Nitrogen Uptake and Translocation in Vanda Orchid after Roots and Leaves Application of Different Forms 15N Tracer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. 15N Feeding and Analysis
2.3. Calculations
2.4. Statistical Analysis
3. Results
3.1. Total N Content Distribution (%)
3.2. Labeled N Concentration in Vanda Leaves, Stems and Roots
3.3. N Content and NUE
3.4. Distribution of Labeled N Content in Vanda Leaves, Stems and Roots
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Trade. Fact Sheet Orchid. 2021. Available online: https://ditp.go.th (accessed on 7 January 2021).
- Lekawatana, S. Thai orchid: Current situation. In Proceedings of the Taiwan International Orchid Symposium, Tainan, Taiwan, 5 March 2010. [Google Scholar]
- De, L.; Pathak, P.; Rao, A.N.; Rajeevan, P.K. Global Orchid Industry. In Commercial Orchids; De Gruyter Open: Warsaw, Polland, 2019; pp. 13–19. [Google Scholar]
- Sheehan, T.J. Ultimate Orchid; DK Pub.: New York, NY, USA, 2001. [Google Scholar]
- Hew, C.S.; Yong, J.W.H. The Physiology of Tropical Orchids in Relation to the Industry, 2nd ed.; The World Scientific Publishing: Singapore, 2004. [Google Scholar]
- Stewart, J. Orchids, Revised ed.; Timber Press, Inc.: Portland, ON, USA, 2000. [Google Scholar]
- Ruamrungsri, S.; Khuankaew, T.; Sato, T.; Ohyama, T. Nitrogen sources and its uptake in dendrobium orchid by 15N tracer study. Acta Hortic. 2014, 1025, 207–211. [Google Scholar] [CrossRef]
- Susilo, H.; Peng, Y.; Lee, S.; Chen, Y.; Alex Chang, Y. The uptake and partitioning of nitrogen in Phalaenopsis Sogo Yukidian ‘V3’ as shown by 15N as a tracer. J. Am. Soc. Hortic. Sci. 2013, 138, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, W.F.; Fagan, E.B.; Soares, L.H.; Soares, J.N.; Reichardt, K.; Neto, D.D. Seed and foliar application of amino acids improve variables of nitrogen metabolism and productivity in soybean crop. Front. Plant Sci. 2018, 9, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, A.; Madrid, R.; Gimeno, V.; Rodríguez Ortega, W.; Nicolas, N.; García-Sánchez, F. The effects of amino acids fertilization incorporated to the nutrient solution on mineral composition and growth in tomato seedlings. Span. J. Agric. Res. 2011, 9, 852–861. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.S.; Ahmad, B.; Jaskani, M.J.; Ahmad, R.; Malik, A.U. Foliar application of mixture of amino acids and seaweed (Ascophylum nodosum) extract improve growth and physicochemical properties of grapes. Int. J. Agric. Biol. 2012, 14, 383–388. [Google Scholar]
- Noroozlo, Y.; Souri, M.K.; Delshad, M. Stimulation Effects of Foliar Applied Glycine and Glutamine Amino Acids on Lettuce Growth. Open Agric. 2019, 4, 164–172. [Google Scholar] [CrossRef]
- Hassan, M.U.; Islam, M.M.; Wang, R.; Guo, J.; Luo, H.; Chen, F.; Li, X. Glutamine application promotes nitrogen and biomass accumulation in the shoot of seedlings of the maize hybrid ZD958. Planta 2020, 251, 66. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.P.; Gao, Z.K.; Li, J.T.; Xu, G.H.; Wang, M. Effects of extraneous glutamic acid on nitrate contents and quality of Chinese chive. Acta Hortic. 2012, 856, 91–98. [Google Scholar] [CrossRef]
- Amin, A.; Gharib, F.; El-Awadi, M.; Rashad, E.S. Physiological response of onion plants to foliar application of putrescine and glutamine. Sci. Hortic. 2011, 129, 353–360. [Google Scholar] [CrossRef]
- Marschner, P. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Baslam, M.; Mitsui, T.; Sueyoshi, K.; Ohyama, T. Recent Advances in Carbon and Nitrogen Metabolism in C3 Plants. Int. J. Mol. Sci. 2020, 22, 318. [Google Scholar] [CrossRef] [PubMed]
- Bisht, N.; Chauhan, P.S. Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. In Soil Contamination—Threats and Sustainable Solutions; Larramendy, M.L., Soloneski, S., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Panjama, K.; Ohyama, T.; Ohtake, N.; Sato, T.; Potapohn, N.; Sueyoshi, K.; Ruamrungsri, S. Identifying N sources that afect N uptake and assimilation in Vanda hybrid using 15N tracers. Hortic. Environ. Biotechnol. 2018, 59, 805–813. [Google Scholar] [CrossRef]
- Arditti, J. Fundamentals of Orchid Biology; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Hew, C.S.; Yam, T.W.; Arditti, J. Biology of Vanda Miss Joaquim; Singapore University Press: Singapore, 2002. [Google Scholar]
- Tsavkelova, E.A.; Lobakova, E.S.; Kolomeitseva, G.L.; Cherdyntseva, T.A.; Netrusov, A.I. Associative cyanobacteria isolated from the roots of epiphytic orchids. Microbiology 2003, 72, 92–97. [Google Scholar] [CrossRef]
- Britto, D.T.; Siddiqi, M.Y.; Glass, A.D.; Kronzucker, H.J. Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proc. Natl. Acad. Sci. USA 2001, 98, 4255–4258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Näsholm, T.; Kielland, K.; Ganeteg, U. Uptake of organic nitrogen by plants. New Phytol. 2009, 182, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Mohammadipour, N.; Souri, M.K. Effects of different levels of glycine in the nutrient solution on the growth, nutrient composition and antioxidant activity of coriander (Coriandrum sativum L.). Acta Agrobot. 2019, 72, 1759. [Google Scholar] [CrossRef]
- Fahimi, F.; Souri, M.K.; Yaghobi, F. Growth and development of greenhouse cucumber under foliar application of Biomin and Humifolin fertilizers in comparison to their soil application and NPK. J. Sci. Technol. Greenh. Cult. 2016, 7, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Xu, M.; Wang, S.; Wu, L.; Sun, S.; Su, T. Effects of exogenous L-Glutamine as a sole nitrogen source on physiological characteristics and nitrogen use efficiency of poplar. Plant Physiol. Biochem. 2022, 172, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T. Phalaenopsis mineral nutrition. Acta Hortic. 2010, 878, 321–333. [Google Scholar] [CrossRef]
Application Site | 15N Concentration (µgLN/gDW) at 7 DAF | 15N Concentration (µgLN/gDW) at 30 DAF | ||||
---|---|---|---|---|---|---|
Leaves | Stem | Roots * | Leaves | Stem * | Roots * | |
Leaves | 6.86 | 9.60 | 36.82 b | 28.62 | 34.86 b | 75.36 b |
Roots | 7.67 | 11.21 | 48.17 a | 32.55 | 50.78 a | 150.98 a |
LSD (p ≤ 0.05) | ns | ns | 7.91 | ns | 1.90 | 14.74 |
N sources | Leaves * | Stem * | Roots * | Leaves * | Stem * | Roots * |
2.5 mM 15NO3− + 2.5 mM NH4+ | 8.38 a | 10.21 ab | 36.37 b | 34.83 a | 41.80 b | 96.57 b |
2.5 mM NO3− + 2.5 mM 15NH4+ | 5.48 b | 8.66 b | 30.65 b | 23.63 b | 32.33 c | 90.70 b |
2.5 mM Glutamine (15N2) | 7.92 a | 12.34 a | 60.48 a | 33.30 a | 54.33 a | 152.24 a |
LSD (p ≤ 0.05) | 1.82 | 3.35 | 9.69 | 6.76 | 2.33 | 18.05 |
Interaction factor | Leaves * | Stem * | Roots * | Leaves * | Stem * | Roots * |
Leaves × 2.5 mM 15NO3− + 2.5 mM NH4+ | 8.43 a | 10.68 ab | 35.17 cd | 34.54 a | 30.01 e | 49.36 d |
Leaves × 2.5 mM NO3− + 2.5 mM 15NH4+ | 4.82 b | 7.49 b | 23.22 d | 19.69 b | 28.20 e | 61.93 d |
Leaves × 2.5 mM Glutamine (15N2) | 7.32 ab | 10.63 ab | 52.09 b | 31.64 a | 46.36 c | 114.81 c |
Roots × 2.5 mM 15NO3− + 2.5 mM NH4+ | 8.33 a | 9.74 ab | 37.58 c | 35.13 a | 53.60 b | 143.78 b |
Roots × 2.5 mM NO3− + 2.5 mM 15NH4+ | 6.14 ab | 9.84 ab | 38.08 c | 27.57 ab | 36.45 d | 119.48 bc |
Roots × 2.5 mM Glutamine (15N2) | 8.53 a | 14.06 a | 68.86 a | 34.95 a | 62.29 a | 189.67 a |
LSD (p ≤ 0.05) | 2.58 | 4.73 | 13.71 | 9.55 | 3.29 | 25.53 |
CV(%) | 19.95 | 25.56 | 18.13 | 17.56 | 4.32 | 12.68 |
Application Site | 15N Content (µg15N/Plant) at 7 DAF | 15N Content (µg15N/Plant) at 30 DAF | ||||
---|---|---|---|---|---|---|
Leaves * | Stem * | Roots * | Leaves * | Stem * | Roots * | |
Leaves | 101.71 a | 18.23 a | 374.34 b | 444.44 a | 78.76 b | 847.80 b |
Roots | 118.04 a | 21.25 a | 501.60 a | 508.95 a | 112.33 a | 1869.60 a |
LSD (p ≤ 0.05) | 23.10 | 5.55 | 92.94 | 81.14 | 8.96 | 166.31 |
N sources | Leaves * | Stem * | Roots * | Leaves * | Stem * | Roots * |
2.5 mM 15NO3− + 2.5 mM NH4+ | 125.25 a | 20.11 ab | 385.03 b | 522.32 a | 95.29 b | 1191.00 b |
2.5 mM NO3− + 2.5 mM 15NH4+ | 84.94 b | 16.10 b | 311.68 b | 378.78 b | 73.89 c | 1156.30 b |
2.5 mM Glutamine (15N2) | 119.44 a | 23.01 a | 617.21 a | 528.99 a | 117.45 a | 1728.90 a |
LSD (p ≤ 0.05) | 28.29 | 6.80 | 113.83 | 99.37 | 10.97 | 203.69 |
Interaction factor | Leaves * | Stem * | Roots * | Leaves * | Stem * | Roots * |
Leaves × 2.5 mM 15NO3− + 2.5 mM NH4+ | 122.18 a | 22.12 ab | 375.94 bc | 497.86 a | 73.28 de | 555.30 d |
Leaves × 2.5 mM NO3− + 2.5 mM 15NH4+ | 73.92 b | 12.84 b | 235.48 c | 315.72 b | 60.60 e | 680.00 d |
Leaves × 2.5 mM Glutamine (15N2) | 109.04 ab | 19.75 ab | 511.60 b | 519.76 a | 102.39 bc | 1308.30 c |
Roots × 2.5 mM 15NO3− + 2.5 mM NH4+ | 128.32 a | 18.10 ab | 394.11 bc | 546.78 a | 117.30 ab | 1826.70 b |
Roots × 2.5 mM NO3− + 2.5 mM 15NH4+ | 95.96 ab | 19.37 ab | 387.88 bc | 441.84 ab | 87.17 cd | 1632.70 b |
Roots ×2.5 mM Glutamine (15N2) | 129.84 a | 26.27 a | 722.82 a | 538.23 a | 132.51 a | 2149.50 a |
LSD (p ≤ 0.05) | 40.00 | 9.62 | 160.98 | 140.53 | 15.52 | 288.06 |
CV (%) | 20.47 | 27.39 | 20.66 | 16.57 | 9.13 | 11.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panjama, K.; Inkham, C.; Sato, T.; Ohyama, T.; Ohtake, N.; Ruamrungsri, S. Nitrogen Uptake and Translocation in Vanda Orchid after Roots and Leaves Application of Different Forms 15N Tracer. Horticulturae 2022, 8, 902. https://doi.org/10.3390/horticulturae8100902
Panjama K, Inkham C, Sato T, Ohyama T, Ohtake N, Ruamrungsri S. Nitrogen Uptake and Translocation in Vanda Orchid after Roots and Leaves Application of Different Forms 15N Tracer. Horticulturae. 2022; 8(10):902. https://doi.org/10.3390/horticulturae8100902
Chicago/Turabian StylePanjama, Kanokwan, Chaiartid Inkham, Takashi Sato, Takuji Ohyama, Norikuni Ohtake, and Soraya Ruamrungsri. 2022. "Nitrogen Uptake and Translocation in Vanda Orchid after Roots and Leaves Application of Different Forms 15N Tracer" Horticulturae 8, no. 10: 902. https://doi.org/10.3390/horticulturae8100902
APA StylePanjama, K., Inkham, C., Sato, T., Ohyama, T., Ohtake, N., & Ruamrungsri, S. (2022). Nitrogen Uptake and Translocation in Vanda Orchid after Roots and Leaves Application of Different Forms 15N Tracer. Horticulturae, 8(10), 902. https://doi.org/10.3390/horticulturae8100902