Optimization of Substrate and Nutrient Solution Strength for Lettuce and Chinese Cabbage Seedling Production in the Semi-Arid Environment of Central Myanmar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Plant Material and Crop Management
2.3. Treatments and Experimental Design
Rice Husk Carbonization Process
2.4. Measurements
2.5. Statistical Analysis
3. Results
3.1. Climate during the Experiments
3.2. Experiment 1
3.2.1. Substrate
3.2.2. Seedling Growth
3.3. Experiment 2
Seedling Growth
3.4. Experiment 3
Seedling Growth
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bezerra, F.C. Produção de Mudas de Hortaliças em Ambiente Protegido. Embrapa Agroindústria Tropical-Documentos; Infoteca-e; Embrapa: Brasília, Brazil, 2003; Volume 21. [Google Scholar]
- Laborde, D.; Martin, W.; Swinnen, J.; Vos, R. COVID-19 risks to global food security. Science 2020, 369, 500–502. [Google Scholar] [CrossRef]
- Vittuari, M.; Bazzocchi, G.; Blasioli, S.; Cirone, F.; Maggio, A.; Orsini, F.; Penca, J.; Petruzzelli, M.; Specht, K.; Amghar, S.; et al. Envisioning the future of European food systems: Approaches and research priorities after COVID-19. Front. Sustain. Food Syst. 2021, 5, 58, in press. [Google Scholar]
- Burton, P.; Lyons, K.; Richards, C.; Amati, M.; Rose, N.; Des Fours, L.; Pires, V.; Barclay, R. Urban Food Security, Urban Resilience and Climate Chang; National Climate Change Adaptation Research Facility: Southport, Australia, 2013; p. 160. [Google Scholar] [CrossRef] [Green Version]
- Soilless Horticulture and Other Water-Saving Innovative Technologies for Landless and Marginal Farmers, Baseline Survey; Report; Terre des Hommes Italy: Milan, Italy, 2015.
- Gianquinto, G.; Orsini, F. Feasibility Study for the Improvement of Food Security in Central Dry Zone, Myanmar; Report; Terre des Hommes Italy: Milan, Italy, 2007. [Google Scholar]
- McCartney, M.P.; Pavelic, P.; Lacombe, G.; Latt, K.; Zan, A.K.; Thein, K.; Cho, C. Water Resources Assessment of the Dry Zone of Myanmar: Final Report for Component; Project Report of the Livelihoods and Food Security Trust Fund (LIFT), Dry Zone Program. 2013. No. 615-2016-40947. Available online: https://www.researchgate.net/publication/266261203_Water_resource_assessment_of_the_dry_zone_of_Myanmar (accessed on 15 October 2020).
- Ministry of Agriculture, Livestock and Irrigation the Republic of the Union of Myanmar. Data Collection Survey for Food Value Chain Development Assistance in the Republic of the Union of Myanmar. Final Report. 2018. Available online: https://openjicareport.jica.go.jp/pdf/12321998.pdf (accessed on 15 October 2020).
- Livelihood and Food Security Trust Fund (LIFT). Available online: http://www.iwmi.cgiar.org/Publications/Other/Reports/PDF/improving-water-management-in-myanmars-dry-zone-for-food-security-livelihoods-and-health.pdf (accessed on 15 October 2020).
- Prasad, K.N.; Shivamurthy, G.R.; Aradhya, S.M. Ipomoea aquatica, an underutilized green leafy vegetable: A review. Int. J. Bot. 2008, 4, 123–129. [Google Scholar]
- Nicolle, C.; Cardinault, N.; Gueux, E.; Jaffrelo, L.; Rock, E.; Mazur, A.; Amouroux, P.; Rémésy, C. Health effect of vegetable-based diet: Lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. Clin. Nutr. 2004, 23, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Humphries, J.M.; Khachik, F. Distribution of lutein, zeaxanthin, and related geometrical isomers in fruit, vegetables, wheat, and pasta products. J. Agric. Food Chem. 2003, 51, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Cashin, J. Undernutrition in Myanmar; Part 1: A Critical Review of Literature. LIFT. Leveraging Essential Nutrition Actions to Reduce Malnutrition (LEARN) Programme. 2016. Available online: https://www.lift-fund.org/sites/lift-fund.org/files/uploads/LEARN%20Report%20Part%201.compressed.pdf (accessed on 15 October 2020).
- Fillion, L.; Henry, C.J.K. Nutrient losses and gains during frying: A review. Int. J. Food Sci. Nutr. 1998, 49, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Ceglie, F.G.; Bustamante, M.A.; Amara, M.B.; Tittarelli, F. The challenge of peat substitution in organic seedling production: Optimization of growing media formulation through mixture design and response surface analysis. PLoS ONE 2015, 10, e0128600. [Google Scholar] [CrossRef]
- Everaarts, A.P.; de Putter, H. Opportunities and constraints for improved vegetable production technology in tropical Asia. Acta Hortic. 2008, 809, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.P.; Scivittaro, W.B.; Vasconcellos, L.A.B.C. Avaliação de mudas de maracujazeiro em função do substrato e do tipo de bandejas. Sci. Agric. 1993, 50, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Cañizares, K.A.; Costa, P.C.; Goto, R.; Vieira, A.R.M. Desenvolvimento de mudas de pepino em diferentes substratos com e sem uso de solução nutritiva. Hortic. Bras. 2002, 20, 227–229. [Google Scholar] [CrossRef]
- Trani, P.E.; Novo, M.D.C.S.; Cavallaro Júnior, M.L.; Telles, L.M. Production of lettuce seedlings in different trays and commercial substrates. Hortic. Bras. 2004, 22, 290–294. [Google Scholar] [CrossRef]
- Fecondini, M.; Casati, M.; Dimech, M.; Michelon, N.; Orsini, F.; Gianquinto, G. Improved cultivation of lettuce with a low cost soilless system in indigent areas of northeast Brazil. Acta Hortic. 2008, 807, 501–508. [Google Scholar] [CrossRef]
- Seo, M.C.; So, K.H.; Ko, B.G.; Son, Y.K. Comparison of Tyurin Method and Dry Combustion Method for Carbon Analysis in Soils of Low Iorganic Carbon content. Korean J. Soil Sci. Fert. 2004, 37, 315–321. [Google Scholar]
- Gillman, G.P.; Bruce, R.C.; Davey, B.G.; Kimble, J.M.; Searle, P.L.; Skjemstad, J.O. A comparison of methods used for determination of cation exchange capacity. Commun. Soil Sci. Plant Anal. 1983, 14, 1005–1014. [Google Scholar] [CrossRef]
- Gupta, R.D.; Arora, S.; Gupta, G.D.; Sumberia, N.M. Soil physical variability in relation to soil erodibility under different land uses in foothills of Siwaliks in NW India. Trop. Ecol. 2010, 51, 183. [Google Scholar]
- Moe, K.; Mg, K.W.; Win, K.K.; Yamakawa, T. Combined effect of organic manures and inorganic fertilizers on the growth and yield of hybrid rice (Palethwe-1). Am. J. Plant Sci. 2017, 8, 1022–1042. [Google Scholar] [CrossRef] [Green Version]
- Beegle, D.B.; Oravec, T.C. Comparison of field calibrations for Mehlich 3 P and K with Bray-Kurtz P1 and ammonium acetate K for corn. Commun. Soil Sci. Plant Anal. 1990, 21, 1025–1036. [Google Scholar] [CrossRef]
- Acutis, M.; Scaglia, B.; Confalonieri, R. Perfunctory analysis of variance in agronomy, and its consequences in experimental results interpretation. Eur. J. Agron. 2012, 43, 129–135. [Google Scholar] [CrossRef]
- Oda, M. Raising of vigorous and valuable seedlings. Regul. Plant Grow. Dev. 2007, 42, 176–182. [Google Scholar] [CrossRef]
- Muhereza, I.; Pritchard, D.; Murray-Prior, R.; Collins, D. Nitrogen value of stockpiled cattle manure for crop production. Afr. J. Agric. Res. 2020, 16, 574–584. [Google Scholar] [CrossRef]
- Sapkota, S.; Liu, Z. Effects of nutrient composition and lettuce cultivar on crop production in hydroponic culture. Horticulturae 2019, 5, 72. [Google Scholar] [CrossRef] [Green Version]
- Varela Milla, O.; Rivera, E.B.; Huang, W.J.; Chien, C.; Wang, Y.M. Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test. J. Soil Sci. Plant Nutr. 2013, 13, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Williams, N.A.; Morse, N.D.; Buckman, J.F. Burning vs. incorporation of rice crop residues. Agron. J. 1972, 64, 467–468. [Google Scholar] [CrossRef]
- Yamato, M.; Okimori, Y.; Wibowo, I.F.; Anshori, S.; Ogawa, M. Effects of the application of charred bark of acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. J. Soil Sci. Plant Nutr. 2006, 52, 489–495. [Google Scholar] [CrossRef]
- Parent, C.; Capelli, N.; Berger, A.; Crèvecoeur, M.; Dat, J.F. An overview of plant responses to soil waterlogging. Plant Stress 2008, 2, 20–27. [Google Scholar]
- Patel, P.K.; Singh, A.K.; Tripathi, N.; Yadav, D.; Hemantaranjan, A. Flooding: Abiotic constraint limiting vegetable productivity. APAR 2014, 1, 96–103. [Google Scholar]
- Andriolo, J.L.; Luz, G.L.D.; Witter, M.H.; Godoi, R.D.S.; Barros, G.T.; Bortolotto, O.C. Growth and yield of lettuce plants under salinity. Hortic. Bras. 2005, 23, 931–934. [Google Scholar] [CrossRef] [Green Version]
- Samarakoon, U.C.; Weerasinghe, P.A.; Weerakkody, W.A.P. Effect of electrical conductivity (EC) of the nutrient solution on nutrient uptake, growth and yield of leaf lettuce (Lactuca sativa L.) in stationary culture. Trop. Agric. Res. 2006, 18, 21. [Google Scholar]
- Bustamante, M.A.; Gomis, M.P.; Pérez-Murcia, M.D.; Gangi, D.; Ceglie, F.G.; Paredes, C.; Moral, R. Use of livestock waste composts as nursery growing media: Effect of a washing pre-treatment. Sci. Hortic. 2021, 281. [Google Scholar] [CrossRef]
- Fraile-Robayo, R.D.; Álvarez-Herrera, J.G.; Reyes, M.; Johana, A.; Álvarez-Herrera, O.F.; Fraile-Robayo, A.L. Evaluation of the growth and quality of lettuce (Lactuca sativa L.) in a closed recirculating hydroponic system. Agron. Colomb. 2017, 35, 216–222. [Google Scholar] [CrossRef]
- Michelon, N.; Pennisi, G.; Myint, N.O.; Dall’Olio, G.; Batista, L.P.; Salviano, A.A.C.; Gianquinto, G. Strategies for Improved Yield and Water Use Efficiency of Lettuce (Lactuca sativa L.) through Simplified Soilless Cultivation under Semi-Arid Climate. Agronomy 2020, 10, 1379. [Google Scholar] [CrossRef]
- Soundy, P.; Cantliffe, D.J.; Hochmuth, G.J.; Stoffella, P.J. Management of nitrogen and irrigation in lettuce transplant production affects transplant root and shoot development and subsequent crop yields. HortScience 2005, 40, 607–610. [Google Scholar] [CrossRef] [Green Version]
- Schulze, E.D.; Kelliher, F.M.; Körner, C.; Lloyd, J.; Leuning, R. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Evol. Syst. 1994, 25, 629–662. [Google Scholar] [CrossRef]
- Orsini, F.; Pennisi, G.; Mancarella, S.; Al Nayef, M.; Sanoubar, R.; Nicola, S.; Gianquinto, G. Hydroponic lettuce yields are improved under salt stress by utilizing white plastic film and exogenous applications of proline. Sci. Hortic. 2018, 233, 283–293. [Google Scholar] [CrossRef]
- Kim, H.J.; Fonseca, J.M.; Choi, J.H.; Kubota, C.; Kwon, D.Y. Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.). J. Agric. Food Chem 2008, 56, 3772–3776. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruda, N.; Bisbis, M.; Tanny, J. Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production: A review. J. Clean. Prod. 2019, 225, 324–339. [Google Scholar] [CrossRef]
- Antón, A.; Torrellas, M.; Montero, J.I.; Ruijs, M.; Vermeulen, P.; Stanghellini, C. Environmental impact assessment of Dutch tomato crop production in a Venlo glasshouse. Acta Hortic. 2012, 927, 781–791. [Google Scholar] [CrossRef] [Green Version]
- Rashti, M.R.; Wang, W.; Moody, P.; Chen, C.; Ghadiri, H. Fertiliser-induced nitrous oxide emissions from vegetable production in the world and the regulating factors: A review. Atmos. Environ. 2015, 112, 225–233. [Google Scholar] [CrossRef]
- Hénault, C.; Grossel, A.; Mary, B.; Roussel, M.; Léonard, J. Nitrous oxide emission by agricultural soils: A review of spatial and temporal variability for mitigation. Pedosphere 2021, 22, 426–433. [Google Scholar] [CrossRef]
- Liu, S.; Lin, F.; Wu, S.; Ji, C.; Sun, Y.; Jin, Y.; Zou, J. A meta-analysis of fertilizer-induced soil NO and combined NO + N2O emissions. Glob. Chang. Biol. 2017, 23, 2520–2532. [Google Scholar] [CrossRef] [PubMed]
Substrate | pH | EC 1 (dS m−1) | Available N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) | CEC 2 (meq 100 gr−1) | OM 3 (%) | WHC 4 (mm m−1) |
---|---|---|---|---|---|---|---|---|
SBS | 6.3 | 4.0 | 99.5 | 311 | 800 | 5.6 | 0.14 | 41.7 |
HM-mixed | 6.5 | 4.2 | 6.2 | 1433 | 6200 | 20.8 | 33.8 | 171 |
Treatment | Leaf Length (cm) | Leaf Width (cm) |
---|---|---|
SBS | 5.33 | 3.35 |
HM-mix | 6.05 | 3.91 |
** | ** |
Treatment | Leaf Length (cm) | Leaf Width (cm) | Leaf T (°C) | Leaf Chlorophyll Content (SPAD Value) |
---|---|---|---|---|
W0.1 | 3.23 | 3.35 | 27.4 | 11.0 |
NS1.2 | 8.15 | 3.91 | 26.2 | 18.8 |
*** | *** | * | *** |
Treatment | Leaf Number (n plant−1) | Leaf Length (cm) | Leaf Width (cm) |
---|---|---|---|
W0.1 | 2.33 (b) | 3.29 (c) | 2.67 |
NS0.6 | 3.33 (a) | 6.40 (b) | 3.16 |
NS1.2 | 3.78 (a) | 7.37 (a) | 3.39 |
NS1.8 | 3.89 (a) | 6.89 (ab) | 3.40 |
*** | *** | ns |
Treatment | Leaf Number (n plant−1) | Leaf Length (cm) | Leaf Width (cm) |
---|---|---|---|
W0.1 | 3.00 (c) | 3.02 (c) | 1.51 (c) |
NS0.6 | 3.78 (b) | 6.31 (b) | 3.26 (b) |
NS1.2 | 4.33 (ab) | 8.50 (a) | 3.82 (a) |
NS1.8 | 4.56 (a) | 8.84 (a) | 4.05 (a) |
*** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michelon, N.; Pennisi, G.; Myint, N.O.; Orsini, F.; Gianquinto, G. Optimization of Substrate and Nutrient Solution Strength for Lettuce and Chinese Cabbage Seedling Production in the Semi-Arid Environment of Central Myanmar. Horticulturae 2021, 7, 64. https://doi.org/10.3390/horticulturae7040064
Michelon N, Pennisi G, Myint NO, Orsini F, Gianquinto G. Optimization of Substrate and Nutrient Solution Strength for Lettuce and Chinese Cabbage Seedling Production in the Semi-Arid Environment of Central Myanmar. Horticulturae. 2021; 7(4):64. https://doi.org/10.3390/horticulturae7040064
Chicago/Turabian StyleMichelon, Nicola, Giuseppina Pennisi, Nang Ohn Myint, Francesco Orsini, and Giorgio Gianquinto. 2021. "Optimization of Substrate and Nutrient Solution Strength for Lettuce and Chinese Cabbage Seedling Production in the Semi-Arid Environment of Central Myanmar" Horticulturae 7, no. 4: 64. https://doi.org/10.3390/horticulturae7040064
APA StyleMichelon, N., Pennisi, G., Myint, N. O., Orsini, F., & Gianquinto, G. (2021). Optimization of Substrate and Nutrient Solution Strength for Lettuce and Chinese Cabbage Seedling Production in the Semi-Arid Environment of Central Myanmar. Horticulturae, 7(4), 64. https://doi.org/10.3390/horticulturae7040064