Container Type and Substrate Affect Root Zone Temperature and Growth of ‘Green Giant’ Arborvitae
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Plant Growth
3.2. Substrate Chemical and Physical Properties
3.3. Root Zone Temperature and Volumetric Water Content
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Self, R.L.; Ward, H.S. Effects of high soil temperature on root growth of loquat seedlings in nursery containers. Plant Dis. Report. 1956, 40, 957–959. [Google Scholar]
- Martin, C.A.; Ingram, D.L.; Neil, T.A. Supraoptimal root-zone temperature alters growth and photosynthesis of holly and elm. J. Arboric. 1989, 15, 272–276. [Google Scholar]
- Markham, J.W.; Bremer, D.J.; Boyer, C.R.; Schroeder, K.R. Effect of container color on substrate temperatures and growth of red maple and redbud. HortScience 2011, 46, 721–726. [Google Scholar] [CrossRef]
- Ingram, D.L.; Ruter, J.M.; Martin, C.A. Review: Characterization and impact of supraoptimal root-zone temperatures in container-grown plants. HortScience 2015, 50, 530–539. [Google Scholar] [CrossRef] [Green Version]
- Mathers, H.M. Summary of temperature stress issues in nursery containers and current methods of protection. HortTechnology 2003, 13, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Bi, G.; Harkness, R.L.; Denny, G.C.; Blythe, E.K.; Zhao, X. Nitrogen rate, irrigation frequency, and container type affect plant growth and nutrient uptake of Encore azalea ‘Chiffon’. HortScience 2018, 53, 560–566. [Google Scholar] [CrossRef] [Green Version]
- Nambuthiri, S.; Geneve, R.L.; Sun, Y.; Wang, X.; Fernandez, R.T.; Niu, G.; Bi, G.; Fulcher, A. Substrate temperature in plastic and alternative nursery containers. HortTechnology 2015, 25, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.A.; McDonald, G.V. Accelerator containers alter plant growth and the root-zone environment. J. Environ. Hortic. 1999, 7, 168–173. [Google Scholar]
- Altland, J.E.; Locke, J.C.; Krause, C.R. Influence of pine bark particle size and pH on cation exchange capacity. HortTechnology 2014, 24, 554–559. [Google Scholar] [CrossRef] [Green Version]
- Robbins, J.A.; Evans, M.R. Growing Media for Container Production in a Greenhouse or Nursery Part I. Available online: https://www.uaex.edu/publications/PDF/FSA-6097.pdf (accessed on 21 October 2019).
- Altland, J.E.; Owen, J.S., Jr.; Jackson, B.E.; Fields, J.S. Physical and hydraulic properties of commercial pine-bark substrate products used in production of containerized crops. HortScience 2018, 53, 1883–1890. [Google Scholar] [CrossRef] [Green Version]
- Gilman, E.F.; Watson, D.G. Thuja occidentalis White-Cedar. Available online: https://edis.ifas.ufl.edu/pdffiles/ST/ST62900.pdf (accessed on 21 October 2019).
- Griffin, J.J.; Blazich, F.A.; Ranney, T.G. Propagation of Thuja x ‘Green Giant’ by stem cuttings: Effects of growth stage, type of cutting, and IBA treatment. J. Environ. Hortic. 1998, 16, 212–214. [Google Scholar] [CrossRef]
- LeBude, A.V.; Bilderback, T.E. Pour-through Extraction Procedure: A Nutrient Management Tool for Nursery Crops. Available online: https://content.ces.ncsu.edu/the-pour-through-extraction-procedure-a-nutrient-management-tool-for-nursery-crops (accessed on 21 October 2019).
- Fonteno, W.C.; Harden, C.T. North Carolina State University Horticultural Substrates Lab Manual. Available online: https://projects.ncsu.edu/project/hortsublab/pdf/porometer_manual.pdf (accessed on 15 December 2019).
- Bilderback, T.; Boyer, C.; Chappell, M.; Fain, G.; Fare, D.; Gilliam, C.; Jackson, B.E.; Lea-Cox, J.; LeBude, A.V.; Niemiera, A.; et al. Best Management Practices: Guide for Producing Nursery Crops, 3rd ed.; Southern Nursery Association: Acworth, GA, USA, 2013. [Google Scholar]
- Fields, J.S.; Fonteno, W.C.; Jackson, B.E.; Heltman, J.L.; Owen, J.S. Hydrophysical properties, moisture retention, and drainage profiles of wood and traditional components for greenhouse substrates. HortScience 2014, 49, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.R.; Midcap, J.T.; Hamilton, D.F. Evaluation of potting-media, fertilizer source, and rate of application on chemical composition and growth of Ligustrum japonicum Thumb. Sci. Hortic. 1981, 14, 157–163. [Google Scholar] [CrossRef]
- Amoroso, G.; Frangi, P.; Piatti, R.; Fini, A.; Ferrini, F. Effect of mulching on plant and weed growth, substrate water content, and temperature in container-grown giant arborvitae. HortTechnology 2010, 20, 957–962. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.A.; Ingram, D.L. Evaluation of thermal properties and effect of irrigation on temperature dynamics in container media. J. Environ. Hortic. 1991, 9, 24–28. [Google Scholar]
- Mathers, H.M.; Lowe, S.B.; Scagel, C.; Struve, D.K.; Case, L.T. Abiotic factors influencing root growth of woody nursery plants in containers. HortTechnology 2007, 17, 151–162. [Google Scholar] [CrossRef] [Green Version]
Plant Height (cm) | Plant Height (cm) | ||||||
---|---|---|---|---|---|---|---|
69 DAP x | 173 DAP | Increase w | 59 DAP | 166 DAP | Increase | ||
Tennessee | Alabama | ||||||
Significance of treatment factors | |||||||
Container (C) z | 0.0055 | <0.0001 | <0.0001 | 0.1523 | <0.0001 | <0.0001 | |
Substrate (S) y | 0.8889 | <0.0001 | <0.0001 | 0.7328 | 0.0267 | 0.0053 | |
C by S | 0.1817 | 0.0006 | 0.0003 | 0.4744 | 0.9544 | 0.9757 | |
Least squares means for main effects | |||||||
Substrate | Container | ||||||
Black | 69.3 ab v | - | - | 72.1 a | 78.2 b | 16.1 b | |
White | 71.8 a | - | - | 72.9 a | 92.7 a | 31.3 a | |
Air | 66.9 b | - | - | 69.3 a | 75.1 b | 14.0 b | |
PB | 69.4 a | - | - | 71.2 a | 79.6 b | 17.6 b | |
PB:PM | 69.3 a | - | - | 71.7 a | 84.4 a | 23.3 a | |
Treatment least squares means grouped by substrate | |||||||
Substrate | Container | ||||||
PB | Black | 67.8 | 85.8 a | 27.3 a | 70.9 | 75.8 | 13.4 |
White | 72.3 | 83.3 a | 21.8 ab | 73.9 | 90.7 | 28.6 | |
Air | 68.2 | 75.0 b | 14.9 b | 68.7 | 72.3 | 10.8 | |
PB:PM | Black | 70.7 | 99.2 b | 41.0 b | 73.3 | 80.7 | 18.8 |
White | 71.4 | 114.8 a | 56.0 a | 71.8 | 94.7 | 34.1 | |
Air | 65.7 | 88.2 c | 32.5 c | 70 | 77.9 | 17.2 |
Growth Index x | Shoot Dry wt (g) | Root Dry wt (g) | Growth Index | Shoot Dry wt (g) | Root Dry wt (g) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
69 DAP w | 173 DAP | Increase v | 59 DAP | 166 DAP | Increase | ||||||
Tennessee | Alabama | ||||||||||
Significance of treatment factors | |||||||||||
Container (C) z | 0.005 | <0.0001 | <0.0001 | <0.0001 | 0.0084 | 0.55 | <0.0001 | <0.0001 | 0.0002 | 0.3203 | |
Substrate (S) y | 0.6342 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0219 | 0.0002 | 0.0025 | <0.0001 | 0.0452 | |
C by S | 0.4362 | 0.0002 | <0.0001 | <0.0001 | 0.0332 | 0.7646 | 0.6223 | 0.7424 | 0.0497 | 0.2689 | |
Least squares means for main effects | |||||||||||
Substrate | Container | ||||||||||
Black | 56.5 abu | - | - | - | - | 52.3 a | 56.9 b | 15.2 b | - | 507 a | |
White | 58.1 a | - | - | - | - | 53.0 a | 63.3 a | 22.4 a | - | 560 a | |
Air | 54.4 b | - | - | - | - | 51.7 a | 55.2 b | 13.8 b | - | 534 a | |
PB | 56.1 a | - | - | - | - | 51.3 b | 56.3 b | 15.3 b | - | 503 b | |
PB:PM | 56.5 a | - | - | - | - | 53.4 a | 60.7 a | 19.0 a | - | 564 a | |
Treatment least squares means grouped by substrate | |||||||||||
Substrate | Container | ||||||||||
PB | Black | 56.5 | 68.9 a | 26.6 a | 330 a | 629 a | 51.3 | 55.1 | 12.8 | 162 a | 508.5 |
White | 58.4 | 68.4 a | 25.1 a | 299 a | 487 ab | 52.3 | 61.5 | 21 | 170 a | 506.5 | |
Air | 53.4 | 61.9 b | 21.4 b | 191 b | 366 b | 50.2 | 52.2 | 12 | 120 b | 494 | |
PB:PM | Black | 56.4 | 74.9 b | 33.5 b | 383 b | 698 a | 53.4 | 58.8 | 17.7 | 195 a | 504.5 |
White | 57.8 | 83.8 a | 42.2 a | 466 a | 820 a | 53.7 | 65.1 | 23.7 | 201 a | 614 | |
Air | 55.4 | 72.6 b | 31.8 b | 361 b | 653 a | 53.3 | 58.1 | 15.5 | 186 a | 574 |
Substrate z | Air Space y | Container Capacity | Total Porosity | Bulk Density |
---|---|---|---|---|
(% volume) | (g·cm−3) | |||
Tennessee | ||||
PB | 30.4 a x | 42.8 b | 73.2 a | 0.233 a |
PB:PM | 21.8 b | 54.7 a | 76.5 a | 0.226 a |
Alabama | ||||
PB | 25.4 a | 41.1 b | 66.6 a | 0.267 a |
PB:PM | 21.7 a | 48.9 a | 70.6 a | 0.259 a |
38 °C (%) | 46 °C (%) | 38 °C (%) | 46 °C (%) | ||
---|---|---|---|---|---|
Tennessee | Alabama | ||||
Significance of treatment factors | |||||
Container (C) z | <0.0001 | 0.0221 | <0.0001 | <0.0001 | |
Substrate (S) y | 0.5229 | 0.5144 | 0.7182 | 0.6128 | |
C by S | 0.397 | 0.5864 | 0.047 | 0.6464 | |
Least squares means for main effects | |||||
Substrate | Container | ||||
Black | 19.4 a x | 0.1 a | - | 1.93 a | |
White | 4.2 b | 0.0 b | - | 0.00 b | |
Air | 2.7 b | 0.0 b | - | 0.00 b | |
PB | 7.9 a | 0.0 a | - | 0.85 a | |
PB:PM | 8.3 a | 0.0 a | - | 0.43 a | |
Treatment least squares means grouped by substrate | |||||
Substrate | Container | ||||
PB | Black | 20.2 | 0.0 | 24.2 a | 2.5 |
White | 5.1 | 0.0 | 8.4 b | 0.0 | |
Air | 2.5 | 0.0 | 5.5 c | 0.0 | |
PB:PM | Black | 18.8 | 0.1 | 21.6 a | 1.3 |
White | 3.2 | 0.0 | 7.2 b | 0.0 | |
Air | 2.9 | 0.0 | 7.8 b | 0.0 |
Volumetric Water Content (m3·m−3) | |||||
June | July | August | September | ||
Significance of treatment factors | |||||
Container (C)z | 0.0274 | 0.0044 | 0.0006 | 0.0007 | |
Substrate (S)y | 0.0021 | 0.0226 | 0.0176 | 0.0183 | |
C by S | 0.0175 | 0.2421 | 0.7409 | 0.2288 | |
Least squares means for main effects | |||||
Substrate | Container | ||||
Black | - | 0.314 a x | 0.320 a | 0.312 a | |
White | - | 0.274 a | 0.220 b | 0.201 b | |
Air | - | 0.178 b | 0.131 c | 0.139 c | |
PB | - | 0.214 b | 0.180 b | 0.176 b | |
PB:PM | - | 0.283 a | 0.247 a | 0.240 a | |
Treatment least squares means grouped by substrate | |||||
Substrate | Container | ||||
PB | Black | 0.270 a | 0.283 | 0.3 | 0.307 |
White | 0.319 a | 0.266 | 0.187 | 0.159 | |
Air | 0.152 b | 0.117 | 0.093 | 0.105 | |
PB:PM | Black | 0.367 a | 0.346 | 0.341 | 0.316 |
White | 0.323 a | 0.286 | 0.269 | 0.265 | |
Air | 0.342 a | 0.238 | 0.169 | 0.173 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witcher, A.L.; Pickens, J.M.; Blythe, E.K. Container Type and Substrate Affect Root Zone Temperature and Growth of ‘Green Giant’ Arborvitae. Horticulturae 2020, 6, 22. https://doi.org/10.3390/horticulturae6020022
Witcher AL, Pickens JM, Blythe EK. Container Type and Substrate Affect Root Zone Temperature and Growth of ‘Green Giant’ Arborvitae. Horticulturae. 2020; 6(2):22. https://doi.org/10.3390/horticulturae6020022
Chicago/Turabian StyleWitcher, Anthony L., Jeremy M. Pickens, and Eugene K. Blythe. 2020. "Container Type and Substrate Affect Root Zone Temperature and Growth of ‘Green Giant’ Arborvitae" Horticulturae 6, no. 2: 22. https://doi.org/10.3390/horticulturae6020022
APA StyleWitcher, A. L., Pickens, J. M., & Blythe, E. K. (2020). Container Type and Substrate Affect Root Zone Temperature and Growth of ‘Green Giant’ Arborvitae. Horticulturae, 6(2), 22. https://doi.org/10.3390/horticulturae6020022