Effects of Brief UV-C Irradiation Treatments on Rooting Performance of Pelargonium × hortorum (L.H. Bailey) Stem Cuttings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Propagation Material and Rooting Environment
2.2. UV-C Irradiation Treatments
2.3. Net CO2 Assimilation (As), Transpiration (E) and Stomatal Conductance (gs)
2.4. Colour Assessments
2.5. Ethylene Production
2.6. Rooting Performance, Growth and Development
2.7. Experimental Design and Statistical Analysis
3. Results
3.1. Physiological Responses of P. × hortorum Stem Cuttings
3.2. Colour Attributes
3.3. Rooting Performance
3.4. Correlation Analysis of Ethylene Production and Rooting Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dole, J.M.; Wilkins, H.F. Floriculture: Principles and Species; Prentice-Hall Inc.: Hoboken, NJ, USA, 1999. [Google Scholar]
- Urban, L.; Charles, F.; de Miranda, M.R.A.; Aarrouf, J. Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. Plant Physiol. Biochem. 2016, 105, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Urban, L.; Sari, D.C.; Orsal, B.; Lopes, M.M.D.A.; Miranda, R.; Aarrouf, J. UV-C light and pulsed light as alternatives to chemical and biological elicitors for stimulating plant natural defenses against fungal diseases. Sci. Hortic. 2018, 235, 452–459. [Google Scholar] [CrossRef]
- Darras, A.I.; Bali, I.; Argyropoulou, E. Disease resistance and growth responses in Pelargonium× hortorum plants to brief pulses of UV-C irradiation. Sci. Hortic. 2015, 181, 95–101. [Google Scholar] [CrossRef]
- Darras, A.I.; Skouras, P.J.; Assimomitis, P.; Labropoulou, C.; Stathas, G.J. Application of UV-C irradiation to Rosa x hybrida plants as a tool to minimise Macrosiphum rosae populations. Agronomy 2021, 11, 702. [Google Scholar] [CrossRef]
- Darras, A.I.; Vlachodimitropoulou, A.; Dimitriadis, C. Regulation of corm sprouting, growth and flowering of pot Freesia hybrida L. plants by cold and UV-C irradiation forcing. Sci. Hortic. 2019, 252, 110–112. [Google Scholar] [CrossRef]
- Darras, A.I.; Tsikaloudakis, G.; Lycoskoufis, I.; Dimitriadis, C.; Karamousantas, D. Low doses of UV-C irradiation affects growth, fruit yield and photosynthetic activity of tomato plants. Sci. Hortic. 2020, 267, 109357. [Google Scholar] [CrossRef]
- Liu, C.; Cai, L.; Han, X.; Ying, T. Temporary effect of postharvest UV-C irradiation on gene expression profile in tomato fruit. Gene 2011, 486, 56–64. [Google Scholar] [CrossRef]
- Tang, K.; Zhan, J.C.; Yang, H.R.; Huang, W.D. Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings. J. Plant Physiol. 2010, 167, 95–102. [Google Scholar] [CrossRef]
- Rai, R.; Meena, R.P.; Smita, S.S.; Shukla, A.; Rai, S.K.; Pandey-Rai, S. UV-B and UV-C pre-treatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L.–An antimalarial plant. J. Photochem. Photobiol. B Biol. 2011, 105, 216–225. [Google Scholar] [CrossRef]
- Darras, A.I.; Demopoulos, V.; Bali, I.; Tiniakou, C. Photomorphogenic reactions in geranium (Pelargonium x hortorum) plants stimulated by brief exposures of ultraviolet-C irradiation. Plant Growth Regul. 2012, 68, 343–350. [Google Scholar] [CrossRef]
- Loconsole, D.; Santamaria, P. UV lighting in horticulture: A sustainable tool for improving production quality and food safety. Horticulturae 2021, 7, 9. [Google Scholar] [CrossRef]
- Tiecher, A.; de Paula, L.A.; Chaves, F.C.; Rombaldi, C.V. UV-C effect on ethylene, polyamines and the regulation of tomato fruit ripening. Postharvest Biol. Technol. 2013, 86, 230–239. [Google Scholar] [CrossRef]
- Li, D.; Luo, Z.; Mou, W.; Wang, Y.; Ying, T.; Mao, L. ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria ananassa Duch.). Postharvest Biol. Technol. 2014, 90, 56–62. [Google Scholar] [CrossRef]
- Abeles, F.B.; Morgan, P.W.; Saltveit, M.E. Ethylene in plant biology Academic Press San Diego. In Ethylene in Plant Biology, 2nd ed.; Academic Press: San Diego, CA, USA, 1992. [Google Scholar]
- Rapaka, V.K.; Faust, J.E.; Dole, J.M.; Runkle, E.S. Endogenous carbohydrate status affects postharvest ethylene sensitivity in relation to leaf senescence and adventitious root formation in Pelargonium cuttings. Postharvest Biol. Technol. 2008, 48, 272–282. [Google Scholar] [CrossRef]
- Mutui, T.M.; Mibus, H.; Serek, M. The influence of plant growth regulators and storage on root induction and growth in Pelargonium zonale cuttings. Plant Growth Regul. 2010, 61, 185–193. [Google Scholar] [CrossRef]
- Clark, D.G.; Gubrium, E.K.; Barrett, J.E.; Nell, T.A.; Klee, H.J. Root formation in ethylene-insensitive plants. Plant Physiol. 1999, 121, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Riov, J.; Yang, S.F. Ethylene and auxin-ethylene interaction in adventitious root formation in mung bean (Vigna radiata) cuttings. J. Plant Growth Regul. 1989, 8, 131–141. [Google Scholar] [CrossRef]
- Liu, J.; Mukherjee, L.; Reid, D.M. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. III. The role of ethylene. Physiol. Plant. 1990, 78, 268–276. [Google Scholar] [CrossRef]
- Sukthavornthum, W.; Bodhipadma, K.; Noichinda, S.; Phanomchai, S.; Deelueak, U.; Kachonpadungkitti, Y.; Leung, D.W. UV-C irradiation induced alterations in shoot proliferation and in vitro flowering in plantlets developed from encapsulated and non-encapsulated microshoots of Persian violet. Sci. Hortic. 2018, 233, 9–13. [Google Scholar] [CrossRef]
- Phanomchai, S.; Noichinda, S.; Kachonpadungkitti, Y.; Bodhipadma, K. Differing In vitro rooting and flowering responses of the Persian violet to low and high UV-C irradiation. Plants 2021, 10, 2671. [Google Scholar] [CrossRef]
- Mutui, T.; Mibus, H.; Serek, M. Effects of thidiazuron, ethylene, abscisic acid and dark storage on leaf yellowing and rooting of Pelargonium cuttings. J. Hortic. Sci. Biotechnol. 2005, 80, 543–550. [Google Scholar] [CrossRef]
- Rapaka, V.K.; Bessler, B.; Schreiner, M.; Druege, U. Interplay between initial carbohydrate availability, current photosynthesis, and adventitious root formation in Pelargonium cuttings. Plant Sci. 2005, 168, 1547–1560. [Google Scholar] [CrossRef]
- Druege, U.; Zerche, S.; Kadner, R. Nitrogen-and storage-affected carbohydrate partitioning in high-light-adapted Pelargonium cuttings in relation to survival and adventitious root formation under low light. Ann. Bot. 2004, 94, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Ivanchenko, M.G.; Muday, G.K.; Dubrovsky, J.G. Ethylene–auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J. 2008, 55, 335–347. [Google Scholar] [CrossRef]
- Sun, W.Q.; Bassuk, N.L. Auxin-induced Ethylene Synthesis during Rooting and Inhibition of Budbreak of Royalty’ Rose Cuttings. J. Am. Soc. Hortic. Sci. 1993, 118, 638–643. [Google Scholar] [CrossRef]
- Pitts, R.J.; Cernac, A.; Estelle, M. Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J. 1998, 16, 553–560. [Google Scholar] [CrossRef]
- Růžička, K.; Ljung, K.; Vanneste, S.; Podhorská, R.; Beeckman, T.; Friml, J.; Benková, E. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 2007, 19, 2197–2212. [Google Scholar] [CrossRef] [Green Version]
Variables | df | Mean Square | F-Value | Significance (p = 0.05) |
---|---|---|---|---|
As | 1 | 6.500 | 0.272 | 0.603 |
E | 1 | 1.755 | 1.946 | 0.165 |
gs | 1 | 0.007 | 0.250 | 0.618 |
a* | 1 | 4.273 | 4.679 | 0.114 |
b* | 1 | 936.084 | 1.534 | 0.217 |
C* | 1 | 62.657 | 3.205 | 0.045 |
L* | 1 | 6.260 | 0.350 | 0.555 |
Ethylene | 1 | 1202.311 | 43.950 | 0.000 |
As (μmol m−2. s) | E (mmol m−2. s) | gs (mmol m−2. s) | |||||||
---|---|---|---|---|---|---|---|---|---|
Pearson Correlation | Sum of Squares | Significance | Pearson Correlation | Sum of Squares | Significance | Pearson Correlation | Sum of Squares | Significance | |
Ethylene | 0.336 | 1188.483 | 0.000 | 0.386 | 298.884 | 0.000 | 0.296 | 39.477 | 0.000 |
Root Length (cm) | Root Number | Days to Rooting | Root Weight (mg) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pearson Correlation | Sum of Squares | Significance | Pearson Correlation | Sum of Squares | Significance | Pearson Correlation | Sum of Squares | Significance | Pearson Correlation | Sum of Squares | Significance | |
Ethylene | 0.156 | 63.837 | 0.478 | 0.372 | 101.784 | 0.289 | −0.618 | −148.676 | 0.005 | 0.494 | 2301.144 | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darras, A.I.; Grigoropoulou, K.; Dimiza, K.; Zulfiqar, F. Effects of Brief UV-C Irradiation Treatments on Rooting Performance of Pelargonium × hortorum (L.H. Bailey) Stem Cuttings. Horticulturae 2022, 8, 897. https://doi.org/10.3390/horticulturae8100897
Darras AI, Grigoropoulou K, Dimiza K, Zulfiqar F. Effects of Brief UV-C Irradiation Treatments on Rooting Performance of Pelargonium × hortorum (L.H. Bailey) Stem Cuttings. Horticulturae. 2022; 8(10):897. https://doi.org/10.3390/horticulturae8100897
Chicago/Turabian StyleDarras, Anastasios I., Katerina Grigoropoulou, Kallirroi Dimiza, and Faisal Zulfiqar. 2022. "Effects of Brief UV-C Irradiation Treatments on Rooting Performance of Pelargonium × hortorum (L.H. Bailey) Stem Cuttings" Horticulturae 8, no. 10: 897. https://doi.org/10.3390/horticulturae8100897
APA StyleDarras, A. I., Grigoropoulou, K., Dimiza, K., & Zulfiqar, F. (2022). Effects of Brief UV-C Irradiation Treatments on Rooting Performance of Pelargonium × hortorum (L.H. Bailey) Stem Cuttings. Horticulturae, 8(10), 897. https://doi.org/10.3390/horticulturae8100897