Comparative Transcriptome Analysis Reveals the Molecular Mechanism of UV-B Irradiation in Promoting the Accumulation of Phenolic Compounds in Wounded Carrot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Total Soluble Phenolics (TSP) Content Analysis
2.3. HPLC Analysis of Individual Phenolic Compounds
2.4. Phenylalanine Ammonia Lyase (PAL) Enzyme Activity Assay
2.5. RNA Sequencing and Data Analyses
2.6. Quantitative Real-Time PCR (qRT-PCR) Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. TSP Content
3.2. Phenolic Profiles
3.3. Phenylalanine Ammonia Lyase (PAL) Enzyme Activity
3.4. Summary of RNA-seq Data and Identification of DEGs
3.5. Enrichment of KEGG Pathway Analysis
3.6. DEGs Associated with the Biosynthesis of Phenolic Profiles
3.7. Validation of DEGs Using qRT-PCR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Condezo-Hoyos, L.; Gazi, C.; Pérez-Jiménez, J. Design of polyphenol-rich diets in clinical trials: A systematic review. Food Res. Int. 2021, 149, 110655. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; et al. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2022, 27, 223. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 215S–217S. [Google Scholar] [CrossRef] [PubMed]
- Surjadinata, B.B.; Cisneros-Zevallos, L. Biosynthesis of phenolic antioxidants in carrot tissue increases with wounding intensity. Food Chem. 2012, 134, 615–624. [Google Scholar] [CrossRef]
- Berno, N.D.; Tezotto-Uliana, J.V.; Tadeu, D.S.D.C.; Kluge, R.A. Storage temperature and type of cut affect the biochemical and physiological characteristics of fresh-cut purple onions. Postharvest Biol. Technol. 2014, 93, 91–96. [Google Scholar] [CrossRef]
- Han, C.; Zhen, W.N.; Chen, Q.M.; Fu, M.R. UV-C irradiation inhibits surface discoloration and delays quality degradation of fresh-cut stem lettuce. LWT-Food Sci. Technol. 2021, 147, 111533. [Google Scholar] [CrossRef]
- Li, X.A.; Long, Q.H.; Gao, F.; Han, C.; Jin, P.; Zheng, Y.H. Effect of cutting styles on quality and antioxidant activity in fresh-cut pitaya fruit. Postharvest Biol. Technol. 2017, 124, 1–7. [Google Scholar] [CrossRef]
- Heredia, J.B.; Cisneros-Zevallos, L. The effect of exogenous ethylene and methyl jasmonate on pal activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities. Postharvest Biol. Technol. 2019, 51, 242–249. [Google Scholar] [CrossRef]
- Becerra-Moreno, A.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Plants as biofactories: Glyphosate-induced production of shikimic acid and phenolic antioxidants in wounded carrot tissue. J. Agric. Food Chem. 2012, 60, 11378–11386. [Google Scholar] [CrossRef]
- Jacobo-Velázquez, D.A.; Martinez-Hernandez, G.B.; Rodriguez, S.; Cao, C.M.; Cisneros-Zevallos, L. Plants as biofactories: Physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. J. Agric. Food Chem. 2011, 59, 6583–6593. [Google Scholar] [CrossRef]
- Becerra-Moreno, A.; Redondo-Gil, M.; Benavides, J.; Nair, V.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Front Plant Sci. 2015, 6, 837. [Google Scholar] [CrossRef] [PubMed]
- Formica-Oliveira, A.C.; Martínez-Hernández, G.B.; Díaz-López, V.; Artés, F.; Artés-Hernández, F. Effects of UV-B and UV-C combination on phenolic compounds biosynthesis in fresh-cut carrots. Postharvest Biol. Technol. 2017, 127, 99–104. [Google Scholar] [CrossRef]
- Jacobo-Velázquez, D.A.; González-Agüero, M.; Cisneros-Zevallos, L. Cross-talk between signaling pathways: The link between plant secondary metabolite production and wounding stress response. Sci. Rep. 2015, 5, 8608. [Google Scholar] [CrossRef] [PubMed]
- Surjadinata, B.B.; Jacobo-Velázquez, D.A.; Cisneros-Zevallos, L. Physiological role of reactive oxygen species, ethylene, and jasmonic acid on UV light induced phenolic biosynthesis in wounded carrot tissue. Postharvest Biol. Technol. 2021, 172, 111388. [Google Scholar] [CrossRef]
- Han, C.; Zuo, J.H.; Wang, Q.; Xu, L.J.; Zhai, B.Q.; Wang, Z.S.; Dong, H.Z.; Gao, L.P. Effects of chitosan coating on postharvest quality and shelf life of sponge gourd (luffa cylindrica) during storage. Sci. Hortic. 2014, 166, 1–8. [Google Scholar] [CrossRef]
- Cuéllar-Villarreal, M.D.R.; Ortega-Hernández, E.; Becerra-Moreno, A.; Welti-Chanes, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Effects of ultrasound treatment and storage time on the extractability and biosynthesis of nutraceuticals in carrot (Daucus carota). Postharvest Biol. Technol. 2016, 119, 18–26. [Google Scholar] [CrossRef]
- Avena-Bustillos, R.J.; Du, W.X.; Woods, R.; Olson, D.; Iii, A.P.B.; Mchugh, T.H. Ultraviolet-B light treatment increases antioxidant capacity of carrot products. J. Sci. Food Agric. 2012, 92, 2341–2348. [Google Scholar] [CrossRef]
- Meng, X.H.; Li, B.Q.; Liu, J.; Tian, S.P. Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chem. 2008, 106, 501–508. [Google Scholar] [CrossRef]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [Google Scholar] [CrossRef] [PubMed]
- Le, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Du, W.X.; Avena-Bustillos, R.J.; III, A.P.B.; McHugh, T.H. Effect of UV-B light and different cutting styles on antioxidant enhancement of commercial fresh-cut carrot products. Food Chem. 2012, 134, 1862–1869. [Google Scholar] [CrossRef] [PubMed]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.M.; Saltveit, M.E. Antioxidant capacity of lettuce leaf tissue increases after wounding. J. Agric. Food Chem. 2002, 50, 7536–7541. [Google Scholar] [CrossRef]
- Kakumanu, A.; Ambavaram, M.M.R.; Klumas, C.; Krishnan, A.; Batlang, U.; Myers, E.; Grene, R.; Pereira, A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by rna-seq. Plant Physiol. 2012, 160, 846–867. [Google Scholar] [CrossRef]
- Pan, J.W.; Zhang, M.Y.; Kong, X.P.; Xin, X.; Liu, Y.K.; Zhou, Y.; Liu, Y.; Sun, L.P.; Li, D.Q. Zmmpk17, a novel maize group d map kinase gene, is involved in multiple stress responses. Planta 2012, 235, 661–676. [Google Scholar] [CrossRef]
- Hamel, L.P.; Nicole, M.C.; Sritubtim, S.; Marie-Josée, M.J.; Ellis, M.; Ehlting, J.; Beaudoin, N.; Barbazuk, B.; Klessig, D.; Lee, J. Ancient signals: Comparative genomics of plant mapk and mapkk gene families. Trends Plant Sci. 2006, 11, 192–198. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Shi, L.P.; Liu, Y.Y.; Tang, Q.; Shen, L.; Yang, S.; Cai, J.S.; Yu, H.X.; Wang, R.Z.; Wen, J.Y.; et al. Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum. Front. Plant Sci. 2015, 6, 780. [Google Scholar] [CrossRef]
- Yoo, H.; Shrivastava, S.; Lynch, J.H.; Huang, X.Q.; Widhalm, J.R.; Guo, L.Y.; Carter, B.C.; Qian, Y.C.; Maeda, H.A.; Ogas, J.P.; et al. Overexpression of arogenate dehydratase reveals an upstream point of metabolic control in phenylalanine biosynthesis. Plant J. 2021, 108, 737–751. [Google Scholar] [CrossRef]
- Maeda, H.; Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef] [PubMed]
- Mehere, P.; Han, Q.; Lemkul, J.A.; Vavricka, C.J.; Robinson, H.; Bevan, D.R.; Li, J.Y. Tyrosine aminotransferase: Biochemical and structural properties and molecular dynamics simulations. Protein Cell 2010, 1, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.Y.; Li, Y.; Feng, S.Q.; Zou, W.H.; Guo, K.; Fan, C.F.; Si, S.L.; Peng, L.C. Analysis of five rice 4-coumarate:coenzyme a ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochem. Biophys. Res. Commun. 2013, 430, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhou, P.N.; Gui, C.; Da, G.Z.; Gong, L.; Zhang, X.Q. Comparative transcriptome analysis of ampelopsis megalophylla for identifying genes involved in flavonoid biosynthesis and accumulation during different seasons. Molecules 2019, 24, 1267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Cheng, X.; Jin, Q.; Su, X.Q.; Li, M.L.; Yan, C.C.; Jiao, X.Y.; Li, D.H.; Lin, Y.; Cai, Y.P. Comparison of the transcriptomic analysis between two Chinese white pear (Pyrus bretschneideri Rehd.) genotypes of different stone cells contents. PLoS ONE 2017, 12, e0187114. [Google Scholar] [CrossRef] [Green Version]
Storage Time | Treatment | 3-CQA | CA | FA | 3,4-diCQA | 3,5-diCQA | 4,5-diCQA |
---|---|---|---|---|---|---|---|
0 h | Whole | 11.9 ± 6.7 aB | ND | 1.5 ± 0.01 aD | 25.5 ± 0.09 bB | 16.9 ± 0.1 bD | ND |
Wounded | 12.6 ± 4.0 aE | ND | 1.6 ± 0.04 aD | 25.8 ± 0.2 aA | 16.9 ± 0.1 bB | ND | |
UV-B | 13.6 ± 3.1 aE | ND | 1.6 ± 0.02 aD | 25.7 ± 0.02 bB | 17.9 ± 0.02 aC | ND | |
12 h | Whole | 12.6 ± 8.5 cA | ND | 2.0 ± 0.4 bC | 25.8 ± 0.02 aA | 18.0 ± 0.07 aA | ND |
Wounded | 27.8 ± 0.3 bD | 1.3 ± 0.01 aB | 2.4 ± 0.08 abC | 25.6 ± 0.04 aB | 17.6 ± 0.26 bA | ND | |
UV-B | 33.5 ± 0.9 aD | 1.4 ± 0.01 aB | 2.8 ± 0.06 aC | 25.5 ± 0.07 aC | 17.0 ± 0.09 cD | ND | |
24 h | Whole | 18.2 ± 2.4 cA | ND | 3.2 ± 0.05 aB | 25.4 ± 0.02 aB | 17.2 ± 0.01 aC | ND |
Wounded | 43.2 ± 0.6 bC | 1.3 ± 0.02 bB | 2.8 ± 0.3 aC | 25.6 ± 0.01 aB | 16.9 ± 0.01 bB | ND | |
UV-B | 101.0 ± 0.3 aC | 2.2 ± 0.02 aA | 3.1 ± 0.04 aC | 25.6 ± 0.02 aC | 16.8 ± 0.01 cE | ND | |
36 h | Whole | 20.8 ± 2.6 cC | ND | 3.9 ± 0.4 cA | 25.6 ± 0.03 bA | 17.0 ± 0.06 cC | ND |
Wounded | 78.9 ± 0.3 bB | 2.2 ± 0.08 aA | 7.2 ± 0.03 aB | 25.6 ± 0.01 bB | 17.5 ± 0.15 bA | ND | |
UV-B | 210.0 ± 1.8 aB | 2.1 ± 0.09 aA | 5.1 ± 0.2 bB | 25.7 ± 0.14 aB | 19.1 ± 0.1 aB | 12.2 ± 0.3 B | |
48 h | Whole | 23.0 ± 0.4 cC | ND | 4.2 ± 0.02 cA | 25.6 ± 0.02 bA | 17.4 ± 0.17 bB | ND |
Wounded | 118.7 ± 2.4 bA | 1.3 ± 0.02 aB | 9.9 ± 0.08 aA | 25.9 ± 0.09 aA | 17.8 ± 0.33 bA | 12.2 ± 1.1 a | |
UV-B | 396.0 ± 2.0 aA | 1.4 ± 0.01 aB | 7.2 ± 0.02 bA | 26.0 ± 0.09 aA | 22.8 ± 0.1 aA | 12.6 ± 0.4 aA |
Samples | Clean Reads | Total Mapped Reads | Unique Mapped Reads | Q30 (%) | GC Content (%) |
---|---|---|---|---|---|
CK-1 | 94,952,058 | 85,339,538 (89.88 %) | 79,493,508 (83.72 %) | 94.25 | 44.02 |
CK-2 | 88,175,512 | 79,109,921 (89.72 %) | 73,937,619 (83.85 %) | 94.11 | 44.01 |
CK-3 | 94,560,232 | 84,655,520 (89.53 %) | 79,053,839 (83.60 %) | 94.16 | 43.99 |
W-1 | 91,034,442 | 81,425,355 (89.44 %) | 76,609,266 (84.15 %) | 94.60 | 43.77 |
W-2 | 91,760,192 | 81,994,891 (89.36 %) | 77,399,110 (84.35 %) | 93.99 | 43.65 |
W-3 | 85,221,208 | 76,117,513 (89.32 %) | 71,899,458 (84.37 %) | 94.25 | 43.75 |
UVB-1 | 90,020,810 | 80,484,813 (89.41 %) | 73,018,007 (81.11 %) | 94.33 | 44.34 |
UVB-2 | 89,258,946 | 79,830,058 (89.44 %) | 72,206,187 (80.90 %) | 94.30 | 44.27 |
UVB-3 | 87,479,396 | 78,456,435 (89.69 %) | 71,221,430 (81.42 %) | 94.56 | 44.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhen, W.; Tu, Y.; Lin, Z.; Xu, X.; Fu, M.; Han, C. Comparative Transcriptome Analysis Reveals the Molecular Mechanism of UV-B Irradiation in Promoting the Accumulation of Phenolic Compounds in Wounded Carrot. Horticulturae 2022, 8, 896. https://doi.org/10.3390/horticulturae8100896
Zhen W, Tu Y, Lin Z, Xu X, Fu M, Han C. Comparative Transcriptome Analysis Reveals the Molecular Mechanism of UV-B Irradiation in Promoting the Accumulation of Phenolic Compounds in Wounded Carrot. Horticulturae. 2022; 8(10):896. https://doi.org/10.3390/horticulturae8100896
Chicago/Turabian StyleZhen, Wenna, Yi Tu, Zihan Lin, Xinxin Xu, Maorun Fu, and Cong Han. 2022. "Comparative Transcriptome Analysis Reveals the Molecular Mechanism of UV-B Irradiation in Promoting the Accumulation of Phenolic Compounds in Wounded Carrot" Horticulturae 8, no. 10: 896. https://doi.org/10.3390/horticulturae8100896
APA StyleZhen, W., Tu, Y., Lin, Z., Xu, X., Fu, M., & Han, C. (2022). Comparative Transcriptome Analysis Reveals the Molecular Mechanism of UV-B Irradiation in Promoting the Accumulation of Phenolic Compounds in Wounded Carrot. Horticulturae, 8(10), 896. https://doi.org/10.3390/horticulturae8100896