High Tunnel Production of Containerized Hybrid and Heirloom Tomatoes Using Grafted Plants with Two Types of Rootstocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Culture and Management
2.2. Microenvironment in the High Tunnel
2.3. Plant Vegetative Growth
2.4. Tomato Harvest and Yield Measurement
2.5. Fruit Firmness, Soluble Solids Content (SSC), Titratable Acidity (TA), and Juice pH
2.6. Fruit Color, Lycopene, and β-Carotene Concentrations
2.7. Experimental Design and Data Analyses
3. Results
3.1. Plant Vegetative Growth
3.2. Fruit Yield Component
3.3. Fruit Size
3.4. Soluble Solids Content, Titratable Acidity, and Juice pH
3.5. Fruit Firmness
3.6. Fruit Color
3.7. Lycopene and β-Carotene Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Heuvelink, E. Tomatoes, 2nd ed.; Crop Production Science in Horticulture; no. 27; CABI: Cambridge, MA, USA, 2018. [Google Scholar]
- Agricultural Marketing Resource Center (AgMRC). Tomatoes. 2018. Available online: https://www.agmrc.org/commodities-products/vegetables/tomatoes (accessed on 26 July 2021).
- Mississippi State University Extension. Tomato Pepper and Eggplant; Mississippi State University Extension: Starkville, MS, USA, 2021; Available online: https://extension.msstate.edu/crops/commercial-horticulture/tomato-pepper-and-eggplant (accessed on 23 July 2021).
- Barnes, J.; Myles, A. Local Food Economies: How Selected Specialty Crops Contribute to Mississippi’s Economy; Mississippi State University Extension: Starkville, MS, USA, 2017; p. 3157. [Google Scholar]
- Lamont, W.J. Overview of the use of high tunnels worldwide. HortTechnology 2009, 19, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Lamont, W.J.; McGann, M.; Orzolek, M.; Mbugua, N.; Dye, B.; Reese, D. Design and construction of the Penn State high tunnel. HortTechnoloy 2002, 12, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Bi, G. Container production of southern highbush blueberries using high tunnels. HortScience 2019, 54, 267–274. [Google Scholar] [CrossRef]
- Lalk, G.T.; Bi, G.; Zhang, Q.; Harkess, R.L.; Li, T. Hight-tunnel production of strawberries using black and red plastic mulches. Horticulturae 2020, 6, 73. [Google Scholar] [CrossRef]
- Kadir, S.; Carey, E.; Ennahli, S. Influence of high tunnel and field conditions on strawberry growth and development. HortScience 2006, 41, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, K.; Koenig, R.T.; Jaeckel, B.M.; Miles, C.A. Yield of leafy greens in high tunnel winter production in the Northwest United States. HortScience 2013, 48, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Rogers, M.A.; Wszelaki, A.L. Influence of high tunnel production and planting date on yield, growth, and early blight development on organically grown heirloom and hybrid tomato. HortTechnology 2012, 22, 452–462. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, S.; Rivard, C.; Peet, M.M.; Harlow, C.; Louws, F. High tunnel and field production of organic heirloom tomatoes: Yield, fruit quality, disease, and microclimate. HortScience 2012, 47, 1283–1290. [Google Scholar] [CrossRef] [Green Version]
- Carey, E.E.; Jett, L.; Lamont, W.J.; Nennich, T.T.; Orzolek, M.D.; Williams, K.A. Horticultural crop production in high tunnels in the United States: A snapshot. HortTechnology 2009, 19, 37–43. [Google Scholar] [CrossRef]
- Talavera-Bianchi, M.; Chambers, E.; Carey, E.E.; Chambers, D.H. Effect of organic production and fertilizer variables on the sensory properties of pac choi (Brassica rapa var. Mei Qing Choi) and Tomato (Solanum lycopersicum var. Bush Celebrity). J. Sci. Food Agric. 2010, 90, 981–988. [Google Scholar] [CrossRef]
- Frey, C.J.; Zhao, X.; Brecht, J.K.; Huff, D.M.; Black, Z.E. High tunnel and grafting effects on organic tomato plant disease severity and root-knot nematode infestation in a subtropical climate with sandy soils. HortScience 2020, 55, 46–54. [Google Scholar] [CrossRef]
- Healy, G.K.; Emerson, B.J.; Dawson, J.C. Tomato variety trials for productivity and quality in organic hoop house versus open field management. Renew. Agric. Food Syst. 2017, 32, 562–572. [Google Scholar] [CrossRef]
- Robbins, J.A.; Gu, M. Cost of Constructing A Metal. Hoop High. Tunnel; FSA6147; University of Arkansas, Agriculture and Natural Resources: Little Rock, AR, USA, 2018; Available online: https://www.uaex.edu/publications/PDF/FSA-6147.pdf (accessed on 26 July 2021).
- Blestos, F.A.; Olympios, C.M. Rootstocks and grafting tomatoes, peppers, and eggplants for soil-borne disease resistance, improved yield and quality. Eur. J. Plant. Sci. Biotechnol. 2008, 2, 62–73. [Google Scholar]
- Djidonou, D.; Zhao, X.; Simonne, E.H.; Koch, K.E.; Erickson, J.E. Yield, water-, and nitrogen-use efficiency in field-grown, grafted tomatoes. HortScience 2013, 48, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Barrett, C.E.; Zhao, X.; McSorley, R. Grafting for root-knot nematode control and yield improvement in organic heirloom tomato production. HortScience 2012, 47, 614–620. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.; Zhao, X.; Hassell, R.; Thies, J. Defense mechanisms involved in disease resistance of grafted vegetables. HortScience 2012, 47, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.M.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hort. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Kubota, C.; McClure, M.A.; Kokalis-Burelle, N.; Bausher, M.G.; Rosskopf, E.N. Vegetable grafting: History, use, and current technology status in North America. HortScience 2008, 43, 1664–1669. [Google Scholar] [CrossRef]
- Bayoumi, Y.; Abd-Alkarim, E.; El-Ramady, H.; El-Aidy, F.; Hamed, E.; Taha, N.; Prohens, J.; Rakha, M. Grafting improves fruit yield of cucumber plants grown under combined heat and soil salinity stresses. Horticulturae 2021, 7, 61. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant. Sci. 2017, 8, 1130. [Google Scholar] [CrossRef] [Green Version]
- Kacjan-Marsic, N.; Osvald, J. The influence of grafting on yield of two tomato cultivars (Lycopersicon esculentum Mill.) grown in a plastic house. Acta Agric. Slov. 2004, 83, 243–249. [Google Scholar]
- Rivard, C.L.; Louws, F.J. Grafting to manage soilborne diseases in heirloom tomato production. HortScience 2008, 43, 2104–2111. [Google Scholar] [CrossRef] [Green Version]
- Rivard, C.L.; O’Connell, S.; Peet, M.M.; Louws, F.J. Grafting tomato with interspecific rootstock to manage disease caused by Sclerotium rolfsii and southern root-knot nematode. Plant Dis. 2010, 94, 1015–1021. [Google Scholar] [CrossRef] [Green Version]
- Barrrett, C.E.; Zhao, X.; Hodges, A.W. Cost benefit analysis of using grafted transplants for root-knot nematode management in organic heirloom tomato production. HortTechnology 2012, 22, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Di Gioia, F.; Signore, A.; Serio, F.; Santamaria, P. Grafting improves tomato salinity tolerance through sodium partitioning within the shoot. HortScience 2013, 48, 855–862. [Google Scholar] [CrossRef] [Green Version]
- Suchoff, D.H.; Louws, F.J.; Gunter, C.C. Yield and disease resistance for three bacterial wilt-resistant tomato rootstocks. HortTechnology 2019, 29, 330–337. [Google Scholar] [CrossRef]
- Djidonou, D.; Zhao, X.; Brecht, J.K.; Cordasco, K.M. Influence of interspecific hybrid rootstocks on tomato growth, nutrient accumulation, yield, and fruit composition under greenhouse conditions. HortTechnology 2017, 27, 868–877. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Kumar, P.; Kumar, A.; Kyriacou, M.C.; Colla, G.; Rouphael, Y. Grafting tomato as a tool to improve salt tolerance. Agronomy 2020, 10, 263. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.P.; Lopez, R.G. Commercial Greenhouse Production Measuring Daily Light Integral in a Greenhouse. Purdue Extension. HO-238-W. 2010. Available online: https://www.extension.purdue.edu/extmedia/HO/HO-238-W.pdf (accessed on 27 July 2021).
- Nagata, M.; Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J. Jpn. Soc. Food Sci. Technol. 1992, 39, 925–928. [Google Scholar] [CrossRef] [Green Version]
- Morgan, L. Daily Light Integral (DLI) and Greenhouse Tomato Production. Available online: https://www.specmeters.com/assets/1/7/2013_-_DLI_Greenhouse_Tomato1.pdf (accessed on 29 July 2021).
- Lang, K.M.; Nair, A. Effect of tomato rootstock on hybrid and heirloom tomato performance in a Midwest high tunnel production system. HortScience 2019, 54, 840–845. [Google Scholar] [CrossRef] [Green Version]
- Buller, S.; Inglis, D.; Miles, C. Plant growth, fruit yield and quality, and tolerance to Verticillium wilt of grafted watermelon and tomato in field production in the Pacific Northwest. HortScience 2013, 48, 1003–1009. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, P.; Chaudhari, S.; Edelstein, M. Tomato grafting: A global perspective. HortScience 2017, 52, 1328–1336. [Google Scholar] [CrossRef] [Green Version]
- Khah, E.M.; Kakava, E.; Mavromatis, A.; Chachalls, D.; Goulas, C. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. J. Appl. Hort. 2006, 8, 3–7. [Google Scholar]
- Bai, Y.; Lindhout, P. Domestication and breeding of tomatoes: What have we gained and what can we gain in the future? Ann. Bot. 2007, 100, 1085–1094. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Jawad, R.; Kumar, P.; Rea, E.; Cardarelli, M. The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Sci. Hort. 2013, 164, 380–391. [Google Scholar] [CrossRef]
- McAvoy, T.; Paret, M.; Freeman, J.H.; Rideout, S.; Olson, S.M. Evaluation of grafting using hybrid rootstocks for management of bacterial wilt in field tomato production. HortScience 2012, 47, 621–625. [Google Scholar] [CrossRef] [Green Version]
- Flores, F.B.; Sanchez-Bel, P.; Estan, M.T.; Martinez-Rodriguez, M.M.; Moyano, E.; Morales, B.; Campos, J.F.; Garcia-Abellan, J.O.; Egea, M.I.; Fernandez-Garcia, N.; et al. The effectiveness of grafting to improve fruit quality. Sci. Hort. 2010, 125, 211–217. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Effect of nickel and grafting combination on yield, fruit quality, antioxidative enzyme activities, lipid peroxidation, and mineral composition of tomato. J. Plant Nutr. Soil Sci. 2015, 178, 848–860. [Google Scholar] [CrossRef]
- Cazzonelli, C. Carotenoids in nature: Insights from plants and beyond. Funct. Plant Biol. 2011, 38, 833–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sies, H.; Stahl, W. Vitamin E and C, β-carotene and other carotenoids as antioxidants. Am. J. Clin. Nutr. 1995, 62, 1315S–1321S. [Google Scholar] [CrossRef] [PubMed]
- Seren, S.; Lieberman, R.; Bayraktar, U.; Health, E.; Sahin, K.; Andic, F.; Kucuk, O. Lycopene in cancer prevention and treatment. Am. J. Ther. 2008, 15, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Gossier, S.; Wittmann, S.; Fernandes, M.; Mempel, H.; Ulrichs, C. Comparison of colorimeter and different portable food-scanners for non-destructive prediction of lycopene content in tomato fruit. Postharvest Biol. Technol. 2020, 167, 111232. [Google Scholar] [CrossRef]
- Arias, R.; Lee, T.C.; Logendra, L.; Janes, H. Correlation of lycopene measured by HPLC with the L, a, b color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J. Agric. Food Chem. 2000, 48, 1697–1702. [Google Scholar] [CrossRef] [PubMed]
- Brandt, S.; Pék, Z.; Barna, É.; Lugasi, A.; Helyes, L. Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J. Sci. Food Chem. 2006, 86, 568–572. [Google Scholar] [CrossRef]
28 DAP 2 | 54 DAP | |||||
---|---|---|---|---|---|---|
Cultivar | Plant Type 1 | Plant Height | SPAD | Plant Height | SPAD 3 | Stem Diameter |
(cm) | (cm) | (mm) | ||||
Big Beef | Emperador | 58.6 ab | 48.2 a–d | 118.6 a | 56.0 b | 15.6 bc |
Maxifort | 59.0 ab | 48.5 a–d | 112.1 abc | |||
Non-grafted | 60.3 a | 49.0 a–d | 126.2 a | |||
Brandywine | Emperador | 52.9 b–f | 46.9 bcd | 112.1 abc | 52.6 bc | 14.6 c |
Maxifort | 47.1 fg | 45.3 d | 105.5 abc | |||
Non-grafted | 55.6 a–d | 51.3 abc | 107.8 abc | |||
Early Girl | Emperador | 51.2 c–f | 51.9 ab | 98.3 bcd | 51.9 c | 17.8 ab |
Maxifort | 53.4 a–f | 48.0 a–d | 112.1 abc | |||
Non-grafted | 53.1 b–f | 48.5 a–d | 117.5 ab | |||
Mortgage Lifter | Emperador | 52.5 b–f | 45.6 d | 123.4 a | 51.3 c | 17.3 ab |
Maxifort | 53.7 a–f | 48.8 a–d | 120.9 a | |||
Non-grafted | 54.8 a–e | 46.0 cd | 113.7 abc | |||
San Marzano | Emperador | 49.5 d–g | 48.3 a–d | 96.0 cd | 49.0 c | 19.7 a |
Maxifort | 48.4 efg | 47.8 bcd | 97.8 cd | |||
Non-grafted | 43.5 g | 45.1 d | 79.3 d | |||
Sun Sugar | Emperador | 57.6 abc | 51.7 ab | 122.7 a | 60.2 a | 16.0 bc |
Maxifort | 57.5 abc | 50.3 a–d | 124.2 a | |||
non-grafted | 56.1 a–d | 53.4 a | 126.6 a | |||
p-value | Cultivar | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Plant type | 0.67 | 0.45 | 0.99 | 0.27 | <0.0001 | |
Cultivar*Type | 0.0008 | 0.0002 | 0.0006 | 0.07 | 0.24 |
Color | ||||
---|---|---|---|---|
Plant Type 1 | Stem Diameter 2,3 | a* | b* | β-Carotene |
(mm) | (µg·g−1 FW) | |||
Emperador | 19.3 a | 25.2 b | 27.5 b | 16 ab |
Maxifort | 17.3 b | 26.4 a | 28.6 a | 12.9 b |
Non-grafted | 13.9 c | 26.2 ab | 28.4 ab | 22.7 a |
p-value | <0.0001 | 0.02 | 0.02 | 0.003 |
Marketable Yield 2,3 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cultivar | Plant type 1 | June | July | August | Total Marketable Yield | Total Unmarketable Yield | Total Yield | Marketable Fruit Number | Fruit Size |
(kg per Plant) | (kg per Plant) | (kg per Plant) | (kg per Plant) | (g per Fruit) | |||||
Big Beef | Emperador | 5.00 a | 4.01 ab | 1.44 a–e | 10.45 a | 0.73 b–d | 11.34 a | 38.9 d–f | 261.0 c |
Maxifort | 5.01 a | 2.21 a | 11.12 a | 0.84 b–d | 40.8 d–f | ||||
Non-grafted | 4.62 ab | 1.71 a–c | 10.60 a | 0.71 b–d | 42.6 d–f | ||||
Brandywine | Emperador | 1.76 fg | 3.13 bc | 0.70 e–f | 5.65 b–d | 2.53 a | 8.08 b | 16.7 f | 340.3 b |
Maxifort | 3.39 b–e | 1.42 a–e | 8.40 ab | 0.92 b–d | 26.1 f | ||||
Non-grafted | 2.60 d–f | 0.61 e–f | 5.67 b–d | 1.30 bc | 18.2 f | ||||
Early Girl | Emperador | 2.68 c–f | 4.96 a | 1.48 a–d | 9.62 a | 0.25 cd | 10.47 a | 81.4 c | 146.1 d |
Maxifort | 4.12 abc | 1.95 a | 10.70 a | 0.38 cd | 65.4 cd | ||||
Non-grafted | 3.61 a–d | 1.74 ab | 10.22 a | 0.40 cd | 67 cd | ||||
Mortgage Lifter | Emperador | 2.10 efg | 3.38 bc | 0.34 f | 5.78 b–d | 1.78 ab | 8.22 b | 20.9 f | 386.8 a |
Maxifort | 2.30 d–g | 0.75 c–f | 5.73 b–d | 2.53 a | 15.7 f | ||||
Non-grafted | 2.01 efg | 2.27 a | 7.92 a–c | 1.29 bc | 23.4 f | ||||
San Marzano | Emperador | 1.12 g | 2.40 cd | 0.70 d–f | 4.33 d | 0.33 cd | 4.48 c | 55.1 c–e | 70.7 e |
Maxifort | 1.03 g | 0.86 b–f | 4.58 d | 0.27 cd | 60.8 cd | ||||
Non-grafted | 0.99 g | 0.36 f | 3.27 d | 0.65 cd | 46.3 def | ||||
Sun Sugar | Emperador | 1.91 fg | 1.77 d | 0.49 ef | 4.14 d | 0.22 d | 4.33 c | 293 a | 14.3 f |
Maxifort | 2.20 d–g | 0.47 f | 4.76 cd | 0.21 d | 321 a | ||||
Non-grafted | 1.67 fg | 0.42 f | 3.60 d | 0.22 d | 258 b | ||||
p-value | Cultivar | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Plant type | 0.0021 | 0.60 | 0.0008 | 0.05 | 0.20 | 0.07 | 0.0031 | 0.07 | |
Cultivar*Type | 0.045 | 0.44 | <0.0001 | 0.046 | <0.0001 | 0.51 | <0.0001 | 0.2 |
Early to Middle Season 1 | ||||||
---|---|---|---|---|---|---|
Cultivar | Plant Type | Soluble Solids Content 2 | Titratable Acidity | Sugar: Acid Ratio 3 | Juice pH | Fruit Firmness |
(°Brix) | (%) | (N) | ||||
Big Beef | Emperador | 4.2 g–i | 0.62 c–e | 4.24 a–c | 7.3 b–d | |
Maxifort | 4.4 f–i | 0.65 c–e | 6.8 a | 4.20 a–d | 7.5 b–d | |
Non-grafted | 4.6 d–g | 0.69 c–e | 4.16 a–e | 8.9 ab | ||
Brandywine | Emperador | 4.6 d–g | 0.70 c–e | 4.11 a–e | 5.3 e | |
Maxifort | 4.1 g–i | 0.57 de | 7.0 a | 4.24 a–c | 4.8 e | |
Non-grafted | 4.1 g–i | 0.65 c–e | 4.16 a–e | 4.8 e | ||
Early Girl | Emperador | 3.8 i | 0.55 e | 4.26 ab | 7.7 bc | |
Maxifort | 5.1 b–e | 0.73 cd | 7.0 a | 4.10 a–e | 8.1 ab | |
Non-grafted | 5.1 b–e | 0.74 bc | 4.06 b–e | 9.3 a | ||
Mortgage Lifter | Emperador | 4.6 e–h | 0.69 c–e | 4.19 a–e | 6.0 de | |
Maxifort | 5.0 c–f | 0.63 c–e | 7.1 a | 4.25 ab | 5.2 e | |
Non-grafted | 3.9 hi | 0.65 c–e | 4.07 b–e | 4.7 e | ||
San Marzano | Emperador | 5.5 bc | 0.75 bc | 4.18 a–e | 5.7 e | |
Maxifort | 5.7 b | 0.77 bc | 7.6 a | 4.21 a–d | 5.7 e | |
Non-grafted | 5.3 b–d | 0.69 c–e | 4.34 a | 6.0 de | ||
Sun Sugar | Emperador | 7.1 a | 0.96 a | 3.95 e | 6.1 de | |
Maxifort | 7.0 a | 0.93 a | 7.7 a | 3.98 c–e | 6.0 de | |
Non-grafted | 7.3 a | 0.89 ab | 3.98 de | 6.2 c–e | ||
p-value | Cultivar | <0.0001 | <0.0001 | 0.03 | <0.0001 | <0.0001 |
Type | 0.0078 | 0.98 | 0.19 | 0.47 | 0.067 | |
Cultivar*Type | <0.0001 | <0.0001 | 0.055 | 0.014 | 0.0003 |
Late Season 1 | ||||||
---|---|---|---|---|---|---|
Cultivar | Plant Type | Soluble Solids Content 2 | Titratable Acidity 3 | Sugar: Acid Ratio | Juice pH | Fruit Firmness |
(°Brix) | (%) | (N) | ||||
Big Beef | Emperador | 4.2 cde | 9.2 bcd | 4.50 b | 7.9 a | |
Maxifort | 4.4 b-e | 0.49 a | 8.7 bcd | |||
Non-grafted | 4.6 b-e | 10.0 abc | ||||
Brandywine | Emperador | 4.6 b-e | 8.7 bcd | 4.52 b | 5.0 c | |
Maxifort | 4.1 de | 0.49 a | 9.8 a-d | |||
Non-grafted | 4.5 b-e | 9.0 bcd | ||||
Early Girl | Emperador | 3.7 e | 8.1 cd | 4.52 b | 7.8 a | |
Maxifort | 5.0 bcd | 0.54 a | 8.6 bcd | |||
Non-grafted | 4.9 bcd | 8.7 bcd | ||||
Mortgage Lifter | Emperador | 4.4 b-e | 9.5 a-d | 4.37 b | 5.2 c | |
Maxifort | 4.7 bcd | 0.62 a | 11.0 ab | |||
Non-grafted | 4.0 de | 7.1 d | ||||
San Marzano | Emperador | 5.1 bc | 10.5 abc | 4.62 ab | 4.5 c | |
Maxifort | 5.2 b | 0.48 a | 10.4 abc | |||
Non-grafted | 5.1 bc | 12.0 a | ||||
Sun Sugar | Emperador | 6.3 a | 9.2 bcd | 4.91 a | 6.7 b | |
Maxifort | 6.3 a | 0.67 a | 9.0 bcd | |||
Non-grafted | 6.3 a | 10.4 abc | ||||
p-value | Cultivar | <0.0001 | 0.104 | <0.0001 | 0.003 | <0.0001 |
Type | 0.14 | 0.45 | 0.42 | 0.19 | 0.063 | |
Cultivar*Type | 0.0003 | 0.089 | 0.0002 | 0.93 | 0.58 |
Fruit Color 1,2 | ||||||
---|---|---|---|---|---|---|
Cultivar | Plant Type | L* | a* | b* | Lycopene | β-Carotene |
(µg·g−1 FW) | (µg·g−1 FW) | |||||
Big Beef | Emperador | 43.5 b–d | 54.3 ab | |||
Maxifort | 42.9 b–d | 28.3 a | 31.3 b | 59.3 a | 5.5 c | |
Non-grafted | 42.8 b–d | 53.4 abc | ||||
Brandywine | Emperador | 44.8 bc | 45.0 a–f | |||
Maxifort | 43.8 b–d | 29.1 a | 19.3 d | 27.3 d–g | 16.7 b | |
Non-grafted | 44.5 b–d | 22.9 fg | ||||
Early Girl | Emperador | 41.2 de | 49.6 a–d | |||
Maxifort | 41.7 cde | 27.7 a | 29.9 b | 59.6 a | 7 d | |
Non-grafted | 42.9 b–d | 62.1 a | ||||
Mortgage Lifter | Emperador | 41.2 de | 26.6 d–g | |||
Maxifort | 43.3 b–d | 28.5 a | 19.1 d | 30.4 c–g | 18.6 b | |
Non-grafted | 45.3 b | 35 b–g | ||||
San Marzano | Emperador | 36.3 f | 53.3 a–c | |||
Maxifort | 37.7 f | 28.4 a | 25.2 c | 46.6 a–e | 24.4 b | |
Non-grafted | 38.8 ef | 31.2 b–g | ||||
Sun Sugar | Emperador | 50.0 a | 18.5 g | |||
Maxifort | 52.4 a | 13.9 b | 43.7 a | 24.6 e–g | 45.4 a | |
Non-grafted | 49.9 a | 15.7 g | ||||
p-value | Cultivar | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Plant type | 0.0086 | 0.02 | 0.02 | 0.16 | 0.0034 | |
Cultivar*Type | 0.0018 | 0.12 | 0.055 | 0.002 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arthur, J.D.; Li, T.; Lalk, G.T.; Bi, G. High Tunnel Production of Containerized Hybrid and Heirloom Tomatoes Using Grafted Plants with Two Types of Rootstocks. Horticulturae 2021, 7, 319. https://doi.org/10.3390/horticulturae7090319
Arthur JD, Li T, Lalk GT, Bi G. High Tunnel Production of Containerized Hybrid and Heirloom Tomatoes Using Grafted Plants with Two Types of Rootstocks. Horticulturae. 2021; 7(9):319. https://doi.org/10.3390/horticulturae7090319
Chicago/Turabian StyleArthur, Jacob Dale, Tongyin Li, Geoffrey Thomas Lalk, and Guihong Bi. 2021. "High Tunnel Production of Containerized Hybrid and Heirloom Tomatoes Using Grafted Plants with Two Types of Rootstocks" Horticulturae 7, no. 9: 319. https://doi.org/10.3390/horticulturae7090319
APA StyleArthur, J. D., Li, T., Lalk, G. T., & Bi, G. (2021). High Tunnel Production of Containerized Hybrid and Heirloom Tomatoes Using Grafted Plants with Two Types of Rootstocks. Horticulturae, 7(9), 319. https://doi.org/10.3390/horticulturae7090319