The Responses of Physiological Characteristics and Flowering Related Gene to the Different Water Stress Levels of Red-Flesh Pummelo Cultivars (Citrus grandis (L.) Osbeck) Own-Rooted by Air Layering Propagation under Two Growing Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Physiological Characteristics Measurement
2.3. Genetic Characteristics Measurement
2.3.1. RNA Extraction and cDNA Synthesis
2.3.2. Gene Expression Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pichaiyongvongdee, S.; Haruenkit, R. Investigation of limonoids, flavanones, total polyphenol content and antioxidant activity in seven thai pummelo cultivars. J. Agric. Nat. Resour. 2009, 43, 458–466. [Google Scholar]
- De Pascual-Teresa, S.; Moreno, D.A.; Garcıa-Viguera, C. Flavanols and anthocyanins in cardiovascular health: A review of current evidence. Int. J. Mol. Sci. 2010, 11, 1679–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Martinez, L.X.; Oliart-Ros, R.M.; Valerio-Alfaro, G.; Lee, C.H.; Parkin, K.L.; Garcia, H.S. Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Sci. Technol. 2009, 42, 1187–1192. [Google Scholar] [CrossRef]
- Butelli, E.; Licciardello, C.; Zhang, Y.; Liu, J.; Mackay, S.; Bailey, P. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 2012, 24, 1242–1255. [Google Scholar] [CrossRef] [Green Version]
- Abobatta, W.F. Potential impacts of global climate change on citrus cultivation. MOJ Ecol. Environ. Sci. 2019, 4, 308–312. [Google Scholar] [CrossRef]
- Wahl, V.; Ponnu, J.; Schlereth, A.; Arrivault, S.; Langenecker, T.; Franke, A.; Feil, R.; Lunn, J.E.; Stitt, M.; Schmid, M. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 2013, 339, 704–707. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Ai, X.Y.; Zhang, J.Z. Genetic regulation of flowering time in annual and perennial plants. Wiley Interdiscip. Rev. RNA 2014, 5, 347–359. [Google Scholar] [CrossRef]
- Samach, A.; Onouchi, H.; Gold, S.E.; Ditta, G.S.; Schwartz-Sommer, Z.; Yanofsky, M.F.; Coupland, G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 2000, 288, 1613–1616. [Google Scholar] [CrossRef] [Green Version]
- Tan, F.C.; Swain, S.M. Functional characterization of AP3, SOC1 and WUS homo-logues from citrus (Citrus sinensis). Physiol. Plant. 2007, 131, 481–495. [Google Scholar] [CrossRef]
- Zhang, H.; Harry, D.E.; Ma, C.; Yuceer, C.; Hsu, C.Y.; Vikram, V.; Shevchenko, O.; Etherington, E.; Strauss, S.H. Precocious flowering in trees: The FLOWERING LOCUS T gene as a research and breeding tool in Populus. J. Exp. Bot. 2010, 61, 2549–2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Gu, M.; Shi, N.; Zhang, H.; Yang, X.; Osman, T.; Liu, Y.; Wang, H.; Vatish, M.; Jackson, S.; et al. Mobile FT mRNA contributes to the systemic florigen signalling in floral induction. Sci. Rep. 2011, 1, 73. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Fambuena, N.; Mesejo, C.; Carmen González-Mas, M.; Primo-Millo, E.; Agust, M.; Iglesias, D.J. Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Ann. Bot. 2011, 108, 511–519. [Google Scholar] [CrossRef]
- Chica, E.J.; Albrigo, L.G. Expression of flower promoting genes in sweet orange during floral inductive water deficits. J. Am. Soc. Hortic. Sci. 2013, 138, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, F.; Iwasaki, M.; Fukamachi, H.; Endo, T. Predicting the number of flowers in Satsuma mandarin (Citrus unshiu Marc.) trees based on citrus FLOWERING LOCUS T mRNA levels. Hortic. J. 2017, 86, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Van Nocker, S.; Gardiner, S.E. Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic. Res. 2014, 1, 14022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapoor, D.; Bhardwaj, S.; Landi, M.; Sharma, A.; Ramakrishnan, M.; Sharma, A. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Appl. Sci. Appl. Sci. 2020, 10, 5692. [Google Scholar] [CrossRef]
- Shanker, A.K.; Maheswari, M.; Yadav, S.K.; Desai, S.; Bhanu, D.; Attal, N.B.; Venkateswarlu, B. Drought stress responses in crops. Funct. Integr. Genom. 2014, 14, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Kazan, K.; Lyons, R. The link between flowering time and stress tolerance. J. Exp. Bot. 2016, 67, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Riboni, M.; Robustelli Test, A.; Galbiati, M.; Tonelli, C.; Conti, L. Environmental stress and flowering time: The photoperiodic connection. Plant Signal. Behav. 2014, 9, 29036. [Google Scholar] [CrossRef] [Green Version]
- Riboni, M.; Galbiati, M.; Tonelli, C.; Conti, L. GIGANTEA enables drought escape response via ABA-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1. J. Plant Physiol. 2013, 162, 1706–1719. [Google Scholar] [CrossRef] [Green Version]
- Southwick, S.M.; Davenport, T.L. Characterization of water stress and low temperature effects on flower induction in citrus. J. Plant Physiol. 1986, 81, 26–29. [Google Scholar] [CrossRef] [Green Version]
- Sirault, X.R.R.; Condon, A.G.; Wood, J.T.; Farquhar, G.D.; Rebetzke, G.J. “Rolled-upness”: Phenotyping leaf rolling in cereals using computer vision and functional data analysis approaches. Plant Methods 2015, 11, 52. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Sustain. Agric. 2009, 29, 185–212. [Google Scholar]
- Su, Z.; Ma, X.; Guo, H.; Sukiran, N.L.; Guo, B.; Assmann, S.M.; Ma, H. Flower development under drought stress: Morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. Plant Cell 2013, 25, 3785–3807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, H.H.; Zhang, Y.L.; Zhang, W.F. Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica 2016, 54, 65–73. [Google Scholar] [CrossRef]
- Guadagno, C.R.; Ewers, B.E.; Speckman, H.N.; Aston, T.L.; Huhn, B.J.; DeVore, S.B.; Ladwig, J.T.; Strawn, R.N.; Weinig, C. Dead or alive? Using membrane failure and chlorophyll a fluorescence to predict plant mortality from drought. J. Plant Physiol. 2017, 175, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Aparicio-Durán, L.; Gmitter, F.G.J.; Arjona-López, J.M.; Calero-Velázquez, R.; Hervalejo, Á.; Arenas-Arenas, F.J. Water-Stress Influences on Three New Promising HLB-Tolerant Citrus Rootstocks. Horticulturae 2021, 7, 336. [Google Scholar] [CrossRef]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response mechanism of plants to drought stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- ElShamey, E.A.; Ali, E.F.; Selim, M.E.; ElSayed, M.A.; Ahmed, M.; Alotaibi, F.A.; Kamara, M.M.; Kheir, A.M. Water deficit induced physiological and amino acid responses in some rice varieties using NMR-metabolic analysis. Agron. J. 2021. [Google Scholar] [CrossRef]
- Wu, P.; Zhou, B.; Chen, J. Changes in carbohydrate in branches and its relation to flowering in Averrhoa carambola. In Proceedings of the IV International Symposium on Tropical and Subtropical Fruits, Bogor, Indonesia, 7 November 2008; pp. 433–439. [Google Scholar]
- Yang, H.F.; Kim, H.J.; Chen, H.B.; Rahman, J.; Lu, X.Y.; Zhou, B.Y. Carbohydrate accumulation and flowering-related gene expression levels at different developmental stages of terminal shoots in Litchi chinensis. HortScience 2014, 49, 1381–1391. [Google Scholar] [CrossRef] [Green Version]
- Peterson, T.A.; Reinsel, M.D.; Krizek, D.T. Tomato (Lycopersicon esculentum Mill., cv.‘Better Bush’) plant response to root restriction. J. Exp. Bot. 1991, 42, 1241–1249. [Google Scholar] [CrossRef]
- Ismail, M.R.; Noor, K.M. Growth, water relations and physiological processes of star fruit plant under root growth restriction. Sci. Hortic. 1996, 66, 51–58. [Google Scholar] [CrossRef]
- Currey, C.J.; Flax, N.J.; Litvin, A.G.; Metz, V.C. Substrate volumetric water content controls growth and development of containerized culinary herbs. Agron. J. 2019, 9, 667. [Google Scholar] [CrossRef] [Green Version]
- O’toole, J.C.; Cruz, R.T.; Singh, T.N. Leaf rolling and transpiration. Plant Sci. Lett. 1979, 16, 111–114. [Google Scholar] [CrossRef]
- Swapna, S.; Shylaraj, K.S. Screening for osmotic stress responses in rice varieties under drought condition. Rice Sci. 2017, 24, 253–263. [Google Scholar] [CrossRef]
- Ross, D.J. Influence of methods of determination, and time of day, on contents of nonstructural carbohydrates in grazed ryegrass-clover herbage from a nitrogen-fertilised pasture. N. Z. J. Agric. Res. 1978, 21, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Novozamsky, I.; Houba, V.J.G.; Van Eck, R.; Van Vark, W. A novel digestion technique for multielement plant analysis. Commun. Soil Sci. Plant Anal. 1983, 14, 239–248. [Google Scholar] [CrossRef]
- Solorzano, L. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 1969, 14, 799. [Google Scholar]
- Mafra, V.; Kubo, K.S.; Alves-Ferreira, M.; Ribeiro-Alves, M.; Stuart, R.M.; Boava, L.P.; Rodrigues, C.M.; Machado, M.A. Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS ONE. 2012, 7, e31263. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley and Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Meng, S.; Zhang, C.; Su, L.; Li, Y.; Zhao, Z. Nitrogen uptake and metabolism of Populus simonii in response to PEG-induced drought stress. Environ. Exp. Bot. 2016, 123, 78–87. [Google Scholar] [CrossRef]
- Kang, J.G.; van Iersel, M.W.; Nemali, K.S. Fertilizer concentration and irrigation method affect growth and fruiting of ornamental pepper. J. Plant Nutr. 2004, 27, 867–884. [Google Scholar] [CrossRef]
- Cui, X.; Yan, Q.; Sun, J.; Xiao, S.; Xie, F.; Chen, Y. Research progress on nitrogen use and plant growth. J. Northeast. Agric. Univ. 2014, 21, 68–74. [Google Scholar]
- Xu, G.; Fan, X.; Miller, A.J. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Lei, L.; Lai, J.; Zhao, H.; Song, W. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biol. 2018, 18, 68. [Google Scholar] [CrossRef]
- Aminifard, M.H.; Aroiee, H.; Nemati, H.; Azizi, M.; Khayyat, M. Effect of nitrogen fertilizer on vegetative and reproductive growth of pepper plants under field conditions. J. Plant Nutr. 2012, 35, 235–242. [Google Scholar] [CrossRef]
- Poljakoff-Mayber, A.; Gale, J. Physiological basis and practical problems of reducing transpiration. Water Deficits Plant Growth 2012, 3, 277–306. [Google Scholar]
- Bittelli, M.; Flury, M.; Campbell, G.S.; Nichols, E.J. Reduction of transpiration through foliar application of chitosan. Agric. For. Meteorol. 2001, 107, 67–175. [Google Scholar] [CrossRef]
- Miyashita, K.; Tanakamaru, S.; Maitani, T.; Kimura, K. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ. Exp. Bot. 2005, 53, 205–214. [Google Scholar] [CrossRef]
- Herritt, M.T.; Pauli, D.; Mockler, T.C.; Thompson, A.L. Chlorophyll fluorescence imaging captures photochemical efficiency of grain sorghum (Sorghum bicolor) in a field setting. Plant Methods 2020, 16, 109. [Google Scholar] [CrossRef]
- Guidi, L.; Lo Piccolo, E.; Landi, M. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Front. Plant Sci. 2019, 10, 174. [Google Scholar] [CrossRef]
- Serodio, J.; Campbell, D.A. Photoinhibition in optically thick samples: Effects of light attenuation on chlorophyll fluorescence-based parameters. J. Theor. Biol. 2021, 513, 10580. [Google Scholar]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Bouzo, C.A.; Favaro, J.C. Container size effect on the plant production and precocity in tomato (Solanum lycopersicum L.). Bulg. J. Agric. Sci. 2015, 21, 325–332. [Google Scholar]
- Fascella, G.; Rouphael, Y. Influence of container volume and irrigation system on photosynthesis, water productivity and growth of potted Euphorbia× lomi. Acta Sci. Pol. Hortorum Cultus 2017, 16, 163–171. [Google Scholar] [CrossRef]
- Rodrigues, J.; Inzé, D.; Nelissen, H.; Saibo, N.J. Source–sink regulation in crops under water deficit. Trends Plant Sci. 2019, 24, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, R.; La Camera, S.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L.; et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef] [Green Version]
- Monerri, C.; Fortunato-Almeida, A.; Molina, R.V.; Nebauer, S.G.; Garcia-Luis, A.; Guardiola, J.L. Relation of carbohydrate reserves with the forthcoming crop, flower formation and photosynthetic rate, in the alternate bearing ‘Salustiana’sweet orange (Citrus sinensis L.). Sci. Hortic. 2011, 129, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Wu, C.; Zhou, B. Drought stress induces flowering and enhances carbohydrate accumulation in Averrhoa Carambola. Hortic. Plant J. 2017, 3, 60–66. [Google Scholar] [CrossRef]
- Boussadia, O.; Steppe, K.; Zgallai, H.; El Hadj, S.B.; Braham, M.; Lemeur, R.; Van Labeke, M.C. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’and ‘Koroneiki’. Sci. Hortic. 2010, 123, 336–342. [Google Scholar] [CrossRef]
- Wingler, A.; Purdy, S.; MacLean, J.A.; Pourtau, N. The role of sugars in integrating environmental signals during the regulation of leaf senescence. J. Exp. Bot. 2006, 57, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Araya, T.; Noguchi, K.; Terashima, I. Effect of nitrogen nutrition on the carbohydrate repression of photosynthesis in leaves of Phaseolus vulgaris L. J. Plant Res. 2010, 123, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Hou, X.J.; Zhu, J.; Zhou, J.J.; Huang, H.B.; Yue, J.Q.; Gao, J.Y.; Du, Y.X.; Hu, C.X.; Hu, C.G.; et al. Identification of genes associated with lemon floral transition and flower development during floral inductive water deficits: A hypothetical model. Front. Plant Sci. 2017, 8, 1013. [Google Scholar] [CrossRef] [Green Version]
- Seo, P.J.; Ryu, J.; Kang, S.K.; Park, C.M. Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. Plant J. 2011, 65, 18–429. [Google Scholar] [CrossRef]
- Yoo, S.C.; Chen, C.; Rojas, M.; Daimon, Y.; Ham, B.K.; Araki, T.; Lucas, W.J. Phloem long-distance delivery of FLOWERING LOCUS T (FT) to the apex. Plant J. 2013, 75, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Dadras, A.; Marashi, S.A.; Banaei-Moghaddam, A.M. Regulation of photosynthesis and vegetative growth of plants by small RNAs. In Plant Small RNA; Academic Press: Cambridge, MA, USA, 2020; pp. 247–275. [Google Scholar]
- Corbesier, L.; Bernier, G.; Périlleux, C. C:N ratio increases in the phloem sap during floral transition of the long-day plants Sinapis alba and Arabidopsis thaliana. Plant Cell Physiol. 2002, 43, 684–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatichi, S.; Leuzinger, S.; Körner, C. Moving beyond photosynthesis: From carbon source to sink-driven vegetation modeling. New Phytol. 2014, 201, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Ghogare, R.; Ludwig, Y.; Bueno, G.M.; Slamet-Loedin, I.H.; Dhingra, A. Genome editing reagent delivery in plants. Transgenic Res. 2021, 30, 321–335. [Google Scholar] [CrossRef]
- Sinha, R.; Fritschi, F.B.; Zandalinas, S.I.; Mittler, R. The impact of stress combination on reproductive processes in crops. Plant Sci. 2021, 311, 111007. [Google Scholar] [CrossRef]
- Ortiz-Marchena, M.I.; Albi, T.; Lucas-Reina, E.; Said, F.E.; Romero-Campero, F.J.; Cano, B.; Ruiz, M.T.; Romero, J.M.; Valverde, F. Photoperiodic control of carbon distribution during the floral transition in Arabidopsis. Plant Cell 2014, 26, 565–584. [Google Scholar] [CrossRef] [Green Version]
- Cho, L.H.; Yoon, J.; An, G. The control of flowering time by environmental factors. Plant J. 2017, 90, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Winter, N.; Kragler, F. Conceptual and methodological considerations on mRNA and proteins as intercellular and long-distance signals. Plant Cell Physiol. 2018, 59, 1700–1713. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.; Hong, Y. Systemic movement of FT mRNA and a possible role in floral induction. Front. Plant Sci. 2012, 3, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondhare, K.R.; Patil, N.S.; Banerjee, A.K. A historical overview of long-distance signalling in plants. J. Exp. Bot. 2021, 72, 4218–4236. [Google Scholar] [CrossRef] [PubMed]
- Pajon, M.; Febres, V.J.; Moore, G.A. Expression patterns of flowering genes in leaves of ‘Pineapple’sweet orange [Citrus sinensis (L.) Osbeck] and pummelo (Citrus grandis Osb eck). BMC Plant Biol. 2017, 17, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatments | Stomatal Conductance (mmol m−2s−1) | Chlorophyll Fluorescence (Fv/Fm) | Total Non-Structural Carbohydrates (mg/g DW) | C:N Ratio (% DW) | |||||
---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E1 | E2 | E1 | E2 | E1 | E2 | ||
Genotype (G) | |||||||||
KKU-105 | 129.70 | 135.15 | 0.57 b | 0.67 b | 154.60 a | 148.28 a | 7.08 a | 6.69 a | |
Manee Esan | 134.04 | 139.30 | 0.65 a | 0.74 a | 149.15 b | 140.84 b | 6.80 b | 5.53 b | |
Water stress level (WS) | |||||||||
WS1 | 352.11 ay | 352.95 a | 0.85 a | 0.86 a | 129.20 e | 129.30 e | 4.66 e | 4.67 e | |
WS2 | 111.76 b | 124.85 b | 0.76 b | 0.81 b | 139.17 d | 137.14 d | 5.35 d | 4.95 d | |
WS3 | 86.40 c | 89.68 c | 0.63 c | 0.71 c | 153.71 c | 142.98 c | 6.99 c | 5.66 c | |
WS4 | 58.97 d | 64.49 d | 0.47 d | 0.60 d | 163.52 b | 155.76 b | 8.81 b | 7.49 b | |
WS5 | 50.13 e | 54.15 d | 0.35 e | 0.55 e | 173.79 a | 157.63 a | 10.75 a | 7.76 a | |
Interaction (G × WS) | |||||||||
KKU-105 | WS1 | 354.11 b | 358.97 a | 0.85 a | 0.88 a | 129.73 f | 129.78 f | 4.75 g | 4.71 g |
WS2 | 106.04 d | 115.00 c | 0.73 c | 0.80 b | 140.67 e | 136.16 a | 5.45 f | 4.94 f | |
WS3 | 86.04 e | 87.00 e | 0.61 e | 0.71 c | 155.86 cd | 143.84 d | 7.20 d | 5.68 e | |
WS4 | 60.97 f | 62.80 f | 0.36 h | 0.52 e | 168.55 b | 164.32 b | 9.61 b | 8.89 b | |
WS5 | 50.35 g | 51.97 g | 0.30 i | 0.45 f | 178.18 a | 167.32 a | 12.00 a | 9.22 a | |
Manee Esan | WS1 | 359.10 a | 346.93 b | 0.86 a | 0.83 b | 128.66 f | 128.82 f | 4.56 g | 4.63 g |
WS2 | 17.47 c | 134.70 c | 0.79 b | 0.82 b | 137.67 e | 138.12 e | 5.25 f | 4.97 f | |
WS3 | 86.76 e | 92.37 d | 0.64 d | 0.72 c | 151.56 d | 142.12 d | 6.78 e | 5.65 e | |
WS4 | 56.97 g | 62.80 f | 0.59 f | 0.69 cd | 158.49 c | 147.19 c | 8.01 c | 6.10 d | |
WS5 | 49.90 g | 56.34 g | 0.40 g | 0.65 d | 169.39 b | 147.95 c | 9.49 b | 6.30 c | |
Mean | 131.87 Bx | 136.89 A | 0.61 B | 0.71 A | 151.87 A | 144.56 B | 7.30 A | 6.11 B | |
Genotype (G) | ns | ns | ** | ** | ** | ** | ** | ** | |
Water stress level (WS) | ** | ** | ** | ** | ** | ** | ** | ** | |
Interaction (G × WS) | ** | ** | ** | ** | ** | ** | ** | ** | |
CV (%) | 3.59 | 7.52 | 1.74 | 3.08 | 1.40 | 0.77 | 2.08 | 1.33 |
Source of Variation | d.f. | Total Nitrogen (%) | CiFT Gene | Flower Number | |||
---|---|---|---|---|---|---|---|
Environment (E) | 1 | 84.49 × 10−2 ** | (23.60) | 7.49 ** | (2.62) | 3010.40 * | (3.38) |
Reps. within E | 4 | 0.03 × 10−2 | (0.01) | 11.90 | (0.04) | 191.20 | (0.21) |
Genotype (G) | 1 | 51.15 × 10−2 ** | (14.29) | 18.70 ** | (6.55) | 2318.80 ** | (2.60) |
G × E | 4 | 2.40 × 10−2 * | (0.67) | 0.01 ns | (0.01) | 79.70 ns | (0.80) |
Error (a) | 4 | 0.24 × 10−2 | (0.06) | 0.05 | (0.02) | 127.90 | (0.14) |
Water stress level (WS) | 4 | 195.00 × 10−2 ** | (54.70) | 239.48 ** | (83.96) | 80017.50 ** | (89.88) |
E × WS | 4 | 8.69 × 10−2 ** | (2.42) | 9.28 ** | (3.25) | 1040.90 ** | (1.16) |
G × WS | 4 | 12.11 × 10−2 ** | (3.38) | 9.09 ** | (3.18) | 2015.50 ** | (2.26) |
E × G × WS | 4 | 2.78 × 10−2 ** | (0.77) | 0.80 ** | (0.28) | 144.10 * | (0.16) |
Error (b) | 32 | 0.19 × 10−2 | (0.05) | 0.16 | (0.05) | 75.2 | (0.08) |
CV a (%) | 2.12 | 3.78 | 12.45 | ||||
CV b (%) | 1.85 | 6.55 | 9.55 |
Characteristics | WS | SC | CF | TNC | TN | C:N ratio | CiFT mRNA |
---|---|---|---|---|---|---|---|
SC | −0.842 ** | ||||||
CF | −0.979 ** | 0.845 ** | |||||
TNC | 0.816 ** | −0.944 ** | −0.826 ** | ||||
TN | −0.847 ** | 0.959 ** | 0.860 ** | −0.910 ** | |||
C:N ratio | 0.859 ** | −0.941 ** | −0.873 ** | 0.933 ** | −0.972 ** | ||
CiFT mRNA | 0.948 ** | −0.854 ** | −0.942 ** | 0.827 ** | −0.869 ** | 0.871 ** | |
Flower | 0.965 ** | −0.753 ** | −0.949 ** | 0.719 ** | −0.775 ** | 0.802 ** | 0.934 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thammatha, P.; Lapjit, C.; Tarinta, T.; Techawongstien, S.; Techawongstien, S. The Responses of Physiological Characteristics and Flowering Related Gene to the Different Water Stress Levels of Red-Flesh Pummelo Cultivars (Citrus grandis (L.) Osbeck) Own-Rooted by Air Layering Propagation under Two Growing Conditions. Horticulturae 2021, 7, 579. https://doi.org/10.3390/horticulturae7120579
Thammatha P, Lapjit C, Tarinta T, Techawongstien S, Techawongstien S. The Responses of Physiological Characteristics and Flowering Related Gene to the Different Water Stress Levels of Red-Flesh Pummelo Cultivars (Citrus grandis (L.) Osbeck) Own-Rooted by Air Layering Propagation under Two Growing Conditions. Horticulturae. 2021; 7(12):579. https://doi.org/10.3390/horticulturae7120579
Chicago/Turabian StyleThammatha, Prawit, Chanon Lapjit, Tanyarat Tarinta, Sungcom Techawongstien, and Suchila Techawongstien. 2021. "The Responses of Physiological Characteristics and Flowering Related Gene to the Different Water Stress Levels of Red-Flesh Pummelo Cultivars (Citrus grandis (L.) Osbeck) Own-Rooted by Air Layering Propagation under Two Growing Conditions" Horticulturae 7, no. 12: 579. https://doi.org/10.3390/horticulturae7120579
APA StyleThammatha, P., Lapjit, C., Tarinta, T., Techawongstien, S., & Techawongstien, S. (2021). The Responses of Physiological Characteristics and Flowering Related Gene to the Different Water Stress Levels of Red-Flesh Pummelo Cultivars (Citrus grandis (L.) Osbeck) Own-Rooted by Air Layering Propagation under Two Growing Conditions. Horticulturae, 7(12), 579. https://doi.org/10.3390/horticulturae7120579