Innovation in Propagation of Fruit, Vegetable and Ornamental Plants
Abstract
1. Introduction
2. Papers in This Special Issue
2.1. Fruit Crops
2.2. Vegetable Crops
2.3. Ornalmental and Medicinal Crops
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marino, S.R.; Williamson, J.G.; Olmstead, J.W.; Harmon, P.F. Vegetative growth of three southern highbush blueberry cultivars obtained from micropropagation and softwood cuttings in two Florida locations. HortScience 2014, 49, 556–561. [Google Scholar] [CrossRef]
- Meiners, J.; Schwab, M.; Szankowski, I. Efficient in vitro regeneration systems for Vaccinium species. Plant Cell Tissue Organ Cult. 2007, 89, 169–176. [Google Scholar] [CrossRef]
- Del Valle-Echevarria, A.R.; Kantar, M.B.; Branca, J.; Moore, S.; Frederiksen, M.K.; Hagen, L.; Hussain, T.; Baumler, D.J. Aeroponic Cloning of Capsicum spp. Horticulturae 2019, 5, 30. [Google Scholar] [CrossRef]
- King, S.R.; Davis, A.R.; Liu, W.; Levi, A. Grafting for disease resistance. HortScience 2008, 43, 1673–1676. [Google Scholar] [CrossRef]
- Miller, L.R.; Murashige, T. Tissue culture propagation of tropical foliage plants. In Vitro Cell. Dev. Biol. Anim. 1976, 12, 797–813. [Google Scholar] [CrossRef]
- Vinterhalter, D. In vitro Propagation of Green-Foliaged Dracaena-Fragrans Ker. Plant Cell Tissue Org. 1989, 17, 13–19. [Google Scholar]
- Vinterhalter, D.; Vinterhalter, B. Micropropagation of Dracaena Species. In Biotechnology in Agriculture and Forestry; Springer: Berlin/Heidelberg, Germany, 1997; Volume 40, pp. 131–146. [Google Scholar]
- Tian, L.; Tan, H.Y.; Zhang, L. Stem segment culture and tube propagation of Dracaena saneriana cv. virscens. Acta Hortic. Sin. 1999, 26, 133–134. [Google Scholar]
- Blanco, M.; Valverde, R.; Gomez, L. Micropropagation of Dracaena deremensis. Agron. Costarric. 2004, 28, 7–15. [Google Scholar]
- Koyama, R.; Aparecido Ribeiro Júnior, W.; Mariani Zeffa, D.; Tadeu Faria, R.; Mitsuharu Saito, H.; Simões Azeredo Gonçalves, L.; Ruffo Roberto, S. Association of indolebutyric acid with Azospirillum brasilense in the rooting of herbaceous blueberry cuttings. Horticulturae 2019, 5, 68. [Google Scholar] [CrossRef]
- Mariosa, T.N.; Melloni, E.G.P.; Melloni, R.; Ferreira, G.M.R.; Souza, S.M.P.; Silva, L.F.O. Rhizobacteria and development of seedlings from semi-hardwood cuttings of olive (Olea europaea L.). Revista de Ciências Agrárias 2017, 60, 302–306. [Google Scholar] [CrossRef]
- Khademian, R.; Asghari, B.; Sedaghati, B.; Yaghoubian, Y. Plant beneficial rhizospheric microorganisms (PBRMs) mitigate deleterious effects of salinity in sesame (Sesamum indicum L.): Physio-biochemical properties, fatty acids composition and secondary metabolites content. Ind. Crops. Prod. 2019, 136, 129–139. [Google Scholar] [CrossRef]
- Cassán, F.; Diaz-Zorita, M. Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biol. Biochem. 2016, 103, 117–130. [Google Scholar] [CrossRef]
- Molina, R.; Rivera, D.; Mora, V.; López, G.; Rosas, S.; Spaepen, S.; Vanderleyden, J.; Cassán, F. Regulation of IAA biosynthesis in Azospirillum brasilense under environmental stress conditions. Curr. Microbiol. 2018, 75, 1408–1418. [Google Scholar] [CrossRef] [PubMed]
- Rivera, D.; Mora, V.; Lopez, G.; Rosas, S.; Spaepen, S.; Vanderleyden, J.; Cassan, F. New insights into indole-3-acetic acid metabolism in Azospirillum brasilense. J. Appl. Microbiol. Biochem. 2018, 125, 1774–1785. [Google Scholar] [CrossRef]
- Fukami, J.; Ollero, F.J.; de la Osa, C.; Valderrama-Fernández, R.; Nogueira, M.A.; Megías, M.; Hungria, M. Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense. Arch. Microbiol. 2018, 200, 1191–1203. [Google Scholar] [CrossRef]
- Gradziel, T.; Lampinen, B.; Preece, J.E. Propagation from basal epicormic meristems remediates an aging-related disorder in almond clones. Horticulturae 2019, 5, 28. [Google Scholar] [CrossRef]
- Kester, D.E. The clone in Horticulture. HortScience 1983, 18, 831–837. [Google Scholar]
- Skowcroft, W.R. Somaclonal Variation, the Myth of Clonal Uniformity. In Genetic Flux in Plants; Hohn, B., Dennis, E.S., Eds.; Springer: New York, NY, USA, 1985; pp. 217–245. [Google Scholar]
- Skirvin, R.M.; McPheeters, K.D.; Norton, M. Sources and frequency of somaclonal variation. HortScience 1994, 29, 1232–1237. [Google Scholar] [CrossRef]
- D’Aquila, P.; Rose, G.; Bellizzi, D.; Passarino, G. Epigenetics and aging. Maturitas 2013, 74, 130–136. [Google Scholar] [CrossRef]
- Fraga, M.F.; Rodriguez, R.; Canal, M.J. Genomic DNA methylation-demethylation during aging and reinvigoration of Pinus radiata. Tree Physiol. 2002, 22, 813–816. [Google Scholar] [CrossRef]
- Kester Dale, E.; Asay, R.N. Variability in noninfectious bud-failure of ‘Nonpareil’ almond. Location and environment. J. Am. Soc. Hortic. Sci. 1978, 103, 377–382. [Google Scholar]
- Fenton, C.A.L.; Kuniyuki, A.H.; Kester, D.E. Search for a viroid etiology for noninfectious bud failure in almond. HortScience 1988, 23, 1050–1053. [Google Scholar]
- Kester, D.E.; Gradziel, T.M. Genetic Disorders. In Almond Production Manual; Micke, W.C., Ed.; University of California: Oakland, CA, USA, 1996; pp. 76–87. [Google Scholar]
- Kester, D.E. Noninfectious Bud-Failure in Almond. In Virus Diseases and Disorders of Stone Fruits in North America; Fulton, R.W., Ed.; Agricultural Research Service, U.S. Department of Agriculture: Washington, DC, USA, 1976; pp. 278–283. [Google Scholar]
- Kester, D.E. Noninfectious bud-failure, a nontransmissable inherited disorder in almond. I. Pattern of phenotypic inheritance. Proc. Am. Soc. Hortic. Sci. 1968, 92, 7–15. [Google Scholar]
- Kester, D.E. Noninfectious bud-failure, a nontransmissable inherited disorder in almond II. Progeny tests for bud-failure. Proc. Am. Soc. Hortic. Sci. 1968, 92, 16–28. [Google Scholar]
- Schuchovski, C.S.; Biasi, L.A. In Vitro establishment of ‘Delite’ rabbiteye blueberry microshoots. Horticulturae 2019, 5, 24. [Google Scholar] [CrossRef]
- Debnath, S.C. A scale-up system for lowbush blueberry micropropagation using a bioreactor. HortScience 2009, 44, 1962–1966. [Google Scholar] [CrossRef]
- Debnath, S.C. Temporary immersion and stationary bioreactors for mass propagation of true-to-type highbush, half-high, and hybrid blueberries (Vaccinium spp.). J. Hortic. Sci. Biotechnol. 2017, 92, 72–80. [Google Scholar] [CrossRef]
- Poletto, T.; Stefenon, V.M.; Poletto, I.; Muniz, M.F.B. Pecan propagation: Seed mass as a reliable tool for seed selection. Horticulturae 2018, 4, 26. [Google Scholar] [CrossRef]
- Cargnelutti Filho, A.; Poletto, T.; Muniz, M.F.B.; Baggiotto, C.; Poletto, I.; Fronza, D. Sampling design for height and diameter evaluation of pecan seedlings. Ciênc. Rural 2014, 44, 2151–2156. [Google Scholar] [CrossRef]
- Poletto, I.; Muniz, M.F.B.; Poletto, T.; Stefenon, V.M.; Baggiotto, C.; Ceconi, D.E. Germination and development of pecan cultivar seedlings by seed stratification. Pesqui. Agropecu. Bras. 2015, 50, 1232–1235. [Google Scholar] [CrossRef]
- Pereira, W.A.; Pereira, S.M.A.; Dias, D.C.F.S. Influence of seed size and water restriction on germination of soybean seeds and on early development of seedlings. J. Seed Sci. 2013, 35, 316–322. [Google Scholar] [CrossRef]
- Bispo, J.S.; Costa, D.C.C.; Gomes, S.E.V.; Oliveira, G.M.; Matias, J.R.; Ribeiro, R.C.; Dantas, B.F. Size and vigor of Anadenanthera colubrina (Vell.) Brenan seeds harvested in Caatinga areas. J. Seed Sci. 2017, 39, 363–373. [Google Scholar] [CrossRef]
- Dalkiliç, Z. Effects of drying on germination rate of pecan seeds. J. Food Agric. Environ. 2013, 11, 879–882. [Google Scholar]
- Henery, M.L.; Westoby, M. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 2001, 92, 479–490. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Yang, Y.; Zhong, C.; Notaguchi, M.; Yu, W. A Susceptible scion reduces rootstock tolerance to Ralstonia solanacearum in grafted eggplant. Horticulturae 2019, 5, 78. [Google Scholar] [CrossRef]
- Nakaho, K.; Inoue, H.; Takayama, T.; Miyagawa, H. Distribution and multiplication of Ralstonia solanacearum in tomato plants with resistance derived from different origins. J. Gen. Plant Pathol. 2004, 70, 115–119. [Google Scholar] [CrossRef]
- Seemüller, E.; Harries, H. Plant Resistance. Phytoplasmas: Genomes, Plant Hosts and Vectors; CAB International: Oxfordshire, UK, 2010; pp. 147–169. [Google Scholar]
- Liu, Y.; Jiang, F.; Zhang, N.; Wang, H.; Ai, X. Relationship between osmoregulation and bacterial wilt resistance of grafted pepper. Acta Hortic. Sin. 2011, 38, 903–910. [Google Scholar]
- McAvoy, T.; Freeman, J.H.; Rideout, S.L.; Olson, S.M.; Paret, M.L. Evaluation of grafting using hybrid rootstocks for management of bacterial wilt in field tomato production. HortScience 2012, 47, 621–625. [Google Scholar] [CrossRef]
- Ritter, E.; Angulo, B.; Riga, P.; Herran, C.; Relloso, J.; San Jose, M. Comparison of hydroponic and aeroponic cultivation systems for the production of potato minitubers. Potato Res. 2001, 44, 127–135. [Google Scholar] [CrossRef]
- Galus, A.; Chenari Bouket, A.; Belbahri, L. In Vitro propagation and acclimatization of Dragon Tree (Dracaena draco). Horticulturae 2019, 5, 64. [Google Scholar] [CrossRef]
- Jura-Morawiec, J.; Tulik, M. Dragon’s blood secretion and its ecological significance. Chemoecology 2016, 26, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Liu, J.; Deng, M.; Henny, R.J.; Chen, J.; Xie, J. Regeneration of Dracaena surculosa through indirect shoot organogenesis. HortScience 2010, 45, 1250–1254. [Google Scholar] [CrossRef]
- Sabatino, L.; D’Anna, F.; Iapichino, G. Improved propagation and growing techniques for oleander nursery production. Horticulturae 2019, 5, 55. [Google Scholar] [CrossRef]
- Pilon, P. Perennial Solutions: A Grower’s Guide to Perennial Production, 1st ed.; Ball Publishing: Batavia, IL, USA, 2005; p. 546. [Google Scholar]
- Mehraj, H.; Alam, M.M.; Habiba, S.U.; Mehbub, H. LEDs Combined with CHO sources and CCC priming PLB regeneration of Phalaenopsis. Horticulturae 2019, 5, 34. [Google Scholar] [CrossRef]
- Arditti, J.; Ernst, R. Micropropagation of Orchids; Wiley: New York, NY, USA, 1993; pp. 1–682. [Google Scholar]
- Sheelavanthmath, S.S.; Murthy, H.N.; Hema, B.P.; Hahn, E.J.; Paek, K.Y. High frequency of protocorm like bodies (PLBs) induction and plant regeneration from protocorm and leaf sections of Aerides crispum. Sci. Hortic. 2005, 106, 395–401. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberto, S.R.; Colombo, R.C. Innovation in Propagation of Fruit, Vegetable and Ornamental Plants. Horticulturae 2020, 6, 23. https://doi.org/10.3390/horticulturae6020023
Roberto SR, Colombo RC. Innovation in Propagation of Fruit, Vegetable and Ornamental Plants. Horticulturae. 2020; 6(2):23. https://doi.org/10.3390/horticulturae6020023
Chicago/Turabian StyleRoberto, Sergio Ruffo, and Ronan Carlos Colombo. 2020. "Innovation in Propagation of Fruit, Vegetable and Ornamental Plants" Horticulturae 6, no. 2: 23. https://doi.org/10.3390/horticulturae6020023
APA StyleRoberto, S. R., & Colombo, R. C. (2020). Innovation in Propagation of Fruit, Vegetable and Ornamental Plants. Horticulturae, 6(2), 23. https://doi.org/10.3390/horticulturae6020023