Development of a New Essential Oil-Based Technology to Maintain Fruit Quality in Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preliminary Test
2.2. Main Experiment
2.3. Statistical Analysis
3. Results
3.1. Preliminary Test
Effect of Eugenol on Some Fruit Quality Characteristics
3.2. Main Experiment
Effect on Fruit Quality Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wei, H.; Seidi, F.; Zhang, T.; Jin, Y.; Xiao, H. Ethylene scavengers for the preservation of fruits and vegetables: A review. Food Chem. 2021, 337, 127750. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Romero, D.; Bailén, G.; Serrano, M.; Guillén, F.; Valverde, J.M.; Zapata, P.; Castillo, S.; Valero, D. Tools to maintain postharvest fruit and vegetable quality through the inhibition of ethylene action: A review. Crit. Rev. Food Sci. Nutr. 2007, 47, 543–560. [Google Scholar] [CrossRef]
- Álvarez-Hernández, M.H.; Martínez-Hernández, G.B.; Avalos-Belmontes, F.; Castillo-Campohermoso, M.A.; Contreras-Esquivel, J.C.; Artés-Hernández, F. Potassium Permanganate-Based Ethylene Scavengers for Fresh Horticultural Produce as an Active Packaging. Food Eng. Rev. 2019, 11, 159–183. [Google Scholar] [CrossRef]
- Vermeiren, L.; Devlieghere, F.; VanBeen, M.; De Kruijf, N.; Debevere, J. Development in the Active Packaging of Foods. J. Food Technol. Afr. 2000, 5, 6–13. [Google Scholar] [CrossRef]
- Wyrwa, J.; Barska, A. Innovations in the food packaging market: Active packaging. Eur. Food Res. Technol. 2017, 243, 1681–1692. [Google Scholar] [CrossRef]
- Sisler, E.C. The discovery and development of compounds counteracting ethylene at the receptor level. Biotechnol. Adv. 2006, 24, 357–367. [Google Scholar] [CrossRef]
- Huber, D.J. Suppression of Ethylene Responses Through Application of 1-Methylcyclopropene: A Powerful Tool for Elucidating Ripening and Senescence Mechanisms in Climacteric and Nonclimacteric Fruits and Vegetables. HortScience 2008, 43, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Antunes, M.D.C.; Cavaco, A.M. The use of essential oils for postharvest decay control. A review. Flavour Fragr. J. 2010, 25, 351–366. [Google Scholar]
- Montero-Prado, P.; Rodriguez-Lafuente, A.; Nerin, C. Active label-based packaging to extend the shelf-life of ‘Calanda’ peach fruit: Changes in fruit quality and enzymatic activity. Postharvest Biol. Technol. 2011, 60, 211–219. [Google Scholar] [CrossRef]
- Valero, D.; Valverde, J.M.; Martínez-Romero, D.; Guillén, F.; Castillo, S.; Serrano, M. The combination of modified atmosphere packaging with eugenol or thymol to maintain quality, safety and functional properties of table grapes. Postharvest Biol. Technol. 2006, 41, 317–327. [Google Scholar] [CrossRef]
- Ban, Z.; Zhang, J.; Li, L.; Luo, Z.; Wang, Y.; Yuan, Q.; Zhou, B.; Liu, H. Ginger essential oil-based microencapsulation as an efficient delivery system for the improvement of Jujube (Ziziphus jujuba Mill.) fruit quality. Food Chem. 2020, 306, 125628. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Henika, P.R.; Levin, C.E.; Mandrell, R.E. Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice. J. Agric. Food Chem. 2004, 52, 6042–6048. [Google Scholar] [CrossRef] [PubMed]
- Arasu, M.V.; Viayaraghavan, P.; Ilavenil, S.; Al-Dhabi, N.A.; Choi, K.C. Essential oil of four medicinal plants and protective properties in plum fruits against the spoilage bacteria and fungi. Ind. Crop. Prod. 2019, 133, 54–62. [Google Scholar] [CrossRef]
- Roller, S.; Seedhar, P. Carvacrol and cinnamic acid inhibit microbial growth in fresh-cut melon and kiwifruit at 4 °C and 8 °C. Lett. Appl. Microbiol. 2002, 35, 390–394. [Google Scholar] [CrossRef]
- Serrano, M.; Martínez-Romero, D.; Guillén, F.; Valverde, J.M.; Zapata, P.; Castillo, S.; Valero, D. The addition of essential oils to MAP as a tool to maintain the overall quality of fruits. Trends Food Sci. Technol. 2008, 19, 464–471. [Google Scholar] [CrossRef]
- Guillén, F.; Valero, D.; Zapata, P.J.; Castillo, S.; Martínez-Romero, D.; Serrano, M. A novel active packaging based on MAP and addition of essential oils maintains plum quality and enhances antioxidant properties. Acta Hortic. 2013, 1012, 1283–1290. [Google Scholar] [CrossRef]
- Sisler, E.C.; Grichko, V.P.; Serek, M. Interaction of ethylene and other compounds with the ethylene receptor: Agonists and antagonists. In Ethylene Action in Plants; Khan, N.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–34. [Google Scholar]
- Sisler, E.C.; Serek, M. Compounds Interacting with the Ethylene Receptor in Plants. Plant Biol. 2003, 5, 473–480. [Google Scholar] [CrossRef]
- Grichko, V.P.; Sisler, E.C.; Serek, M. Anti-ethylene properties of monoterpenes and some other naturally occurring compounds in plants. SAAS Bull. Biochem. Biotechnol. 2003, 16, 20–27. [Google Scholar]
- Pongjaruwat, W. Effect of Modified Atmosphere on Storage Life of Purple Passionfruit and Red Tamarillo. Ph.D. Thesis, Massey University, Auckland, New Zealand, 2007. [Google Scholar]
- Guzmán, M.; Sánchez, A.; Díaz, J.R.; Valenzuela, J.L. Postharvest quality of three tomato cultivars. Acta Hortic. 2009, 821, 241–248. [Google Scholar] [CrossRef]
- Guzmán, M.; Sánchez, A.; Salas, M.C.; Del Moral, F.; Valenzuela, J.L. Relationship between pectin-methyl esterase activity and softening in “Raf” tomato fruit. Acta Hortic. 2012, 934, 1291–1296. [Google Scholar] [CrossRef]
- Guillén, F.; Castillo, S.; Zapata, P.J.; Martínez-Romero, D.; Valero, D.; Serrano, M. Efficacy of 1-MCP treatment in tomato fruit: 2. Effect of cultivar and ripening stage at harvest. Postharvest Biol. Technol. 2006, 42, 235–242. [Google Scholar] [CrossRef]
- Guillén, F.; Castillo, S.; Zapata, P.J.; Martínez-Romero, D.; Serrano, M.; Valero, D. Efficacy of 1-MCP treatment in tomato fruit: 1. Duration and concentration of 1-MCP treatment to gain an effective delay of postharvest ripening. Postharvest Biol. Technol. 2007, 43, 23–27. [Google Scholar] [CrossRef]
- USDA. United States Standard for Grades of Fresh Tomatoes; United States Department of Agriculture, Agricultural Marketing Service: Washington, DC, USA, 1991; Volume 13.
- Nagata, N.; Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato. J. Jpn. Soc. Hortic. Sci. 1992, 61, 686–687. [Google Scholar]
- Iglesias, M.J.; López, J.G.; Luján, J.F.C.; Ortíz, F.L.; Pereznieto, H.B.; Toresano, F.; Camacho, F. Effect of genetic and phenotypic factors on the composition of commercial marmande type tomatoes studied through HRMAS NMR spectroscopy. Food Chem. 2014, 142, 1–11. [Google Scholar] [CrossRef]
- Xylia, P.; Ioannou, I.; Chrysargyris, A.; Stavrinides, M.C.; Tzortzakis, N. Quality Attributes and Storage of Tomato Fruits as Affected by an Eco-Friendly, Essential Oil-Based Product. Plants 2021, 10, 1125. [Google Scholar] [CrossRef] [PubMed]
- Egea, I.; Barsán, C.; Bian, W.; Purgatto, E.; Latché, A.; Chervin, C.; Bouzayen, M.; Pech, J.C. Chromoplast Differentiation: Current Status and Perspectives. Plant Cell Physiol. 2010, 51, 1601–1611. [Google Scholar] [CrossRef] [Green Version]
- Karlova, R.; Rosin, M.F.; Busscher-Lange, J.; Parapunova, V.; Do, P.T.; Fernie, A.R.; Fraser, P.D.; Baxter, C.; Angement, G.C.; de Maag, R.A. Transcriptome and Metabolite Profiling Show That APETALA2a Is a Major Regulator of Tomato Fruit Ripening. Plant Cell 2011, 23, 923–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadali, N.M.; Sowden, R.G.; Ling, Q.; Jarvis, R.P. Differentiation of chromoplasts and other plastids in plants. Plant Cell Rep. 2019, 38, 803–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razafimamonjison, G.; Jahiel, M.; Duclos, T.; Ramanoelina, P.; Fawbush, F.; Danthu, P. Bud, leaf and stem essential oil composition of Syzygium aromaticum from Madagascar, Indonesia and Zanzibar. Int. J. Basic Appl. Sci. 2014, 3, 224–233. [Google Scholar]
- Uddin, M.A.; Shahinuzzaman, M.; Rana, M.S.; Yaakob, Z. Study of chemical composition and medicinal properties of volatile oil from clove buds (Eugenia caryophyllus). Int. J. Pharm. Sci. Res. 2017, 8, 895–899. [Google Scholar]
- Peralta-Ruiz, Y.; Tovar, C.D.G.; Sinning-Mangonez, A.; Coronell, E.A.; Marino, M.F.; Chaves-Lopez, C. Reduction of Postharvest Quality Loss and Microbiological Decay of Tomato ‘Chonto’ (Solanum lycopersicum L.) Using Chitosan-E Essential Oil-Based Edible Coatings under Low-Temperature Storage. Polymers 2020, 12, 1822. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Cai, N.; Chen, J.; Wan, C. Clove Essential Oil as an Alternative Approach to Control Postharvest Blue Mold Caused by Penicillium italicum in Citrus Fruit. Biomolecules 2019, 9, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldwin, E.A.; Nisperos-Carriedo, M.O.; Moshonas, M.G. Quantitative Analysis of Flavor and Other Volatiles and for Certain Constituents of Two Tomato Cultivars during Ripening. J. Am. Soc. Hortic. Sci. 1991, 116, 265–269. [Google Scholar] [CrossRef] [Green Version]
Harvest | 3 Days | 6 Days | 9 Days | |
---|---|---|---|---|
Solid Soluble Content | ||||
Control | 6.3 ± 0.2 a A | 6.0 ± 0.2 a A | 6.1 ± 0.1 b A | 6.3 ± 0.2 a A |
40 | 6.3 ± 0.2 a A | 6.6 ± 0.2 a A | 6.7 ± 0.1 a A | 6.6 ± 0.1 a A |
60 | 6.3 ± 0.2 a A | 6.7 ± 0.2 a A | 6.8 ± 0.1 a A | 6.6 ± 0.2 a A |
Firmness | ||||
Control | 4254 ± 74 a A | 2346 ± 47 b B | 1795 ± 56 c B | 1873 ± 37 c B |
40 | 4254 ± 74 a A | 3598 ± 53 b A | 2673 ± 37 c A | 2787 ± 39 c A |
60 | 4254 ± 74 a A | 3657 ± 49 b A | 2608 ± 41 c A | 2521 ± 45 c A |
Harvest | 3 Days | 6 Days | 9 Days | |
---|---|---|---|---|
L* | ||||
Control | 32.88 ± 4.3 b A | 35.67 ± 3.9 b C | 42.98 ± 2.9 ab B | 53.79 ± 5.1 a B |
40 | 32.88 ± 4.3 b A | 42.21± 4.8 b B | 72.18 ± 3.3 a A | 68. 49 ± 3.9 a A |
60 | 32.88 ± 4.3 c A | 56.37± 5.7 b A | 76.12 ± 4.9 a A | 72. 47 ± 5.3 a A |
a* | ||||
Control | −13.73 ± 2.1 d A | −2.87 ± 1.2 c A | 7.57 ± 1.9 b A | 11.6 ± 2.3 a A |
40 | −13.73 ± 2.1 d A | −8.45 ± 2.7 c B | −0.56 ± 2.0 b B | 7.30 ± 4.1 a B |
60 | −13.73 ± 2.1 d A | −10.3 ± 2.5 c B | −3.76 ± 3.1 b C | 6.65 ± 3.9 a B |
b* | ||||
Control | 36.34 ± 2.9 a A | 39.72 ± 3.4 a A | 34.20 ± 4.1 b A | 31.58 ± 3.9 b A |
40 | 36.34 ± 2.9 a A | 40.79 ± 3.2 a A | 38.92 ± 2.6 a A | 32.20 ± 2.7 b A |
60 | 36.34 ± 2.9 a A | 41.05 ± 3.9 a A | 37.66 ± 3.1 a A | 30.64 ± 3.4 b A |
Days of Storage | ||||||
---|---|---|---|---|---|---|
Harvest | 2 | 4 | 6 | 8 | 10 | |
CSS | ||||||
Control | 6.7 ± 0.1 a A | 6.5 ± 0.3 a A | 6.8 ± 0.2 a A | 6.6 ± 0.1 a A | 6.4 ± 0.3 a A | 6.4 ± 0.1 a A |
Comm. scav. | 6.7 ± 0.1 a A | 6.7 ± 0.2 a A | 6.5 ± 0.2 a A | 6.5 ± 0.3 a A | 6.5 ± 0.1 a A | 6.6 ± 0.2 a A |
Ground clove | 6.7 ± 0.1 a A | 6.7 ± 0.1 a A | 6.6 ± 0.3 a A | 6.6 ± 0.3 a A | 6.4 ± 0.2 a A | 6.5 ± 0.1 a A |
Firmness | ||||||
Control | 5025 ± 70 a A | 4128 ± 52 a A | 3267 ± 89 b B | 1658 ± 40 c B | 1486 ± 36 c B | 1507 ± 39 c B |
Comm. scav. | 5025 ± 70 a A | 4896 ± 68 a A | 3963 ± 52 b A | 2984 ± 48 c A | 2863 ± 21 c A | 2255 ± 80 c A |
Ground clove | 5025 ± 70 a A | 4967 ± 78 a A | 3740 ± 86 b A | 2921 ± 67 c A | 2794 ± 45 c A | 2089 ± 56 d A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duque, L.F.; Amador, M.V.; Guzmán, M.; Asensio, C.; Valenzuela, J.L. Development of a New Essential Oil-Based Technology to Maintain Fruit Quality in Tomato. Horticulturae 2021, 7, 303. https://doi.org/10.3390/horticulturae7090303
Duque LF, Amador MV, Guzmán M, Asensio C, Valenzuela JL. Development of a New Essential Oil-Based Technology to Maintain Fruit Quality in Tomato. Horticulturae. 2021; 7(9):303. https://doi.org/10.3390/horticulturae7090303
Chicago/Turabian StyleDuque, Luisa Fernanda, María Victoria Amador, Miguel Guzmán, Carlos Asensio, and Juan Luis Valenzuela. 2021. "Development of a New Essential Oil-Based Technology to Maintain Fruit Quality in Tomato" Horticulturae 7, no. 9: 303. https://doi.org/10.3390/horticulturae7090303
APA StyleDuque, L. F., Amador, M. V., Guzmán, M., Asensio, C., & Valenzuela, J. L. (2021). Development of a New Essential Oil-Based Technology to Maintain Fruit Quality in Tomato. Horticulturae, 7(9), 303. https://doi.org/10.3390/horticulturae7090303