Two Cycad Species Affect the Carbon, Nitrogen, and Phosphorus Content of Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cycas micronesica
Experimental Design and Sampling
2.2. Zamia integrifolia
2.3. Chemical Analyses
2.4. Statistics
3. Results
3.1. Cycas micronesica
3.2. Zamia integrifolia
4. Discussion
4.1. The Two Species
4.2. Future Directions
4.3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crocker, R.L.; Major, J. Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J. Ecol. 1955, 43, 427–448. [Google Scholar] [CrossRef]
- Kelly, E.F.; Chadwick, O.A.; Hilinski, T.E. The effects of plants on mineral weathering. Biogeochemistry 1998, 42, 21–53. [Google Scholar] [CrossRef]
- Marler, T.E.; Krishnapillai, M.V. Cycas micronesica trees alter local soil traits. Forests 2018, 9, 565. [Google Scholar] [CrossRef] [Green Version]
- Hill, K.D. The Cycas rumphii complex (Cycadaceae) in New Guinea and the Western Pacific. Aust. Syst. Bot. 1994, 7, 543–567. [Google Scholar] [CrossRef]
- Norstog, K.J.; Nicholls, T.J. The Biology of the Cycads; Cornell University Press: Ithaca, NY, USA, 1997; ISBN 978-0-8014-3033-6. [Google Scholar]
- Marler, T.; Haynes, J.; Lindström, A. 2010 Cycas micronesica. IUCN 2012. IUCN Red List of Threatened Species. e.T61316A12462113. Available online: www.iucnredlist.org (accessed on 28 February 2020).
- Anonymous. Conserving our nation’s only native cycad species. Currents 2014, Fall, 28–31. [Google Scholar]
- Marler, T.E.; Dongol, N.; Cruz, G.N. Leucaena leucocephala and adjacent native limestone forest habitats contrast in soil properties on Tinian Island. Commun. Integr. Biol. 2016, 9, e1212792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, F.J. Soil Survey of the Islands of Aguijan, Rota, Saipan, and Tinian, Commonwealth of the Northern Mariana Islands; United States Department of Agriculture, Soil Conservation Service: Washington, DC, USA, 1989. [Google Scholar]
- Noble, C.V.; Drew, R.W.; Slabaugh, J.D. Soil Survey of Dade County Area, Florida; United States Department of Agriculture Natural Resources Conservation Service: Washington, DC, USA, 1996. [Google Scholar]
- Whitelock, L.M. The Cycads; Timber Press: Portland, OR, USA, 2002. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimationof Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture, Circular939, U.S. Government Printing Office: Washington, DC, USA, 1954. [Google Scholar]
- Cataldo, D.A.; Haroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Eno, C.F. Nitrate production in the field by incubating the soil in polyethylene bags. Proc. Soil Sci. Soc. Am. 1960, 24, 277–279. [Google Scholar] [CrossRef]
- Berghage, R.D.; Krauskopf, D.M.; Warncke, D.D.; Widders, I. Micronutrient testing of plant growth media extractant, identification and evaluation. Commun. Soil Sci. Plant Anal. 1987, 18, 1089–1109. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Warman, P.R. Comparison of three digestion methods for the recovery of 17 plant essential nutrients and trace elements from six composts. Compost Sci. Utiliz. 2002, 10, 197–203. [Google Scholar] [CrossRef]
- Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- Condamine, F.L.; Nagalingum, N.S.; Marshall, C.R.; Morlon, H. Origin and diversification of living cycads: A cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol. Biol. 2015, 15, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calonje, M.; Stevenson, D.W.; Osborne, R. The World List of Cycads. Available online: http://cycadlist.org (accessed on 28 February 2020).
- Levia, D.F., Jr.; Frost, E.E. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J. Hydrology 2003, 274, 1–29. [Google Scholar] [CrossRef]
- Levia, D.F.; Germer, S. A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Rev. Geophys. 2015, 53, 673–714. [Google Scholar] [CrossRef]
- Van Stan, J.T.; Gordon, D.A. Mini-review: Stemflow as a resource limitation to near-stem soils. Front. Plant Sci. 2018, 9, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, L.; Zhao, C.; Xu, W.; Xie, Z. Hydrochemical fluxes in bulk precipitation, throughfall, and stemflow in a mixed evergreen and deciduous broadleaved forest. Forests 2019, 10, 507. [Google Scholar] [CrossRef] [Green Version]
- Dunkerley, D. A review of the effects of throughfall and stemflow on soil properties and soil erosion. In Precipitation Partitioning by Vegetation; Van Stan, J., II, Gutmann, E., Friesen, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 183–214. [Google Scholar]
- Zona, S.; Christenhusz, M.J.M. Litter-trapping plants: Filter-feeders of the plant kingdom. Bot. J. Linnean Soc. 2015, 179, 554–586. [Google Scholar] [CrossRef]
Soil Trait | Sand | Sand Significance | Loam | Loam Significance |
---|---|---|---|---|
pH | 6.88 ± 0.09 | 0.164 | 7.22 ± 0.05 | 0.100 |
Phosphorus | 5.44 ± 0.32 | 0.981 | 6.91 ± 0.25 | 0.827 |
Potassium | 30.35 ± 3.43 | 0.139 | 191.35 ± 18.75 | 0.343 |
Calcium | 2516.53 ± 515.02 | 0.507 | 5773.33 ± 189.88 | 0.808 |
Magnesium | 115.69 ± 23.61 | 0.375 | 351.99 ± 22.80 | 0.100 |
Manganese | 3.86 ± 0.63 | 0.717 | 34.47 ± 3.10 | 0.087 |
Iron | 44.58 ± 4.80 | 0.653 | 33.78 ± 2.12 | 0.209 |
Cobalt | 0.16 ± 0.02 | 0.942 | 4.07 ± 0.08 | 0.093 |
Chromium | 4.40 ± 0.49 | 0.355 | 126.23 ± 2.79 | 0.649 |
Copper | 1.29 ± 0.08 | 0.944 | 16.91 ± 0.98 | 0.409 |
Nickel | 1.02 ± 0.11 | 0.620 | 17.37 ± 0.54 | 0.410 |
Lead | 12.07 ± 1.84 | 0.417 | 10.58 ± 1.49 | 0.774 |
Selenium | 1.87 ± 0.43 | 0.321 | 0.99 ± 0.24 | 0.629 |
Zinc | 20.88 ± 3.82 | 0.694 | 39.71 ± 6.57 | 0.639 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marler, T.E.; Calonje, M. Two Cycad Species Affect the Carbon, Nitrogen, and Phosphorus Content of Soils. Horticulturae 2020, 6, 24. https://doi.org/10.3390/horticulturae6020024
Marler TE, Calonje M. Two Cycad Species Affect the Carbon, Nitrogen, and Phosphorus Content of Soils. Horticulturae. 2020; 6(2):24. https://doi.org/10.3390/horticulturae6020024
Chicago/Turabian StyleMarler, Thomas E., and Michael Calonje. 2020. "Two Cycad Species Affect the Carbon, Nitrogen, and Phosphorus Content of Soils" Horticulturae 6, no. 2: 24. https://doi.org/10.3390/horticulturae6020024
APA StyleMarler, T. E., & Calonje, M. (2020). Two Cycad Species Affect the Carbon, Nitrogen, and Phosphorus Content of Soils. Horticulturae, 6(2), 24. https://doi.org/10.3390/horticulturae6020024