Effect of Parental Components and Pollination Frequency on the Setting and Germination of Chrysanthemum Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Cultivation in the Greenhouse and Crossing
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, K.; Li, S.; Jia, D.; Xing, X.; Wang, H.; Song, A.; Jiang, J.; Chen, S.; Chen, F.; Ding, L. Characterization of the MADS-Box Gene CmFL3 in chrysanthemum. Agronomy 2022, 12, 1716. [Google Scholar] [CrossRef]
- Ohmiya, A. Molecular mechanisms underlying the diverse array of petal colors in chrysanthemum flowers. Breed. Sci. 2018, 68, 17075. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Huo, B.; Lin, S.; Zhang, S.; Mao, C.; Jiang, J.; Chen, S.; Fang, W.; Guan, Z.; Liao, Y.; et al. Germplasm innovation and establishment of comprehensive evaluation system for hedgerow garden chrysanthemum. Agronomy 2022, 12, 1736. [Google Scholar] [CrossRef]
- Latado, R.R.; Adames, A.H.; Neto, A.T. In vitro mutation of chrysanthemum (Dendranthema grandiflora Tzvelev) with ethylmethanesulphonate (EMS) in immature floral pedicels. Plant Cell Tiss. Organ Cult. 2004, 77, 103–106. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Shimizu, A.; Hase, Y.; Tanaka, A.; Shikazono, N.; Degi, K.; Morishita, T. Effects of ion beam irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breed. Sci. 2010, 60, 398–404. [Google Scholar] [CrossRef]
- Haider, S.; Gao, Y.; Gao, Y. Standardized genetic transformation protocol for chrysanthemum cv. ‘Jinba’ with TERMINAL FLOWER 1 homolog CmTFL1a. Genes 2020, 11, 860. [Google Scholar] [CrossRef]
- Adedeji, O.S.; Naing, A.H.; Kim, C.K. Protoplast isolation and shoot regeneration from protoplast-derived calli of chrysanthemum cv. White ND. Plant Cell Tiss. Organ Cult. 2020, 141, 571–581. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Kulus, D. Chrysanthemum biotechnology: Discoveries from the recent literature. Folia Hortic. 2014, 26, 67–77. [Google Scholar] [CrossRef]
- Anderson, N.O. Chrysanthemum. In Flower Breeding and Genetics; Anderson, N.O., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 389–437. [Google Scholar]
- Wang, F.; Zhang, F.J.; Chen, F.D.; Fang, W.M.; Teng, N.J. Identification of chrysanthemum (Chrysanthemum morifolium) self-incompatibility. Sci. World J. 2014, 2014, 625658. [Google Scholar] [CrossRef]
- Yang, J.S.; Endo, M. In vitro germination and viability of Dendranthema pollen. Asian J. Plant Sci. 2005, 4, 673–677. [Google Scholar] [CrossRef]
- Spaargaren, J.; Van Geest, G. Chrysanthemum. In Ornamental Crops, Handbook of Plant Breeding; Van Huylenbroeck, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11, pp. 319–348. [Google Scholar]
- Wang, F.; Zhong, X.; Wang, H.; Song, A.; Chen, F.; Fang, W.; Jiang, J.; Teng, N. Investigation of differences in fertility among progenies from self-pollinated chrysanthemum. Int. J. Mol. Sci. 2018, 19, 832. [Google Scholar] [CrossRef] [PubMed]
- Saumitou-Laprade, P.; Vernet, P.; Vekemans, X.; Billiard, S.; Gallina, S.; Essalouh, L.; Mhaïs, A.; Moukhli, A.; Bakkali, A.E.; Barcaccia, G.; et al. Elucidation of the genetic architecture of self-incompatibility in olive: Evolutionary consequences and perspectives for orchard management. Evol. Appl. 2017, 10, 867–880. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.K. Induced mutations: Technological advancement for development of new ornamental varieties. Nucleus 2020, 63, 119–129. [Google Scholar] [CrossRef]
- Sun, C.Q.; Chen, F.D.; Teng, N.J.; Liu, Z.L.; Fang, W.M.; Hou, X.L. Factors affecting seed set in the crosses between Dendranthema grandiflorum (Ramat.) Kitamura and its wild species. Euphytica 2010, 171, 181–192. [Google Scholar] [CrossRef]
- Miler, N.; Wozny, A. Effect of pollen genotype, temperature and period of storage on in vitro germinability and in vivo seed set in chrysanthemum—Preliminary study. Agronomy 2021, 11, 2395. [Google Scholar] [CrossRef]
- Deng, Y.; Teng, N.; Chen, S.; Chen, F.; Guan, Z.; Song, A.; Chang, Q. Reproductive barriers in the intergeneric hybridization between Chrysanthemum grandiflorum (Ramat.) Kitam. and Ajania przewalskii Poljak. (Asteraceae). Euphytica 2010, 174, 41–50. [Google Scholar] [CrossRef]
- Puglisi, D.; Las Casas, G.; Ferlito, F.; Nicolosi, E.; Di Guardo, M.; Scollo, F.; Saitta, G.; La Malfa, S.; Gentile, A.; Distefano, G. Parents’ selection affects embryo rescue, seed regeneration and the heredity of seedless trait in table grape breeding programs. Agriculture 2022, 12, 1096. [Google Scholar] [CrossRef]
- Zalewska, M.; Tymoszuk, A.; Miler, N. New chrysanthemum cultivars as a result of in vitro mutagenesis with the application of different explant types. Acta Sci. Pol. Hort. Cult. 2011, 10, 109–123. [Google Scholar]
- Anderson, N.O.; Ascher, P.D. Inheritance of seed set, germination, and day neutrality/heat delay insensitivity of garden chrysanthemums (Dendranthema × grandiflora) under glasshouse and field conditions. J. Am. Soc. Hort. Sci. 2004, 129, 509–516. [Google Scholar] [CrossRef]
- Pu, Y.; Huo, R.; Lin, Q.; Wang, F.; Chun, X.; Huang, H.; Dai, S. Investigation and screening of chrysanthemum resources to identify self-compatible mutants. Sci. Hortic. 2021, 281, 2021. [Google Scholar] [CrossRef]
- Mekapogu, M.; Vasamsetti, B.M.K.; Kwon, O.-K.; Ahn, M.-S.; Lim, S.-H.; Jung, J.-A. Anthocyanins in floral colors: Biosynthesis and regulation in chrysanthemum flowers. Int. J. Mol. Sci. 2020, 21, 6537. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, C.L.; Wang, H.D.; Chen, K.L. Study on the pollen viability and stigma receptivity of Chrysanthemum morifolium ‘Fubaiju’. Zhong Yao Cai 2012, 35, 1546–1550. [Google Scholar] [PubMed]
- Din, A.; Qadri, Z.A.; Wani, M.A.; Rather, Z.A.; Iqbal, S.; Malik, S.A.; Hussain, P.R.; Rafiq, S.; Nazki, I.T. Congenial in vitro γ-ray-induced mutagenesis underlying the diverse array of petal colours in chrysanthemum (Dendranthema grandiflorum Kitam.) cv. ‘Candid’. Biol. Life Sci. Forum 2021, 4, 21. [Google Scholar] [CrossRef]
No. | Parental Components (Maternal × Paternal) | Dates of Crossing | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1. | B × Ł | 10 November | 18 November | 25 November | 2 December | ||||||
10 November | 15 November | 18 November | 22 November | 25 November | 29 November | 2 December | |||||
2. | Ł × B | 10 November | 18 November | 25 November | 2 December | ||||||
10 November | 15 November | 18 November | 22 November | 25 November | 29 November | 2 December | |||||
3. | JTY × UTP4 | 10 November | 18 November | 25 November | 2 December | ||||||
10 November | 15 November | 18 November | 22 November | 25 November | 29 November | 2 December | |||||
4. | W × Ł | 18 November | 25 November | 2 December | |||||||
18 November | 22 November | 25 November | 29 November | 2 December | 6 December | ||||||
5. | JTY × P | 18 November | 25 November | 2 December | |||||||
18 November | 22 November | 25 November | 29 November | 2 December | 6 December | ||||||
6. | W × BG | 18 November | 25 November | 2 December | |||||||
18 November | 22 November | 25 November | 29 November | 2 December | 6 December | ||||||
7. | W × P | 18 November | 25 November | 2 December | |||||||
18 November | 22 November | 25 November | 29 November | 2 December | 6 December | ||||||
8. | JTY × Ł | 25 November | 2 December | 9 December | |||||||
25 November | 29 November | 2 December | 6 December | 9 December | 13 December | ||||||
9. | JTY × W | 25 November | 2 December | 9 December | |||||||
25 November | 29 November | 2 December | 6 December | 9 December | 13 December | ||||||
10. | W × UTP4 | 25 November | 2 December | 9 December | |||||||
25 November | 29 November | 2 December | 6 December | 9 December | 13 December |
Parental Components (Maternal × Paternal) | Frequency of Pollination (per Week) | No. of Maternal Inflorescences | No. of Florets in Inflorescences | No. of Seeds in Inflorescences | Efficacy of Seed Setting [%] | ||
---|---|---|---|---|---|---|---|
Total | Mean | Total | Mean | ||||
B × Ł | 1× 2× | 6 | 994 | 165.7 a,b | 9 | 1.5 b,c | 0.9 b–d * |
6 | 1095 | 182.5 a | 9 | 1.5 b,c | 0.8 c,d | ||
Ł × B | 1× 2× | 6 | 722 | 120.3 c–f | 1 | 0.2 c | 0.1 d |
6 | 781 | 130.2 b–f | 1 | 0.2 c | 0.1 d | ||
JTY × UTP4 | 1× 2× | 6 | 475 | 79.2 h | 0 | 0.0 c | 0.0 d |
6 | 591 | 98.5 f–h | 0 | 0.0 c | 0.0 d | ||
W × Ł | 1× 2× | 6 | 875 | 145.9 a–d | 0 | 0.0 c | 0.0 d |
6 | 942 | 157.0 a–c | 13 | 2.2 b | 1.4 b–d | ||
JTY × P | 1× 2× | 6 | 608 | 101.3 e–h | 0 | 0.0 c | 0.0 d |
6 | 725 | 120.8 c–f | 0 | 0.0 c | 0.0 d | ||
W × BG | 1× 2× | 6 | 836 | 139.3 b–e | 3 | 0.5 b,c | 0.4 c,d |
6 | 810 | 135.0 b–f | 1 | 0.2 c | 0.1 d | ||
W × P | 1× 2× | 6 | 907 | 151.2 a–c | 2 | 0.3 b,c | 0.2 c,d |
6 | 1072 | 178.7 a | 22 | 3.7 a | 2.1 a,b | ||
JTY × Ł | 1× 2× | 6 | 619 | 103.2 e–h | 3 | 0.5 b,c | 0.5 c,d |
6 | 673 | 112.2 d–g | 1 | 0.2 c | 0.1 d | ||
JTY × W | 1× 2× | 6 | 530 | 88.4 g,h | 0 | 0.0 c | 0.0 d |
6 | 504 | 84.0 g,h | 0 | 0.0 c | 0.0 d | ||
W × UTP4 | 1× 2× | 6 | 824 | 137.3 b–e | 7 | 1.2 b,c | 0.8 c,d |
6 | 924 | 154.0 a–c | 21 | 3.5 a | 2.3 a | ||
Total | 15,507 | 129.2 | 93 | 0.8 b,c | 0.5 |
Parental Components (Maternal × Paternal) | Seeds | Properly Growing Plants | |||
---|---|---|---|---|---|
Obtained | Germinating | Share [%] | Number | Share [%] | |
B × Ł | 18 | 10 b | 55.5 a,b | 8 b,c | 80.0 a |
Ł × B | 2 | 2 c | 100.0 a | 2 c | 100.0 a |
W × Ł | 13 | 11 a,b | 84.6 a | 11 a–c | 100.0 a |
W × BG | 4 | 2 c | 50.0 b | 2 c | 100.0 a |
W × P | 24 | 21 a | 87.5 a | 20 a | 95.2 a |
JTY × Ł | 4 | 4 b,c | 100.0 a | 4 c | 100.0 a |
W × UTP4 | 28 | 17 a,b | 60.7 a,b | 17 a,b | 100.0 a |
Total | 93 | 67 | 72.0 | 64 | 95.5 |
Parental Components (Maternal × Paternal) | F1 Plants | |||
---|---|---|---|---|
Obtained | Preliminary Selected | Granted PBRs | PBR Submission, Under Proceedings | |
B × Ł | 8 | 3 | 0 | 0 |
Ł × B | 2 | 1 | 1 | 0 |
W × Ł | 11 | 3 | 0 | 0 |
W × BG | 2 | 0 | 0 | 0 |
W × P | 20 | 5 | 2 | 1 |
JTY × Ł | 4 | 2 | 1 | 0 |
W × UTP4 | 17 | 6 | 2 | 1 |
Total | 64 | 20 | 6 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miler, N.; Kulus, D. Effect of Parental Components and Pollination Frequency on the Setting and Germination of Chrysanthemum Seeds. Horticulturae 2022, 8, 827. https://doi.org/10.3390/horticulturae8090827
Miler N, Kulus D. Effect of Parental Components and Pollination Frequency on the Setting and Germination of Chrysanthemum Seeds. Horticulturae. 2022; 8(9):827. https://doi.org/10.3390/horticulturae8090827
Chicago/Turabian StyleMiler, Natalia, and Dariusz Kulus. 2022. "Effect of Parental Components and Pollination Frequency on the Setting and Germination of Chrysanthemum Seeds" Horticulturae 8, no. 9: 827. https://doi.org/10.3390/horticulturae8090827
APA StyleMiler, N., & Kulus, D. (2022). Effect of Parental Components and Pollination Frequency on the Setting and Germination of Chrysanthemum Seeds. Horticulturae, 8(9), 827. https://doi.org/10.3390/horticulturae8090827