical Properties of Substrate on Mycelial Growth and Yield of Two Strains of Agaricus bisporus. In Proceedings of the 3rd International Conference on Agriculture Food, Veterinary and Pharmacy Sciences, Trabzon, Turkey, 16–18 April 2019. [Google Scholar]
- Owaid, M.N.; Abed, I.A.; Al-Saeedi, S.S.S. Applicable properties of the bio-fertilizer spent mushroom substrate in organic systems as a byproduct from the cultivation of Pleurotus spp. Inf. Process. Agric. 2017, 4, 78–82. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Polysaccharides in relation to animal nutrition. J. Dairy Sci. 1985, 74, 3583–3597. [Google Scholar] [CrossRef]
- Wright, A.F.; Bailey, J.S. Organic carbon, total carbon, and total nitrogen determinations in soils of variable calcium carbonate contents using a Leco CN-2000 dry combustion analyzer. Commun. Soil Sci. Plant Anal. 2001, 32, 3243–3258. [Google Scholar] [CrossRef]
- Isaac, R.A.; Johnson, W.C. Collaborative study of wet and dry ashing techniques for the elemental analysis of plant tissue by atomic absorption spectrophotometry. J. AOAC Int. 1975, 58, 436–440. [Google Scholar] [CrossRef]
- Rakib, M.R.M.; Lee, A.M.L.; Tan, S.Y. Corn husk as lignocellulosic agricultural waste for the cultivation of Pleurotus florida mushroom. BioResources 2020, 15, 7980–7991. [Google Scholar] [CrossRef]
- Kajendra, M.; Balaji, S.S.; Sathya, S. Cultivation and determination of nutritional value on edible mushroom Pleurotus ostreatus. European J. Biotechnol. Biosci. 2018, 6, 40–44. [Google Scholar]
- Sunday, E.A.; Israel, A.U.; Odey, T. Proximate analysis and mineral element composition of false yam (Icacina trichantha) tuber and oyster mushroom (pleurotus ostreatus). Int. J. Chem. Sci. 2016, 1, 31–39. [Google Scholar]
- Beljkaš, B.; Matić, J.; Milovanović, I.; Jovanov, P.; Mišan, A.; Šarić, L. Rapid method for determination of protein content in cereals and oilseeds: Validation, measurement uncertainty and comparison with the Kjeldahl method. Accredit. Qual. Assur. 2010, 15, 555–561. [Google Scholar] [CrossRef]
- Rashidi, A.N.M.; Yang, T.A. Nutritional and antioxidant values of oyster mushroom (P. Sajor-caju) cultivated on rubber sawdust. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 161–164. [Google Scholar] [CrossRef] [Green Version]
- James, C.S. Analytical Chemistry of Foods; Springer: New York, NY, USA, 1995; p. 178. [Google Scholar]
- Kirk, R.; Sawyer, R. Pearson’s Food Composition and Analysis; Longman Press: London, UK, 1980; p. 708. [Google Scholar]
- Huang, I.; Kim, B.; King, Y.; Lee, S.; Chung, S. Improvement in beta-glucan extraction from Ganoderma lucidum with high pressure steaming and enzymatic pre-treatment. Appl. Biol. Chem. 2018, 61, 235–242. [Google Scholar]
- Sari, M.; Prange, A.; Lelley, J.I.; Hambitzer, R. Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chem. 2017, 216, 45–51. [Google Scholar] [CrossRef]
- Bellettini, M.B.; Fiorda, F.A.; Maieves, H.A.; Teixeira, G.L.; Avila, S.; Hornung, P.S.; Junior, A.M.; Ribani, R.H. Factors affecting mushroom Pleurotus spp. Saudi J. Biol. Sci. 2019, 26, 633–646. [Google Scholar] [CrossRef]
- Sultana, R.; Hossain, I.; Saifullah, M.D.; Amin, M.D.; Chakraborty, R. Influence of substrate pH and watering frequency on the growth of oyster mushroom. Int. J. Plant. Biol. Res. 2018, 6, 1097. [Google Scholar]
- Yadav, B. Physical and nutritional Fin relation to growth of Pleurotus sajor-caju FR, Singer. J. Phytol. Res. 2001, 14, 95–98. [Google Scholar]
- Mihilall, Y.; Mudhoo, A.; Mohee, R. Preliminary study on compost production as substrate for Pleurotus sajor-caju (Fr.) Singer mushroom cultivation in Mauritius. Dyn. Biochem. Process Biotechnol. Mol. Biol. 2010, 4, 32–43. [Google Scholar]
- Sulaiman, F.; Abdullah, N.; Rahman, A.A. Basic Properties of Washed and Unwashed Oil Palm Wastes. In Proceedings of the 3rd CUTSE International Conference, Miri, Sarawak, Malaysia, 8–9 November 2011. [Google Scholar]
- Kaniapan, S.; Hassan, S.; Ya, H.; Nesan, K.P.; Azeem, M. The utilisation of palm oil and oil palm residues and the related challenges as a sustainable alternative in biofuel, bioenergy, and transportation sector: A review. Sustainability 2021, 13, 3110. [Google Scholar] [CrossRef]
- Yunos, N.S.H.M.; Baharuddin, A.S.; Yunos, K.F.M.; Hafid, H.S.; Busu, Z.; Mokhtar, M.N.; Sulaiman, A.; Som, A.M. The physicochemical characteristics of residual oil and fibers from oil palm empty fruit bunches. BioResources 2015, 10, 14–29. [Google Scholar] [CrossRef]
- Hassan, M.A.; Abd-Aziz, S. Waste and environmental management in the Malaysian palm oil industry. In Palm Oil Production, Processing, Characerization and Uses; Lai, O., Tan, C., Akoh, C.C., Eds.; Elsevier Inc.: Amterdam, The Netherlands, 2012; pp. 693–711. [Google Scholar]
- Ali, N.; Mohd Tabi, A.N.; Zakil, A.F.; Mohd Fauzai, W.N.F.; Hassan, O. Yield performance and biological efficiency of empty fruit bunch (EFB) and palm pressed fibre (PPF) as substrates for the cultivation of Pleurotus ostreatus. J. Teknol. 2013, 64, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Cueva, M.B.R.; Hernández, A.; Niño-Ruiz, Z. Influence of C/N ratio on productivity and the protein contents of Pleurotus ostreatus grown in differents residue mixtures. Rev. FCA UNCUYO 2017, 49, 331–344. [Google Scholar]
- Kurt, S.; Buyukalaca, S. Yield performances and changes in enzyme activities of Pleurotus spp. (P. ostreatus and P. sajor-caju) cultivated on different agricultural wastes. Bioresour. Technol. 2010, 101, 3164–3169. [Google Scholar] [CrossRef]
- Tas, A.A.; Umit, N.; Alkan, R.; Boynak, A.; Yeral, S. Approximation of protein quality (DIAAS) of vegetarian dishes served in restaurants. Int. J. Obes. Nutr. Sci. 2019, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Khalid, H.; Zin, Z.Z.; Anderson, J.M. Quantification of oil palm biomass and nutrient value in a mature plantation. I, Above-ground biomass. J. Oil Palm Res. 1999, 2, 23–32. [Google Scholar]
- Chang, J.; Chan, P.L.; Xie, Y.; Ma, K.L.; Cheung, M.K.; Kwan, H.S. Modified recipe to inhibit fruiting body formation for living fungal biomaterial manufacture. PLoS ONE 2019, 14, e0209812. [Google Scholar] [CrossRef]
- Mostapha, M.; Jahar, N.A.; Azizan, K.A.; Zakaria, S.; Aizat, W.M.; Jaafar, S.S. Proteomic analysis of stored core oil palm trunk (COPT) sap identifying proteins related to stress, disease resistance and differential gene/protein expression. Sains Malays. 2018, 47, 1259–1268. [Google Scholar] [CrossRef]
- Ali, N.; Khairudin, H.; Mohamed, M.; Hassan, O. Cultivation of Pleurotus ostreatus on oil palm fronds mixed with rubber tree sawdust. Chem. Eng. Trans. 2018, 63, 547–552. [Google Scholar]
- Xiao, Q.; Ma, F.; Li, Y.; Yu, H.; Li, C.; Zhang, X. Differential proteomic profiles of Pleurotus ostreatus in response to lignocellulosic components provide insights into divergent adaptive mechanisms. Front. Microbiol. 2017, 8, 3389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsanad, M.A.; Sassine, Y.N.; El Sebaaly, Z.; Fayssal, S.A. Spent coffee grounds influence on Pleurotus ostreatus production, composition, fatty acid profile, and lignocellulose biodegradation capacity. CYTA-J. Food 2021, 19, 11–20. [Google Scholar] [CrossRef]
- Khan, M.A.; Tania, M. Nutritional and medicinal importance of Pleurotus mushrooms. An overview. Food Rev. Int. 2012, 28, 313–329. [Google Scholar] [CrossRef]
- Thi, N.G.N.; Nguyen, M.T. Effects of drying methods on the characteristics of Pleurotus sajor-caju mushroom. Malays Appl Biol. 2020, 49, 31–36. [Google Scholar] [CrossRef]
- Aishah, M.S.; Rosli, W.I.W. Effect of different drying techniques on the nutritional values f oyster mushroom (Pleurotus sajor-caju). Sains Malays. 2013, 42, 937–942. [Google Scholar]
- van Steenwijk, H.P.; Bast, A.; de Boer, A. Immunomodulating effects of fungal beta-glucans: From traditional use to medicine. Nutrients 2021, 13, 1333. [Google Scholar] [CrossRef]
- Kim, H.S.; Hong, J.T.; Kim, Y.; Han, S.B. Stimulatory effect of β-glucans on immune cell. Immune Netw. 2011, 11, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Budzynska, S.; Siwulski, M.; Magdziak, Z.; Budzka, A.; Gasecka, M.; Kalac, P.; Rzymski, P.; Niedzielski, P.; Mleczek, M. Influence of iron addition (alone or with calcium) to elements biofortification and antioxidants in Pholiota nameko. Plants 2021, 10, 2275. [Google Scholar] [CrossRef]
- Badu, M.; Twumasi, S.K.; Boadi, N.O. Effects of lignocellulosic in wood used as substrate on the uality and yield of mushrooms. Food Nutr. Sci. 2011, 2, 780–784. [Google Scholar]
- Khan, M.W.; Ali, M.A.; Khan, N.A.; Khan, M.A.; Rehman, A.; Javed, N. Effect of different levels of lime and pH on mycelial growth and production efficiency of oyster mushroom (Pleurotus spp.). Pak. J. Bot. 2013, 45, 297–302. [Google Scholar]
- Odunmbaku, O.K.; Adenipekun, C.O. Cultivation of Pleurotus ostreatus (Jacq Fr.) Kumm on Gossypium hirsutum Roxb. (cotton waste) and Gmelina arborea L. sawdust. Int. Food Res. J. 2018, 25, 1140–1145. [Google Scholar]
- Xie, C.; Yan, L.; Gong, W.; Zhu, Z.; Tan, S.; Chen, D.; Hu, Z.; Peng, Y. Effects of different substrates on lignocellulosic enzyme expression, enzyme activity, substrate utilization and biological efficiency of Pleurotus Eryngii. Cell. Physiol. Biochem. 2016, 39, 1479–1494. [Google Scholar] [CrossRef]
- Hoa, H.T.; Wang, C. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 423–434. [Google Scholar] [CrossRef]
Treatment | Substrate Formulation |
---|---|
Control | 100% RWS |
T1 | 100% EFB |
T2 | 100% OPF |
T3 | 100% OPT |
T4 | 50% EFB + 50% OPF |
T5 | 50% EFB + 50% OPT |
T6 | 50% OPF + 50% OPT |
T7 | 33.3% EFB + 33.3% OPF + 33.3% OPT |
T8 | 66.6% EFB + 16.7% OPF + 16.7% OPT |
T9 | 16.7% EFB + 66.6% OPF + 16.7% OPT |
T10 | 16.7% EFB + 16.7% OPF + 66.6% OPT |
Treatment | Wet Bulk Density (g cm−3) | Particle Density (g cm−3) | Porosity (%) | pH | Moisture Content (%) | Ash Content (%) | Volatile Solids Content (%) |
---|---|---|---|---|---|---|---|
Control | 0.15 a | 1.94 a | 91.97 a,b | 6.37 g | 64.58 a,b | 12.96 a | 87.04 a |
T1 | 0.10 b,c,d | 0.08 b | 87.11 a,b,c | 7.66 a | 58.16 b | 13.94 a | 86.06 a |
T2 | 0.13 a | 1.32a b | 85.17 a,b,c | 6.99 c,d | 69.80 a,b | 14.89 a | 85.11 a |
T3 | 0.12 a,b,c | 0.76 b | 83.83 b,c | 6.43 f,g | 63.64 b | 10.55 a | 89.45 a |
T4 | 0.14 a | 1.05 a,b | 86.24 a,b,c | 6.02 h | 66.23 a,b | 13.12 a | 86.88 a |
T5 | 0.13a b | 0.96 a,b | 86.5 a,b,c | 5.95 h | 65.33 a,b | 14.44 a | 85.56 a |
T6 | 0.15 a | 0.82 b | 80.89 c | 6.06 h | 69.69 a,b | 13.52 a | 86.48 a |
T7 | 0.14 a | 0.83 b | 82.89 c | 6.84 d,e | 76.70 a | 14.19 a | 85.81 a |
T8 | 0.06 e | 0.87 b | 93.57 a | 7.34 b | 69.91 a,b | 11.92 a | 88.08 a |
T9 | 0.07 d,e | 0.87 b | 91.5 a,b | 6.65 e,f | 42.98 c | 14.51 a | 85.49 a |
T10 | 0.09 c,d | 0.73 b | 87.03 a,b,c | 7.23 b,c | 54.52 a,b | 12.40 a | 87.60 a |
Treatment | Lignin (%) | Hemicellulose (%) | Cellulose (%) |
---|---|---|---|
Control | 24.63 ± 9.11 a | 15.46 ± 2.45 a,b | 53.42 ± 3.12 a |
T1 | 8.87 ± 1.78 b | 16.91 ± 1.57 a,b | 50.73 ± 1.31 a |
T2 | 8.10 ± 0.94 b | 13.28 ± 3.2 b | 43.06 ± 9.83 a |
T3 | 9.68 ± 0.07 b | 18.35 ± 2.26 a,b | 50.63 ± 5.34 a |
T4 | 7.33 ± 2.41 b | 17.10 ± 5.23 a,b | 52.92 ± 8.08 a |
T5 | 8.93 ± 2.72 b | 26.44 ± 2.89 a | 47.84 ± 3.04 a |
T6 | 15.31 ± 3.00 a,b | 23.59 ± 4.93 a,b | 45.74 ± 2.52 a |
T7 | 5.07 ± 0.25 b | 15.83 ± 7.4 a,b | 58.29 ± 9.00 a |
T8 | 6.99 ± 2.0 b | 18.93 ± 0.44 a,b | 53.38 ± 1.98 a |
T9 | 12.59 ± 3.02 b | 15.86 ± 1.47 a,b | 48.49 ± 5.61 a |
T10 | 12.57 ± 4.56 b | 17.68 ± 7.48 a,b | 42.39 ± 3.72 a |
Treatment | N (%) | P (mg kg−1) | K (mg kg−1) | Ca (mg kg−1) | Mg (mg kg−1) | Fe (mg kg−1) | Zn (mg kg−1) | C (%) | C/N Ratio |
---|---|---|---|---|---|---|---|---|---|
Control | 5.73 a,b,c | 27.62 e | 33.38 d | 61.79 d | 13.61 f | 1.83 c | 0.33 ab | 44.80 a | 7.83 a,b,c |
T1 | 5.87 a,b | 38.32 b,c,d,e | 222.37 b | 74.45 d | 25.68 d,e | 6.64 c | 0.51 a | 44.16 c,d | 7.54 c,d,e |
T2 | 5.98 a | 77.70 a | 206.61 b | 235.34 a | 56.94 a | 5.81 c | 0.34 a,b | 43.02 g | 7.19 f |
T3 | 5.90 a,b | 46.11 b,c,d | 200.14 b | 189.27 a,b | 29.17 c,d | 33.44 a | 0.48 a,b | 38.27 h | 6.49 g |
T4 | 5.57 c | 40.14 b,c,d,e | 195.36 b,c | 88.05 d | 27.81 c,d,e | 5.62 c | 0.38 a,b | 44.34 b,c | 7.97 a,b |
T5 | 5.77 a,b,c | 59.69 a,b | 306.43 a | 142.77 b,c | 38.26 b,c | 18.31 b | 0.46 a,b | 43.62 f | 7.56 c,d,e |
T6 | 5.98 a | 44.33 b,c,d,e | 179.10 b,c | 141.21 b,c | 37.09 b,c,d | 4.76 c | 0.24 a,b | 43.84 d,e,f | 7.33 d,e,f |
T7 | 5.76 a,b,c | 51.04 b,c | 227.05 b | 145.30 b,c | 36.07 b,c,d | 5.99 c | 0.39 a,b | 44.02 c,d,e | 7.64 b,c,d |
T8 | 5.58 c | 37.32 c,d,e | 228.54 b | 100.86 c,d | 26.81 c,d,e | 4.70 c | 0.30 a,b | 44.66 a,b | 8.00 a |
T9 | 5.95 a | 49.91 b,c | 204.85 b | 212.42 a | 47.11 a,b | 3.20 c | 0.23 b | 43.00 g | 7.23 e,f |
T10 | 5.66 b,c | 22.90 e | 120.71 c | 65.89 d | 16.66 e,f | 5.57 c | 0.22 b | 43.59 f | 7.70 a,b,c |
Treatment | Days Taken for Mycelia to Fully Colonise Substrate | Days Taken for Primordia Initiation from Fully Colonised Substrate | Days Taken to Complete First Flush Growth | Stipe Length (mm) | Pileus Diameter (mm) |
---|---|---|---|---|---|
Control | 37.00 b | 36.33 a,b | 77.00 a | 44.21 b,c | 94.41 a |
T1 | 27.13 c | 9.13 c | 40.25 c | 35.35 c | 62.75 a |
T2 | 25.00 c | 46.00 a | 75.67 a | 61.44 a | 73.62 a |
T4 | 24.00 c | 14.17 c | 43.67 b,c | 38.21 b,c | 84.69 a |
T5 | 48.67 a | 7.00 c | 56.67 a,b,c | 34.44 c | 78.87 a |
T7 | 30.67 b,c | 34.00 a,b | 61.67 a,b | 53.9 a,b | 76.05 a |
T8 | 26.25 c | 14.75 c | 45.00 b,c | 36.95 c | 59.30 a |
T9 | 24.00 c | 20.83 b,c | 53.67 b,c | 32.24 c | 59.22 a |
T10 | 31.33 b,c | 41.00 a | 77.00 a | 44.88 b,c | 73.03 a |
Treatment | Fresh Weight of Fruiting Bodies (g) | Number of Total Fruiting Bodies | Number of Effective Fruiting Bodies | Biological Efficiency (%) |
---|---|---|---|---|
Control | 59.64 a | 2.33 a | 2.00 a | 41.74 a |
T1 | 44.78 a,b | 9.50 a | 5.00 a | 47.96 a |
T2 | 34.55 a,b | 6.00 a | 3.33 a | 37.80 a |
T4 | 24.9 b | 3.33 a | 1.67 a | 48.97 a |
T5 | 32.77 a,b | 6.00 a | 4.50 a | 35.07 a |
T7 | 40.47 a,b | 5.33 a | 3.33 a | 43.92 a |
T8 | 40.75 a,b | 5.00 a | 2.75 a | 47.81 a |
T9 | 24.81 b | 5.83 a | 3.67 a | 34.88 a |
T10 | 21.72 b | 2.33 a | 1.67 a | 18.36 a |
Treatment | Moisture Content (%) | Ash Content (%) | Crude Protein (%) | Crude Fibre (%) | Crude Lipid (%) |
---|---|---|---|---|---|
Control | 80.00 a | 4.60 a | 11.05 f | 46.02 a,b | 3.53 a |
T1 | 80.98 a | 1.99 b,c | 44.49 d,e | 42.30 b,c | 3.27 a |
T2 | 82.84 a | 2.69 b | 52.09 a | 31.58 c,d,e | 3.19 a |
T4 | 78.20 a | 0.83 d,e | 45.94 c,d | 24.86 e | 4.03 a |
T5 | 80.77 a | 1.50 c,d | 43.33 e | 29.16 d,e | 3.83 a |
T7 | 82.21 a | 2.01 b,c | 49.02 b | 39.02 b,c,d | 7.00 a |
T8 | 72.47 a | 0.63 d,e | 44.67 d,e | 25.96 e | 10.41 a |
T9 | 77.41 a | 0.55 d,e | 45.25 d,e | 30.31 d,e | 9.17 a |
T10 | 78.73 a | 0.37 e | 47.73 b,c | 54.27 a | 1.51 a |
Treatment | * Beta Glucan Content (%) |
---|---|
Control | 30.87 d |
T1 | 49.44 a |
T2 | 37.65 c,d |
T4 | 46.13 a,b |
T5 | 46.93 a,b |
T7 | 38.57 b,c,d |
T8 | 51.54 a |
T9 | 46.19 a,b |
T10 | 40.95 b,c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aubrey, M.L.L.; Chin, C.F.S.; Seelan, J.S.S.; Chye, F.Y.; Lee, H.H.; Rakib, M.R.M. Conversion of Oil Palm By-Products into Value-Added Products through Oyster Mushroom (Pleurotus ostreatus) Cultivation. Horticulturae 2022, 8, 1040. https://doi.org/10.3390/horticulturae8111040
Aubrey MLL, Chin CFS, Seelan JSS, Chye FY, Lee HH, Rakib MRM. Conversion of Oil Palm By-Products into Value-Added Products through Oyster Mushroom (Pleurotus ostreatus) Cultivation. Horticulturae. 2022; 8(11):1040. https://doi.org/10.3390/horticulturae8111040
Chicago/Turabian StyleAubrey, Mei Li Lee, Clament Fui Seung Chin, Jaya Seelan Sathiya Seelan, Fook Yee Chye, Huei Hong Lee, and Mohd. Rashid Mohd. Rakib. 2022. "Conversion of Oil Palm By-Products into Value-Added Products through Oyster Mushroom (Pleurotus ostreatus) Cultivation" Horticulturae 8, no. 11: 1040. https://doi.org/10.3390/horticulturae8111040
APA StyleAubrey, M. L. L., Chin, C. F. S., Seelan, J. S. S., Chye, F. Y., Lee, H. H., & Rakib, M. R. M. (2022). Conversion of Oil Palm By-Products into Value-Added Products through Oyster Mushroom (Pleurotus ostreatus) Cultivation. Horticulturae, 8(11), 1040. https://doi.org/10.3390/horticulturae8111040