Production of Highly Porous Biochar Materials from Spent Mushroom Composts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Thermochemical Analysis of Spent Mushroom Compost
2.3. Prolysis Experiments
2.4. Physicochemical Properties of Resulting Biochar
3. Results
3.1. Thermochemical Characterization of Spemt Mushroom Compost (SMC)
3.2. Pore Properties of Resulting Biochar
3.3. Chemical Characterization of Resulting Biochar
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimm, D.; Kuenz, A.; Rahmann, G. Integration of mushroom production into circular food chains. Org. Agric. 2021, 11, 309–317. [Google Scholar] [CrossRef]
- Leong, Y.K.; Ma, T.W.; Chang, J.S.; Yang, F.C. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): A review. Bioresour. Technol. 2021, 344, 126157. [Google Scholar] [CrossRef]
- Zhang, G.S.; Liu, N.; Luo, Y.; Zhang, H.B.; Su, L.; Oh, K.; Cheng, H.Y. Efficient removal of Cu(II), Zn(II), and Cd(II) from aqueous solutions by a mineral-rich biochar derived from a spent mushroom (Agaricus bisporus) substrate. Materials 2021, 14, 35. [Google Scholar] [CrossRef]
- Agricultural Statistics (Council of Agriculture, Taiwan). Available online: https://agrstat.coa.gov.tw/sdweb/public/common/Download.aspx (accessed on 1 December 2021).
- Wu, C.Y.; Liang, C.H.; Liang, Z.C. Evaluation of using spent mushroom sawdust wastes for cultivation of Auricularia polytricha. Agronomy 2020, 10, 1892. [Google Scholar] [CrossRef]
- Antunes, F.; Marcal, S.; Taofiq, O.; Morais, A.M.M.B.; Freitas, A.C.; Ferreira, I.C.F.R.; Pintado, M. Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules 2021, 25, 2672. [Google Scholar] [CrossRef]
- Umor, N.A.; Ismail, S.; Abdullah, S.; Huzaifah, M.H.R.; Huzir, N.M.; Mahmood, N.A.N.; Zahrim, A.Y. Zero waste management of spent mushroom compost. J. Mater. Cycles Waste Manag. 2021, 23, 1726–1736. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction, 2nd ed.; Academic Press: London, UK, 2013. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: New York, NY, USA, 2015; pp. 1–13. [Google Scholar]
- Ma, Y.; Wang, Q.; Sun, X.; Wang, X.; Su, W.; Song, N. A study on recycling of spent mushroom substrate to prepare chars and activated carbon. BioResources 2014, 9, 3939–3954. [Google Scholar] [CrossRef] [Green Version]
- Atallah, E.; Zeaiter, J.; Ahmad, M.N.; Leahy, J.J.; Kwapinski, W. Hydrothermal carbonization of spent mushroom compost waste compared against torrefaction and pyrolysis. Fuel Process. Technol. 2021, 216, 10679. [Google Scholar] [CrossRef]
- Chen, G.J.; Peng, C.Y.; Fang, J.Y.; Dong, Y.Y.; Zhu, X.H.; Cai, H.M. Biosorption of fluoride from drinking water using spent mushroom compost biochar coated with aluminum hydroxide. Desalin. Water Treat. 2016, 57, 12385–12395. [Google Scholar] [CrossRef]
- Abdallah, M.M.; Ahmad, M.N.; Walker, G.; Leahy, J.J.; Kwapinski, W. Batch and continuous systems for Zn, Cu, and Pb metal ions adsorption on spent mushroom compost biochar. Ind. Eng. Chem. Res. 2019, 58, 7296–7307. [Google Scholar] [CrossRef]
- Wu, Q.; Xian, Y.; He, Z.; Zhang, Q.; Wu, J.; Yang, G.; Zhang, X.; Qi, H.; Ma, J.; Xiao, Y.; et al. Adsorption characteristics of Pb(II) using biochar derived from spent mushroom substrate. Sci. Rep. 2019, 9, 15999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Ibrahim, M.M.; Wang, X.; Xing, S.; Heiling, M.; Hood-Nowotny, R.; Tong, C.; Mao, Y. Properties of biochar derived from spent mushroom substrates. BioResources 2019, 14, 5254–5277. [Google Scholar]
- Chang, J.; Zhang, H.; Cheng, Y.; Yan, Y.; Chang, M.; Cao, Y.; Huang, F.; Zhang, G.; Yan, M. Spent Ganoderma lucidum substrate derived biochar as a new bio-adsorbent for Pb2+/Cd2+ removal in water. Chemosphere 2020, 241, 125121. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, M.; Jin, Z.; Wang, G.; Li, R.; Zhang, X.; Liu, X.; Qu, J.; Wang, H. Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu(II) ions from aqueous solution. Environ. Res. 2021, 196, 110323. [Google Scholar] [CrossRef]
- Sewu, D.D.; Jung, H.; Kim, S.S.; Lee, D.S.; Woo, S.H. Decolorization of cationic and anionic dye-laden wastewater by steam-activated biochar produced at an industrial-scale from spent mushroom substrate. Bioresour. Technol. 2019, 277, 77–86. [Google Scholar] [CrossRef]
- Su, L.; Zhang, H.; Oh, K.; Liu, N.; Luo, Y.; Cheng, H.; Zhang, G.; He, X. Activated biochar derived from spent Auricularia auricula substrate for the efficient adsorption of cationic azo dyes from single and binary adsorptive systems. Water Sci. Technol. 2021, 84, 101–121. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.L.; Chen, X.M.; Sun, J.; Liu, J.Y.; Sun, S.Y.; Yang, Z.Y.; Wang, Y. Spent mushroom substrate biochar as a potential amendment in pig manure and rice straw composting processes. Environ. Technol. 2017, 38, 1765–1769. [Google Scholar] [CrossRef]
- Halim, S.F.; Yong, S.K.; Tay, C.C. Ammonia nitrogen adsorption using spent mushroom substrate biochar (SMSB). Pertanika J. Sci. Technol. 2017, 25, 9–20. [Google Scholar]
- Lin, J.C.; Cheng, A.C.; Shiu, Y.L.; Wong, Y.C.; Yeh, S.P.; Simangunsong, T.; Liu, C.H. Using the biochar produced from spend mushroom substrate to improve the environmental condition of aquaculture pond. Aquac. Res. 2021, 52, 3532–3539. [Google Scholar] [CrossRef]
- Lou, Z.M.; Sun, Y.; Bian, S.P.; Baig, S.A.; Hu, B.L.; Xu, X.H. Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar. Chemosphere 2017, 169, 23–31. [Google Scholar] [CrossRef]
- Deng, B.; Shi, Y.; Zhang, L.; Fang, H.; Gao, Y.; Luo, L.; Feng, W.; Hu, X.; Wan, S.; Huang, W.; et al. Effects of spent mushroom substrate-derived biochar on soil CO2 and N2O emissions depend on pyrolysis temperature. Chemosphere 2020, 246, 125608. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.T.; Yuan, X.; Zhang, Q.; Wei, Q.X.; Liu, X.J.; Deng, W.P.; Wang, J.W.; Yang, W.T.; Deng, B.L.; Zhang, L. Biochar derived from spent mushroom substrate reduced N2O emissions with lower water content but increased CH4 emissions under flooded condition from fertilized soils in Camellia oleifera plantations. Chemosphere 2022, 287, 132110. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.S.; Moreira, B.R.A.; Viana, R.S.; Pardo-Gimenez, A.; Dias, E.S.; Noble, R.; Zied, D.C. Recycling spent mushroom substrate into fuel pellets for low-emission bioenergy producing systems. J. Clean. Prod. 2021, 313, 127875. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.H.; Tsai, W.T.; Liu, S.C.; Lin, Y.Q. Thermochemical characterization of biochar from cocoa pod husk prepared at low pyrolysis temperature. Biomass Convers. Biorefin. 2018, 8, 237–243. [Google Scholar] [CrossRef]
- Tsai, W.T.; Jiang, T.J.; Lin, Y.Q.; Chang, H.L.; Tsai, C.H. Preparation of porous biochar from soapberry pericarp at severe carbonization conditions. Fermentation 2021, 7, 228. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Jenkins, B.M.; Baxter, L.L.; Miles, T.R., Jr.; Miles, T.R. Combustion properties of biomass. Fuel Process. Technol. 1998, 54, 17–46. [Google Scholar] [CrossRef]
- Masek, O.; Johnston, C.T. Thermal analysis for biochar characterisation. In Biochar: A Guide to Analytical Methods; Singh, B., Camps-Arbestain, M., Lehmann, J., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 283–293. [Google Scholar]
- Steiner, C. Considerations in biochar characterization. In Agricultural and Environmental Applications of Biochar: Advances and Barriers; Guo, M., He, Z., Uchimiya, S.M., Eds.; Soil Science Society of America: Madison, WI, USA, 2016; pp. 87–100. [Google Scholar]
- Mukome, F.N.D.; Parikh, S.J. Chemical, physical, and surface characterization of biochar. In Biochar: Production, Characterization, and Applications; Ok, Y.S., Uchimiya, S.M., Chang, S.X., Bolan, N., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 67–96. [Google Scholar]
- Suzuki, M. Adsorption Engineering; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Kleber, M.; Hockaday, W.; Nico, P.S. Characteristics of biochar: Macro-molecular properties. In Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: New York, NY, USA, 2015; pp. 111–137. [Google Scholar]
- Johnston, C.T. Biochar analysis by Fourier-transform infra-red spectroscopy. In Biochar: A Guide to Analytical Methods; Singh, B., Camps-Arbestain, M., Lehmann, J., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 199–213. [Google Scholar]
Properties a | Value | |
---|---|---|
SMC-SF | SMC-BF | |
Proximate analysis b | ||
Ash (wt%) | 3.53 ± 0.78 | 3.51 ± 0.60 |
Combustibles (wt%) | 77.01 ± 0.60 | 76.36 ± 16.64 |
Fixed carbon c (wt%) | 19.46 ± 0.65 | 20.13 ± 16.82 |
Ultimate analysis d | ||
Carbon (wt%) | 45.43 ± 0.11 | 45.29 ± 0.01 |
Hydrogen (wt%) | 6.25 ± 0.07 | 6.43 ± 0.06 |
Oxygen (wt%) | 46.58 ± 0.35 | 47.02 ± 0.01 |
Nitrogen (wt%) | 0.64 ± 0.04 | 0.57 ± 0.16 |
Sulfur (wt%) | 0.51 ± 0.01 | 0.57 ± 0.03 |
Calorific value (MJ kg−1) b | 22.10 ± 1.60 | 20.53 ± 0.09 |
Property | SMC-SF-BC-400 | SMC-SF- BC-600 | SMC-SF- BC-800 |
---|---|---|---|
Single point surface area (m2 g−1) a | 3.2 | 158.8 | 318.1 |
BET surface area (m2 g−1) b | 3.4 | 156.1 | 312.4 |
Langmuir surface area (m2 g−1) | 5.6 | 231.2 | 463.3 |
Micropore surface area (m2 g−1) c | -- g | 127.2 | 255.0 |
External surface area (m2 g−1) d | 4.1 | 28.9 | 57.4 |
Total pore volume (cm3 g−1) e | 0.0093 | 0.0948 | 0.1833 |
Micropore volume (cm3 g−1) c | -- | 0.0672 | 0.1343 |
Pore diameter (nm) f | 10.91 | 2.43 | 2.35 |
Property | SMC-BF- BC-400 | SMC-BF- BC-600 | SMC-BF- BC-800 |
---|---|---|---|
Single point surface area (m2 g−1) a | 3.8 | 118.4 | 285.5 |
BET surface area (m2 g−1) b | 3.9 | 116.2 | 280.9 |
Langmuir surface area (m2 g−1) | 6.2 | 17.6 | 416.9 |
Micropore surface area (m2 g−1) c | 0.1 | 93.2 | 220.8 |
External surface area (m2 g−1) d | 3.8 | 23.0 | 60.1 |
Total pore volume (cm3 g−1) e | 0.0088 | 0.0761 | 0.1715 |
Micropore volume (cm3 g−1) c | 0.0001 | 0.0493 | 0.1164 |
Pore diameter (nm) f | 8.99 | 2.62 | 2.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-S.; Tsai, W.-T.; Lin, Y.-Q.; Tsai, C.-H.; Chang, Y.-T. Production of Highly Porous Biochar Materials from Spent Mushroom Composts. Horticulturae 2022, 8, 46. https://doi.org/10.3390/horticulturae8010046
Chen W-S, Tsai W-T, Lin Y-Q, Tsai C-H, Chang Y-T. Production of Highly Porous Biochar Materials from Spent Mushroom Composts. Horticulturae. 2022; 8(1):46. https://doi.org/10.3390/horticulturae8010046
Chicago/Turabian StyleChen, Wen-Shing, Wen-Tien Tsai, Yu-Quan Lin, Chi-Hung Tsai, and Yao-Tsung Chang. 2022. "Production of Highly Porous Biochar Materials from Spent Mushroom Composts" Horticulturae 8, no. 1: 46. https://doi.org/10.3390/horticulturae8010046
APA StyleChen, W. -S., Tsai, W. -T., Lin, Y. -Q., Tsai, C. -H., & Chang, Y. -T. (2022). Production of Highly Porous Biochar Materials from Spent Mushroom Composts. Horticulturae, 8(1), 46. https://doi.org/10.3390/horticulturae8010046