Volatile Profile of Garden Rose (Rosa hybrida) Hydrosol and Evaluation of Its Biological Activity In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Hydrosol Extraction
2.3. Gas Chromatography–Mass Spectrometry
2.4. Determination of pH
2.5. Total Phenolics Content
2.6. Antioxidant Tests
2.7. Antimicrobial Activity
2.8. Anti-Inflammatory Assay
2.9. Antihyperglycemic Assay
2.10. Statistical Analysis
3. Results
3.1. Chemical Composition of Rose hydrosol
Volatile Composition of R. hybrida Hydrosol
3.2. Chemical Diversity of Volatile Compounds Rose hydrosols
3.3. pH Value
3.4. Total Phenolic Compounds
3.5. Biological Activity of Rose hydrosol
3.6. Antioxidant Activity
3.7. Antimicrobial Activity
3.8. Anti-Inflammatory Activity
3.9. Antihyperglycemic Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gochev, V.; Wlcek, K.; Buchbauer, G.; Stoyanova, A.; Dobreva, A.; Schmidt, E.; Jirovetz, L. Comparative evaluation of antimicrobial activity and composition of rose oils from various geographic origins, in particular Bulgarian rose oil. Nat. Prod. Commun. 2008, 3, 1063–1068. [Google Scholar] [CrossRef]
- Husnu, K.; Baser, C. Rose mentioned in the works of scientists of the medieval east and implications in modern science. Nat. Prod. Commun. 2017, 12, 1327–1330. [Google Scholar] [CrossRef]
- Hamedi, A.; Pasdaran, A.; Zabarjad, Z.; Moen, M. A survey on chemical constituents and indications of aromatic waters soft drinks (hydrosols) used in Persian nutrition culture and folk medicine for neurological disorders and mental health. J. Evid. Based Complement. Altern. Med. 2017, 22, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Raiz, M.; Munir, N.; Akhter, N.; Zafar, S.; Jabeen, F.; Shariati, M.A.; Akhtar, N.; Riaz, Z.; Altaf, S.H.; et al. Chemical constituents, experimental and clinical pharmacology of Rosa damascena: A literature review. J. Pharm. Pharmacol. 2020, 72, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Canabay, H.S. Effectiveness of liquid-liquid extraction, solid phase extraction, and headspace technique for determination of some volatile water-soluble compounds of rose aromatic water. Int. J. Anal. Chem. 2017, 2017, 4870671. [Google Scholar] [CrossRef]
- Eikani, M.H.; Golmohammad, F.; Rowshanzamir, S.; Mirza, M. Recovery of water-soluble constituents of rose oil using simultaneous distillation-extraction. Flavour Fragr. J. 2005, 20, 555–558. [Google Scholar] [CrossRef]
- Pal, P.K. Evaluation, genetic diversity, recent development of distillation method, challenges and opportunities of Rosa damascena: A review. J. Essent. Oil-Bear. Plants 2013, 16, 1–10. [Google Scholar] [CrossRef]
- Batu, A.; Arslan, A. Biochemical and sensory evaluations of Turkish delight (lokum) enriched with black grape and sour cherry syrups. Turk. J. Agric. For. 2014, 38, 561–569. [Google Scholar] [CrossRef]
- Pasalar, M.; Choopani, R.; Mosaddegh, M.; Kamalinejad, M.; Mohagheghzadeh, A.; Fattahi, M.R.; Zarshenas, M.M.; Jafari, P.; Lankarani, K.B. Efficacy of Jollab in the Treatment of Depression in Dyspeptic Patients: A Randomized Double-Blind Controlled Trial. J. Evid. Based Complement. Altern. Med. 2015, 20, 104–108. [Google Scholar] [CrossRef]
- Aggarwal, P.; Kaur, S. Technology development for the preparation, concentration and utilization of rose extract in different valuable products and by products with retention of color and flavor. J. Pharm. Innov. 2017, 6, 189–193. [Google Scholar]
- Tomi, K.; Sakaguchi, E.; Ueda, S.; Matsumura, Y.; Hayashi, T. Physiological and psychological effects of rose ‘wishing’ flowers and their hydrosols on the human autonomic nervous system and mood state. J. Hortic. 2017, 86, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Lavilla, I.L.; Gaytos, C.E.G.; Doblon–Merilles, R.; Lacaba, T.V.G.D.M. Sensory evaluation of rose petal (Rosaceae) ice cream. Int. J. Eng. Res. Dev. 2019, 2, 317–353. [Google Scholar]
- Verma, A.; Srivastava, R.; Sonar, P.K.; Yadav, R. Traditional, phytochemical, and biological aspects of Rosa alba L.: A systematic review. Future J. Pharm. Sci. 2020, 6, 114. [Google Scholar] [CrossRef]
- Maruyama, N.; Tansho-Nagakawa, S.; Miyazaki, C.; Shimomura, K.; Ono, Y.; Abe, S. Inhibition of neutrophil adhesion and antimicrobial activity by diluted hydrosol prepared from Rosa damascena. Biol. Pharm. Bull. 2017, 40, 161–168. [Google Scholar] [CrossRef]
- Kazaz, S.; Erbas, S.; Baydar, H. The effects of storage temperature and duration on essential oil content and composition oil rose (Rosa damascena Mill.). Turk. J. Field Crop. 2003, 14, 89–96. [Google Scholar]
- Agaoglu, Y.S. Rose oil industry and the production of oil rose (Rosa damascena Mill.) in Turkey. Biotechnol. Biotechnol. Equip. 2000, 14, 8–15. [Google Scholar] [CrossRef]
- Najem, W.E.; Beyrouthy, M.; Wakim, L.H.; Neema, C.; Ouaini, N. Essential oil composition of Rosa damascena Mill. Rom different localities in Lebanon. Acta Bot. Gallica 2011, 158, 365–373. [Google Scholar] [CrossRef]
- Ozel, M.Z.; Gogus, F.; Lewis, A.C. Comparison of direct thermal desorption with water distillation and superheated water extraction for the analysis of volatile components of Rosa damascena Mill. Using GC×GC-TOF/MS. Anal. Chim. Acta 2006, 566, 172–177. [Google Scholar] [CrossRef]
- Aćimović, M.; Tešević, V.; Smiljanić, K.; Cvetković, M.; Stanković, J.; Kiprovski, B.; Sikora, V. Hydrolates—by-products of essential oil distillation: Chemical composition, biological activity and potential uses. Adv. Technol. 2020, 9, 54–70. [Google Scholar] [CrossRef]
- Ayadi, A.J.; Ayed, N.; Karamous, T.; Bessiere, J.M.; Talou, T. Tunisian aromatic waters profile. J. Essent. Oil-Bear. Plants 2004, 7, 136–145. [Google Scholar] [CrossRef]
- Moein, M.; Zarshenas, M.M.; Delnavaz, S. Chemical composition analysis of rose water samples from Iran. Pharm. Biol. 2014, 52, 1358–1361. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S. Scent and component analysis of the hybrid tea rose. Perfum. Flavor 1987, 12, 43–46. [Google Scholar]
- Ryu, J.; Lyu, J.I.; Kim, D.G.; Kim, J.M.; Jo, Y.D.; Kang, S.Y.; Kim, J.B.; Ahn, J.W.; Kim, S.H. Comparative analysis of volatile compounds of gamma-irradiated mutants of rose (Rosa hybrida). Plants 2020, 9, 1221. [Google Scholar] [CrossRef] [PubMed]
- Aćimović, M.; Stanković Jeremić, J.; Todosijević, M.; Kiprovski, B.; Vidović, S.; Vladić, J.; Pezo, L. Comparative Study of the Essential Oil and Hydrosol Composition of Sweet Wormwood (Artemisia annua L.) from Serbia. Chem. Biodivers. 2022, 19, e202100954. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. HPLC-MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem. 2012, 135, 2138–2146. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.K. Assay Guided Comparison for Enzymatic and Non-Enzymatic Antioxidant Activities with Special Reference to Medicinal Plants. In Biochemistry, Genetics and Molecular Biology; El-Missiry, M.A., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Cheng, C.W.; Chen, L.Y.; Chou, C.W.; Liang, J.Y. Investigations of riboflavin photolysis via coloured light in the nitro blue tetrazolium assay for superoxide dismutase activity. J. Photochem. Photobiol. B Biol. 2015, 148, 262–267. [Google Scholar] [CrossRef]
- Li, X. Solvent effects and improvements in the deoxyribose degradation assay for hydroxyl radical-scavenging. Food Chem. 2013, 141, 2083–2088. [Google Scholar] [CrossRef]
- Micić, D.; Đurović, S.; Riabov, P.; Tomić, A.; Šovljanski, O.; Filip, S.; Tosti, T.; Dojčinović, B.; Božović, R.; Jovanović, D.; et al. Rosemary Essential Oils as a Promising Source of Bioactive Compounds: Chemical Composition, Thermal Properties, Biological Activity, and Gastronomical Perspectives. Foods 2021, 10, 2734. [Google Scholar] [CrossRef]
- Aćimović, M.; Šovljanski, O.; Šeregelj, V.; Pezo, L.; Zheljazkov, V.D.; Ljujić, J.; Tomić, A.; Ćetković, G.; Čanadanović-Brunet, J.; Miljković, A.; et al. Chemical Composition, Antioxidant, and Antimicrobial Activity of Dracocephalum moldavica L. Essential Oil and Hydrolate. Plants 2022, 11, 941. [Google Scholar] [CrossRef]
- Aćimović, M.; Pezo, L.; Zeremski, T.; Lončar, B.; Marjanović Jeromela, A.; Stanković Jeremić, J.; Cvetković, M.; Sikora, V.; Ignjatov, M. Weather conditions influence on hyssop essential oil quality. Processes 2021, 9, 1152. [Google Scholar] [CrossRef]
- Akbar, N.; Raghav, C.S. Phenyl Ethyl Alcohol—A Valuable Aroma Chemical. J. Essent. Oil-Bear. Plants 2006, 9, 304–308. [Google Scholar] [CrossRef]
- Shibusawa, N.; Nohara, I.; Ohsawa, R. Interspecific variation of scent characteristics in the Cyclamen genus and the utility of the variation. Hortic. Sci. 2018, 45, 193–204. [Google Scholar] [CrossRef]
- Elsharif, S.A.; Banerjee, A.; Buettner, A. Structure-odor relationships of linalool, linalyl acetate and their corresponding oxygenated derivatives. Front. Chem. 2015, 3, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamatou, G.P.P.; Viljoen, A.M. Linalool—A review of a biologically active compound of commercial importance. Nat. Prod. Commun. 2008, 3, 1183–1192. [Google Scholar] [CrossRef]
- Agarwal, S.G.; Gupta, A.; Kapahi, B.K.; Baleshwar; Thappa, R.K.; Suri, O.P. Chemical composition of rose water volatiles. J. Essent. Oil Res. 2005, 17, 265–267. [Google Scholar] [CrossRef]
- Ulusoy, S.; Bosgelmez-Tinaz, G.; Secilmis-Canabay, H. Tocopherol, carotene, phenolic contents and antibacterial properties of rose essential oil, hydrosol and absolute. Curr. Microbiol. 2009, 59, 554–558. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Chauhan, A.; Singh, A.; Yadav, A.K. Volatile constituents of essential oil and rose water of damask rose (Rosa damascena Mill.) cultivars from North Indian hills. Nat. Prod. Res. 2011, 25, 1577–1584. [Google Scholar] [CrossRef]
- Baydar, H.; Kuleasan, H.; Kara, N.; Secilmis-Canbay, H.; Kineci, S. The effect of pasteurization, ultraviolet radiation and chemical preservatives on microbial spoilage and scent composition of rose water. J. Essent. Oil-Bear. Plants 2013, 16, 151–160. [Google Scholar] [CrossRef]
- Lohani, H.; Andola, H.C.; Chauhan, N.K.; Gwari, G.; Bhandari, U. Volatile constituents of rose water of damask rose (Rosa damascena Mill.) from Uttarakhand Hymalayas. Med. Plants—Int. J. Phytomed. Relat. Ind. 2013, 5, 102. [Google Scholar] [CrossRef]
- Labadie, C.; Ginies, C.; Guinebretiere, M.H.; Renard, C.M.G.C.; Cerutti, C.; Carlin, F. Hydrosols of orange blossom (Citrus aurantium), and rose flower (Rosa damascena and Rosa centifolia) support the growth of a heterogeneous spoilage microbiota. Food Res. Int. 2015, 76, 576–586. [Google Scholar] [CrossRef]
- Lei, G.; Wang, L.; Liu, X.; Zhang, A. Fast quantification of phenylethyl alcohol in rose water and chemical profiles of rose water and oil of Rosa damascena and Rosa rugosa from southeast China. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 823–832. [Google Scholar] [CrossRef]
- Koksal, N.; Saribas, R.; Kafkas, E.; Aslancan, H.; Sadighazadi, S. Determination of volatile compounds of the first rose oil and the first rose water by HS-SPME/GC/MS techniques. Afr. J. Tradit. Complement. Altern. Med. 2015, 12, 145–150. [Google Scholar] [CrossRef]
- Maciag, A.; Kalemba, D. Composition of rugosa rose (Rosa rugosa Thunb.) hydrolate according to the time of distillation. Phytochem. Lett. 2015, 11, 373–377. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Chauhan, A. Chemical composition of essential oil and rose-water extract of Hymalayan musk rose (Rosa brunonii Lindl.) from Kumaon region of Western Himalaya. J. Essent. Oil Res. 2016, 28, 332–338. [Google Scholar] [CrossRef]
- Erbas, S.; Baydar, H. Variation in scent compounds of oil-bearing rose (Rosa damascena Mill.) produced by headspace solid phase microextraction, hydrodistillation and solvent extraction. Rec. Nat. Prod. 2016, 10, 555–565. [Google Scholar]
- Georgieva, A.; Dobreva, A.; Tzvetanova, E.; Alexandrova, A.; Mileva, M. Comparative study of phytochemical profiles and antioxidant properties of hydrosols from Bulgarian Rosa alba L. and Rosa damascena Mill. J. Essent. Oil-Bear. Plants 2019, 22, 1362–1371. [Google Scholar] [CrossRef]
- Demirbolat, I.; Ekinci, C.; Nuhoglu, F.; Kartal, M.; Yildiz, P.; Gecer, M.O. Effects of oraly consumed Rosa damascena Mill. Hydrosol on hematology, clinical chemistry, lens enzymatic activity, and lens pathology in streptozotocin-induced diabetic rats. Molecules 2019, 24, 4069. [Google Scholar] [CrossRef]
- Bayhan, G.I.; Gumus, T.; Alan, B.; Savas, I.K.; Cam, S.A.; Sahin, E.A.; Arslan, S.O. Influence of Rosa damascena hydrosol on skin flora (contact culture) after hand-rubbing. GMS Hyg. Infect. Control 2020, 15, 32974119. [Google Scholar] [CrossRef]
- Sparinska, A.; Rostoks, N. Volatile organic compounds of hybrid rugosa roses in Latvia. Proc. Latv. Acad. Sci. 2015, 69, 57–61. [Google Scholar] [CrossRef]
- Kovacheva, N.; Rusanov, K.; Atanassov, I. Industrial cultivation of oil bearing rose and rose oil production in Bulgaria during 21st century, directions and challenges. Biotechnol. Biotechnol. Equip. 2010, 24, 1793–1798. [Google Scholar] [CrossRef]
- El Bouny, H.; Ouahzizi, B.; Sellam, K.; Alem, C. Reconsidering the hydrosols of four aromatic plants from the Toudgha region (South East of Morocco). J. Anal. Sci. Technol. 2021, 3, 126–132. [Google Scholar] [CrossRef]
- Kalemba-Drozdz, M.; Cierniak, A. Antioxidant and genprotective properties of extracts from edible flowers. J. Food Nutr. Res. 2019, 58, 42–50. [Google Scholar]
- Aliasghari, A.; Khorasgani, M.R.; Khoroushi, M. The effect of vinegar, rosewater and ethanolic extract green tea against oral Streptococci, an in vitro study. J. Probiotics Health 2017, 5, 4. [Google Scholar] [CrossRef]
- Bayoub, K.; Baibai, T.; Mountassif, D.; Retmane, A.; Soukri, A. Antibacterial activities of the crude ethanol extracts of medicinal plants against Listeria monocytogenes and some other pathogenic strains. Afr. J. Biotechnol. 2010, 9, 4251–4258. [Google Scholar]
- Mileva, M.; Ilieva, Y.; Jovtchev, G.; Gateva, S.; Zaharieva, M.M.; Georgieva, A.; Dimitrova, L.; Dobreva, A.; Angelova, T.; Vilhelmova-Ilieva, N.; et al. Rose Flowers—A Delicate Perfume or a Natural Healer? Biomolecules 2021, 11, 127. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Fallah, H.; Gholamhosseinian, A. Antihypergycemic effect of Rosa damascena in mediated by PPAR.γ gene expression in animal model of insulin resistance. Iran. J. Pharm. Sci. 2017, 16, 1080–1088. [Google Scholar]
No. | R.T. | Compound | Class | RIexp | % |
---|---|---|---|---|---|
1 | 4.136 | (Z)-3-Hexenol | O | 854 | 0.5 |
2 | 4.189 | NI-1 | - | 857 | 0.2 |
3 | 4.334 | n-Hexanol | O | 866 | 1.1 |
4 | 7.347 | 6-Methyl-5-hepten-2-one | O | 987 | 4.3 |
5 | 7.499 | Dehydro-1,8-cineole | O | 991 | 1.3 |
6 | 7.569 | 6-Methyl-5-hepten-2-ol | O | 993 | 0.4 |
7 | 8.873 | 1,8-Cineole | OMT | 1031 | 0.4 |
8 | 10.427 | cis-Linalool oxide (furanoid) | OMT | 1074 | 0.2 |
9 | 11.052 | trans-Linalool oxide (furanoid) | OMT | 1091 | 0.1 |
10 | 11.561 | Linalool | OMT | 1106 | 13.2 |
11 | 11.773 | cis-Thujone | OMT | 1108 | 0.2 |
12 | 11.957 | cis-Rose oxide | OMT | 1113 | 0.2 |
13 | 12.264 | Phenylethyl alcohol | O | 1124 | 32.5 |
14 | 12.621 | trans-Rose oxide | OMT | 1126 | 0.1 |
15 | 13.020 | cis-p-Mentha-2,8-dien-1-ol | OMT | 1139 | 0.1 |
16 | 13.391 | Camphor | OMT | 1146 | 0.2 |
17 | 13.815 | Nerol oxide | OMT | 1157 | 0.1 |
18 | 14.407 | p-Mentha-1,5-dien-8-ol | OMT | 1171 | 1.5 |
19 | 14.834 | Terpinen-4-ol | OMT | 1180 | 0.3 |
20 | 15.455 | α-Terpineol | OMT | 1194 | 4.2 |
21 | 15.487 | NI-2 | - | 1195 | 1.8 |
22 | 16.018 | Isopiperitenol | OMT | 1205 | 0.1 |
23 | 17.146 | Nerol | OMT | 1231 | 17.2 |
24 | 17.647 | Neral | OMT | 1243 | 2.0 |
25 | 17.791 | Carvone | OMT | 1246 | 0.2 |
26 | 18.023 | NI-3 | - | 1250 | 0.1 |
27 | 18.312 | Geraniol | OMT | 1258 | 8.3 |
28 | 18.821 | Orcinol dimethyl ether | O | 1270 | 0.6 |
29 | 18.977 | Geranial | OMT | 1273 | 3.2 |
30 | 19.635 | NI-4 | - | 1287 | 0.2 |
31 | 20.135 | Thymol | OMT | 1302 | 0.7 |
32 | 20.575 | Carvacrol | OMT | 1311 | 0.1 |
33 | 22.910 | Eugenol | O | 1362 | 0.6 |
34 | 23.379 | (E)-3,7-Dimethyl-2,6-octadienoic acid | O | 1372 | 1.5 |
35 | 24.943 | Methyl eugenol | O | 1408 | 0.6 |
36 | 26.315 | Dihydro-β-ionone | O | 1441 | tr |
37 | 26.834 | Dihydro-β-ionol | O | 1453 | 0.8 |
38 | 32.677 | Viridiflorol | OST | 1596 | 0.1 |
39 | 32.744 | Cubeban-11-ol | OST | 1598 | 0.1 |
40 | 33.108 | NI-5 | - | 1608 | 0.1 |
41 | 33.343 | Humulene epoxide II | OST | 1613 | 0.2 |
42 | 34.249 | γ-Eudesmol | OST | 1636 | 0.2 |
43 | 34.981 | β-Eudesmol | OST | 1655 | 0.1 |
44 | 35.121 | α-Eudesmol | OST | 1658 | 0.1 |
Oxygenated Monoterpenes (OMT) | 52.6 | ||||
Oxygenated Sesquiterpenes (OST) | 0.8 | ||||
Other (O) | 44.2 | ||||
Not identified (NI) | 2.4 | ||||
Total | 100.0 |
No. | Reference | Phenyl Ethyl Alcohol | Citronellol | Geraniol | Eugenol | Nerol | Dibuthyl Phthalate * | Linalool | Curzerene | Methyl Eugenol | Nonadecane |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | [6] | 1.7 | 47.4 | 22.6 | 1.5 | 0.0 | 0.0 | 5.3 | 0.0 | 1.9 | 10.8 |
2 | [36] | 69.7 | 7.2 | 7.0 | 0.4 | 4.2 | 0.0 | 2.9 | 0.0 | 0.4 | 0.9 |
3 | [36] | 81.6 | 1.8 | 0.9 | 0.7 | 0.2 | 0.0 | 3.3 | 0.0 | 0.8 | 0.6 |
4 | [36] | 73.9 | 2.3 | 1.2 | 0.8 | 0.6 | 0.0 | 1.5 | 0.0 | 0.9 | 1.2 |
5 | [36] | 21.5 | 22.7 | 12.3 | 0.3 | 11.6 | 0.0 | 2.4 | 0.0 | 0.1 | 0.5 |
6 | [37] | 23.7 | 29.4 | 30.7 | 0.0 | 16.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
7 | [38] | 76.0 | 3.5 | 6.6 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 |
8 | [38] | 80.7 | 3.1 | 4.2 | 1.6 | 1.4 | 0.0 | 0.3 | 0.0 | 0.0 | 2.0 |
9 | [38] | 76.7 | 3.8 | 7.9 | 0.1 | 1.9 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 |
10 | [39] | 17.2 | 36.7 | 21.5 | 5.0 | 10.7 | 0.0 | 1.4 | 0.0 | 4.4 | 0.0 |
11 | [40] | 82.3 | 5.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 |
12 | [40] | 77.4 | 4.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 1.3 |
13 | [40] | 89.4 | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
14 | [40] | 83.2 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.4 |
15 | [21] | 12.0 | 5.9 | 11.7 | 17.8 | 0.0 | 0.0 | 9.0 | 0.0 | 0.0 | 2.4 |
16 | [21] | 20.8 | 3.4 | 4.0 | 2.5 | 0.0 | 18.8 | 1.5 | 5.4 | 0.0 | 0.0 |
17 | [21] | 47.8 | 5.9 | 2.3 | 3.6 | 0.0 | 11.4 | 0.0 | 3.9 | 1.0 | 0.0 |
18 | [21] | 33.4 | 10.3 | 24.0 | 3.1 | 0.0 | 6.8 | 4.1 | 2.0 | 0.7 | 0.0 |
19 | [21] | 39.5 | 8.6 | 12.6 | 2.3 | 0.0 | 8.8 | 2.0 | 2.7 | 0.0 | 0.0 |
20 | [21] | 33.8 | 5.6 | 0.0 | 0.0 | 0.0 | 10.1 | 0.5 | 7.3 | 1.3 | 0.0 |
21 | [21] | 37.7 | 8.2 | 0.0 | 2.9 | 0.0 | 18.0 | 1.4 | 3.0 | 1.1 | 0.0 |
22 | [21] | 73.3 | 8.4 | 0.0 | 3.6 | 0.0 | 4.0 | 1.9 | 1.2 | 1.5 | 0.0 |
23 | [21] | 26.8 | 6.5 | 0.0 | 0.0 | 0.0 | 9.9 | 0.7 | 4.6 | 0.0 | 0.0 |
24 | [21] | 34.9 | 2.7 | 0.0 | 0.0 | 0.0 | 13.9 | 0.0 | 11.0 | 0.0 | 0.0 |
25 | [41] | 25.0 | 20.9 | 21.2 | 2.1 | 10.8 | 0.0 | 1.9 | 0.0 | 2.7 | 0.0 |
26 | [41] | 45.6 | 24.6 | 11.3 | 3.1 | 3.8 | 0.0 | 2.0 | 0.0 | 2.4 | 0.0 |
27 | [42] | 90.2 | 4.5 | 0.6 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
28 | [42] | 78.7 | 13.5 | tr | 5.7 | 0.0 | 0.0 | 0.1 | 0.0 | 1.0 | 0.0 |
29 | [42] | 87.9 | 2.4 | 1.5 | 1.7 | 0.0 | 0.0 | 2.3 | 0.0 | 0.7 | 0.0 |
30 | [43] | 2.0 | 40.1 | 16.0 | 2.3 | 0.0 | 0.0 | 3.2 | 0.0 | 0.0 | 0.0 |
31 | [44] | 14.3 | 17.5 | 30.6 | 0.1 | 7.5 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 |
32 | [45] | 9.4 | 0.6 | 13.3 | 52.0 | 1.2 | 0.0 | 1.7 | 0.0 | 0.0 | 2.8 |
33 | [46] | 35.6 | 8.3 | 27.9 | 6.2 | 12.7 | 0.0 | 0.0 | 0.0 | 1.2 | 0.0 |
34 | [3] | 77.0 | 12.7 | 2.5 | 5.1 | 0.0 | 0.0 | 0.0 | 0.0 | 2.8 | 0.0 |
35 | [3] | 46.9 | 8.3 | 2.9 | 28.8 | 0.0 | 0.0 | 1.0 | 0.0 | 0.6 | 0.0 |
36 | [47] | 6.0 | 28.7 | 36.4 | 0.1 | 6.1 | 0.0 | 3.6 | 0.0 | 0.1 | 0.3 |
37 | [47] | 5.0 | 28.7 | 16.4 | 2.7 | 10.8 | 0.0 | 2.1 | 0.0 | 1.8 | 2.1 |
38 | [48] | 36.0 | 19.2 | 13.2 | 6.0 | 5.8 | 0.0 | 8.4 | 0.0 | 3.7 | 0.0 |
39 | [49] | 45.4 | 34.1 | 12.2 | 2.2 | 0.1 | 0.0 | 2.1 | 0.0 | 1.3 | 0.0 |
40 | This study | 32.5 | 0.0 | 8.3 | 0.6 | 17.2 | 0.0 | 13.2 | 0.0 | 0.6 | 0.0 |
AVERAGE | 46.3 | 12.5 | 9.8 | 4.2 | 3.1 | 2.5 | 2.0 | 1.0 | 0.8 | 0.7 |
Activity | Method | Result |
---|---|---|
pH | 6.07 | |
total phenolics | Folin–Ciocalteu method | 4.96 µg GAE/mL |
antioxidant | DPPH | 24.66% |
NBT | nd | |
•OH scavenging assay | 12.07% | |
antimicrobial | disc diffusion method (A. brasiliensis, B. cereus, C. albicans, E. faecalis, E. coli, P. aeruginosa, S. cerevisiae, S. typhimurium, S. aureus) | nd |
anti-inflammatory | protein denaturation bioassay using egg albumin | IC50 = 3.28 mg/L |
antihyperglycemic | α-glucosidase inhibitory potential | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanjga, B.B.; Lončar, B.; Aćimović, M.; Kiprovski, B.; Šovljanski, O.; Tomić, A.; Travičić, V.; Cvetković, M.; Raičević, V.; Zeremski, T. Volatile Profile of Garden Rose (Rosa hybrida) Hydrosol and Evaluation of Its Biological Activity In Vitro. Horticulturae 2022, 8, 895. https://doi.org/10.3390/horticulturae8100895
Tanjga BB, Lončar B, Aćimović M, Kiprovski B, Šovljanski O, Tomić A, Travičić V, Cvetković M, Raičević V, Zeremski T. Volatile Profile of Garden Rose (Rosa hybrida) Hydrosol and Evaluation of Its Biological Activity In Vitro. Horticulturae. 2022; 8(10):895. https://doi.org/10.3390/horticulturae8100895
Chicago/Turabian StyleTanjga, Biljana Božanić, Biljana Lončar, Milica Aćimović, Biljana Kiprovski, Olja Šovljanski, Ana Tomić, Vanja Travičić, Mirjana Cvetković, Vidak Raičević, and Tijana Zeremski. 2022. "Volatile Profile of Garden Rose (Rosa hybrida) Hydrosol and Evaluation of Its Biological Activity In Vitro" Horticulturae 8, no. 10: 895. https://doi.org/10.3390/horticulturae8100895