Effects of Neem Seed Extract on Nitrate and Oxalate Contents in Amaranth Fertilized with Mineral Fertilizer and Cricket Frass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil, Cricket Frass, and Neem Seed Extract
2.2. Greenhouse Experiment
2.3. Laboratory Analyses
2.4. Data Calculation and Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosário, R.; Agostinis-Sobrinho, C.; Padrão, P.; Lopes, O.; Moreira, P. The relationship between height and fruit/vegetable intakes in adults: A nationwide cross-sectional study. Nutr. Health 2022, 02601060221108152. [Google Scholar] [CrossRef] [PubMed]
- Orona-Tamayo, D.; Paredes-López, O. Amaranth Part 1—Sustainable crop for the 21st century: Food properties and nutraceuticals for improving human health. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 239–256. [Google Scholar] [CrossRef]
- Chib, A.; Bhat, A.; Bandral, J.D.; Trilokia, M. Effect of thermal processing on nutritional and Anti nutritional factors of amaranthus (Amaranthus viridis Linn.) Leaves. Pharma Innov. J. 2022, 11, 385–389. [Google Scholar]
- Zandvakili, O.R.; Barker, A.V.; Hashemi, M.; Etemadi, F.; Autio, W.R.; Weis, S. Growth and nutrient and nitrate accumulation of lettuce under different regimes of nitrogen fertilization. J. Plant Nutr. 2019, 42, 1575–1593. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Noonan, S.C.; Savage, G.P. Oxalate content of foods and its effect on humans. Asia Pac. J. Clin. Nutr. 1999, 8, 64–74. [Google Scholar]
- Rossignol, D.A.; Frye, R.E. A review of research trends in physiological abnormalities in autism spectrum disorders: Immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol. Psychiatry 2012, 17, 389–401. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kawamura, O. Oxalate accumulation in forage plants: Some agronomic, climatic and genetic aspects. Asian Australas. J. Anim. Sci. 2011, 24, 439–448. [Google Scholar] [CrossRef]
- Raven, J.A.; Smith, F.A. Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol. 1976, 76, 415–431. [Google Scholar] [CrossRef]
- Allen, S.; Raven, J.A.; Sprent, J.I. The role of long-distance transport in intracellular ph regulation in Phaseolus vulgaris grown with ammonium or nitrate as nitrogen source, or nodulated. J. Exp. Bot. 1988, 39, 513–528. [Google Scholar] [CrossRef]
- Sosinski, S.; Castillo, M.S.; Kulesza, S.; Leon, R. Poultry litter and nitrogen fertilizer effects on productivity and nutritive value of crabgrass. Crop Sci. 2022. [Google Scholar] [CrossRef]
- Hartz, T.K.; Johnstone, P.R. Nitrogen availability from high-nitrogen-containing organic fertilizers. HortTechnology 2006, 16, 39–42. [Google Scholar] [CrossRef] [Green Version]
- Halloran, A.; Hanboonsong, Y.; Roos, N.; Bruun, S. Life cycle assessment of cricket farming in north-eastern Thailand. J. Clean. Prod. 2017, 156, 83–94. [Google Scholar] [CrossRef]
- Umar, A.S.; Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications: A review. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar] [CrossRef]
- Mohanty, S.; Patra, A.K.; Chhonkar, P.K. Neem (Azadirachta indica) seed kernel powder retards urease and nitrification activities in different soils at contrasting moisture and temperature regimes. Bioresour. Technol. 2008, 99, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Mweetwa, A.M.; Lubungo, A.C.; Chishala, B.H.; Phiri, M. Selected chemical properties, microbial activity and biomass of soils amended with aqueous neem leaf extract. Sustain. Agric. Res. 2016, 5, 103–112. [Google Scholar] [CrossRef]
- Chakhatrakan, S. Influences of N fertilizers on the vegetable amaranth production. Sci. Technol. Asia 2003, 8, 1–5. [Google Scholar]
- Sarawaneeyaruk, S.; Krajangsang, S.; Pringsulaka, O. The effects of neem extract and azadirachtin on soil microorganisms. J. Soil Sci. Plant Nutr. 2015, 15, 1071–1083. [Google Scholar] [CrossRef]
- Yusop, M.K. Nitrogen Fertilization and Nitrate Accumulation in Soil Hawaiian Plants and Soils. Master’s Thesis, University of Hawaii at Manoa, Honolulu, HI, USA, 1975. [Google Scholar]
- Vityakon, P. Effects of Environmental Factors on Nutrients and Antinutrient Contents of Selected Leafy Vegetables. Ph.D. Thesis, University of Hawaii at Manoa, Honolulu, HI, USA, 1986. [Google Scholar]
- Jones, J.B. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen–Total. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Propterties; Spark, D.L., Ed.; American Society of Agronomy, Inc. and Soil Science Society of America, Inc.: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Stark, J.D.; Walter, J.F. Persistence of azadirachtin A and B in soil: Effects of temperature and microbial activity. J. Environ. Sci. Health Part B 1995, 30, 685–698. [Google Scholar] [CrossRef]
- Olsen, R.A.; Bakken, L.R. Viability of soil bacteria: Optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microb. Ecol. 1987, 13, 59–74. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Rahman, M.M.; Niimi, M.; Kawamura, O. Simple method for determination of oxalic acid in forages using high-performance liquid chromatography. Grassl. Sci. 2007, 53, 201–204. [Google Scholar] [CrossRef]
- Bi, Q.-F.; Chen, Q.-H.; Yang, X.-R.; Li, H.; Zheng, B.-X.; Zhou, W.-W.; Liu, X.-X.; Dai, P.-B.; Li, K.-J.; Lin, X.-Y. Effects of combined application of nitrogen fertilizer and biochar on the nitrification and ammonia oxidizers in an intensive vegetable soil. AMB Express 2017, 7, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aspelin, V.; Ekholm, J. Inhibition of Nitrification in Industrial Wastewater—Identification of Sources. Master’s Thesis, Department of Chemical Engineering, Lund University, Lund, Sweden, 2017. [Google Scholar]
- He, H.; Zhen, Y.; Mi, T.; Fu, L.; Yu, Z. Ammonia-oxidizing archaea and bacteria differentially contribute to ammonia oxidation in sediments from adjacent waters of Rushan Bay, China. Front. Microbiol. 2018, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Xi, R.; Long, X.E.; Huang, S.; Yao, H. pH rather than nitrification and urease inhibitors determines the community of ammonia oxidizers in a vegetable soil. AMB Express 2017, 7, 129. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, K.M.S.; Sloane, L.; Curry, J. Kinetics of azadirachtin hydrolysis in model aquatic systems by high-performance liquid chromatography. J. Liq. Chromatogr. 1995, 18, 363–376. [Google Scholar] [CrossRef]
- Agyarko, K.; Kwakye, P.K.; Bonsu, M.; Osei, B.A.; Donkor, N.A.; Amanor, E. Breakdown of Azadirachtin A in a Tropical Soil Amended with Neem Leaves and Animal Manures1 1Project supported by the Centre for School and Community Science and Technology Studies (SACOST), University of Education, Winneba, Ghana. Pedosphere 2006, 16, 230–236. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils; Pearson: New York, NY, USA, 2017. [Google Scholar]
- Swelum, A.A.; El-Saadony, M.T.; Abd El-Hack, M.E.; Abo Ghanima, M.M.; Shukry, M.; Alhotan, R.A.; Hussein, E.O.S.; Suliman, G.M.; Ba-Awadh, H.; Ammari, A.A.; et al. Ammonia emissions in poultry houses and microbial nitrification as a promising reduction strategy. Sci. Total Environ. 2021, 781, 146978. [Google Scholar] [CrossRef]
- Xu, H.W.; Ji, X.M.; He, Z.H.; Shi, W.P.; Zhu, G.H.; Niu, J.K.; Li, B.S.; Peng, X.X. Oxalate accumulation and regulation is independent of glycolate oxidase in rice leaves. J. Exp. Bot. 2006, 57, 1899–1908. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ishii, Y.; Niimi, M.; Kawamura, O. Effect of application form of nitrogen on oxalate accumulation and mineral uptake by napiergrass (Pennisetum purpureum). Grassl. Sci. 2010, 56, 141–144. [Google Scholar] [CrossRef]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 135–189. [Google Scholar] [CrossRef]
- Schubert, S.; Yan, F. Nitrate and ammonium nutrition of plants: Effects on acid/base balance and adaptation of root cell plasmalemma H+ ATPase. J. Plant Nutr. Soil Sci. 1997, 160, 275–281. [Google Scholar] [CrossRef]
Characteristic | Soil | Cricket Frass |
---|---|---|
Soil particle distribution | ||
Sand (%) | 78.70 | - |
Silt (%) | 15.79 | - |
Clay (%) | 5.51 | - |
Soil texture | Loamy sand | - |
Bulk density (g cm−3) | 1.51 | 0.33 |
pH (1:1) | 5.62 | 8.21 |
Electrical conductivity (mS cm−1) | 0.093 | 14.95 |
Organic C (g kg−1) | 4.19 | 185.1 |
Total N (g kg−1) | 0.38 | 43.5 |
NH4+−N (mg kg−1) | 0.238 | 1436 |
NO3−−N (mg kg−1) | 2.1 | 10.5 |
P (mg kg−1) | 52.5 | 3039 |
K (mg kg−1) | 34.0 | 18,720 |
Ca (mg kg−1) | 301 | 1562 |
Mg (mg kg−1) | 35 | 2052 |
Na (mg kg−1) | 73 | 3920 |
Al (mg kg−1) | 52.2 | nd |
Amendment † | NH4+-N (mg kg−1) | NO3−-N (mg kg−1) | Net Nitrification Rate (mg N kg−1Soil Day−1) | Nitrification Inhibition (%) |
---|---|---|---|---|
Un − Nm | 2.04 c ‡ | 2.08 ab | 0.034 ab | – |
Un + Nm | 0.74 d | 1.21 d | 0.012 d | 65.6 b |
MF − Nm | 2.00 c | 1.56 c | 0.021 c | – |
MF + Nm | 0.74 d | 0.80 e | 0.001 e | 93.7 a |
CrFLow − Nm | 1.71 c | 0.99 de | 0.006 de | – |
CrFLow + Nm | 1.87 c | 1.53 c | 0.020 c | −227.8 d |
CrFMedium − Nm | 1.9 c | 1.56 c | 0.021 c | – |
CrFMedium + Nm | 2.67 b | 2.00 b | 0.032 b | −54.1 c |
CrFHigh − Nm | 2.55 b | 1.91 b | 0.030 b | – |
CrFHigh + Nm | 3.57 a | 2.29 a | 0.040 a | −44.5 c |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
F-test | *** | *** | *** | *** |
CV (%) | 7.08 | 4.97 | 9.39 | −14.78 |
Amendment † | Shoot Fresh Biomass | Tissue NO3−−N | Oxalic Acid | |
---|---|---|---|---|
(g Plant−1) | Content (g kg−1) | Change (%) § | (g kg−1) | |
Un − Nm | 6.3 d ‡ | 0.69 b | 0.0 | 1.05 d |
Un + Nm | 4.6 d | 0.59 b–d | −14.5 | 1.00 d |
MF − Nm | 18.7 c | 0.84 a | +21.7 | 0.60 e |
MF + Nm | 14.8 c | 0.62 bc | −10.1 | 0.46 f |
CrFLow − Nm | 26.1 b | 0.55 cd | −20.3 | 1.42 ab |
CrFLow + Nm | 26.3 b | 0.54 cd | −21.7 | 1.23 c |
CrFMedium − Nm | 39.9 a | 0.61 b–d | −11.6 | 1.45 ab |
CrFMedium + Nm | 38.7 a | 0.69 b | 0.0 | 1.38 b |
CrFHigh − Nm | 28.7 b | 0.48 d | −30.4 | 1.52 a |
CrFHigh + Nm | 19.3 c | 0.54 cd | −21.7 | 1.51 a |
p-value | <0.001 | <0.001 | <0.001 | |
F-test | *** | *** | *** | |
CV (%) | 8.65 | 7.44 | 5.38 |
Amendment † | Azadirachtin | Nimbolide |
---|---|---|
Concentration (mg kg−1) | Concentration (mg kg−1) | |
Un − Nm | – | – |
Un + Nm | 9.36 b ‡ | 0.25 b |
MF − Nm | – | – |
MF + Nm | 15.33 a | 0.48 a |
CrFLow − Nm | – | – |
CrFLow + Nm | 0 c | 0 c |
CrFMedium − Nm | – | – |
CrFMedium + Nm | 0 c | 0 c |
CrFHigh − Nm | – | – |
CrFHigh + Nm | 0 c | 0 c |
p-value | <0.001 | <0.001 |
F-test | *** | *** |
CV (%) | 13.68 | 17.08 |
Amendment † | pH (1:1) | P (mg kg−1) | K (mg kg−1) | Ca (mg kg−1) | Mg (mg kg−1) | Na (mg kg−1) |
---|---|---|---|---|---|---|
Un − Nm | 5.89 b ‡ | 53.3 e | 32.0 b | 255 de | 24.6 cd | 35.0 a |
Un + Nm | 6.05 b | 56.7 de | 32.0 b | 308 cd | 22.9 cd | 34.0 ab |
MF − Nm | 5.54 c | 80.4 c | 36.0 b | 250 e | 19.7 d | 34.0 ab |
MF + Nm | 5.64 c | 76.7 c | 34.0 b | 276 de | 20.4 d | 33.0 bc |
CrFLow − Nm | 5.98 b | 78.3 c | 34.0 b | 351 bc | 27.5 c | 32.0 c |
CrFLow + Nm | 5.92 b | 75.0 cd | 33.0 b | 277 de | 27.5 c | 30.0 d |
CrFMedium − Nm | 5.93 b | 92.5 c | 36.0 b | 297 c–e | 32.9 b | 30.0 d |
CrFMedium + Nm | 5.99 b | 91.7 c | 37.0 b | 292 de | 35.6 b | 30.0 d |
CrFHigh − Nm | 6.54 a | 340.6 a | 94.5 a | 436 a | 73.5 a | 28.0 e |
CrFHigh + Nm | 6.48 a | 318.8 b | 90.0 a | 372 b | 69.1 a | 28.0 e |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
F-test | *** | *** | *** | *** | *** | *** |
CV (%) | 1.44 | 5.09 | 3.79 | 6.17 | 4.95 | 1.42 |
Amendment † | ×109 CFU kg−1 soil |
---|---|
Un − Nm | 3.57 d ‡ |
Un + Nm | 2.73 e |
MF − Nm | 4.38 b–d |
MF + Nm | 3.79 cd |
CrFLow − Nm | 4.50 bc |
CrFLow + Nm | 4.53 bc |
CrFMedium − Nm | 4.98 b |
CrFMedium + Nm | 4.84b |
CrFHigh − Nm | 5.93 a |
CrFHigh + Nm | 5.93 a |
p-value | <0.001 |
F-test | *** |
CV (%) | 6.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriraj, P.; Toomsan, B.; Butnan, S. Effects of Neem Seed Extract on Nitrate and Oxalate Contents in Amaranth Fertilized with Mineral Fertilizer and Cricket Frass. Horticulturae 2022, 8, 898. https://doi.org/10.3390/horticulturae8100898
Sriraj P, Toomsan B, Butnan S. Effects of Neem Seed Extract on Nitrate and Oxalate Contents in Amaranth Fertilized with Mineral Fertilizer and Cricket Frass. Horticulturae. 2022; 8(10):898. https://doi.org/10.3390/horticulturae8100898
Chicago/Turabian StyleSriraj, Pranee, Banyong Toomsan, and Somchai Butnan. 2022. "Effects of Neem Seed Extract on Nitrate and Oxalate Contents in Amaranth Fertilized with Mineral Fertilizer and Cricket Frass" Horticulturae 8, no. 10: 898. https://doi.org/10.3390/horticulturae8100898
APA StyleSriraj, P., Toomsan, B., & Butnan, S. (2022). Effects of Neem Seed Extract on Nitrate and Oxalate Contents in Amaranth Fertilized with Mineral Fertilizer and Cricket Frass. Horticulturae, 8(10), 898. https://doi.org/10.3390/horticulturae8100898