Securing Horticulture in a Changing Climate—A Mini Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Elevated CO2 Changes Yield and Produce Quality
3.2. High Temperatures Accelerate Plant Development
3.3. Winter Chilling in Asparagus
3.4. Vernalization in Cauliflower
3.5. Extreme Weather Events Reduce Yield and Produce Quality
3.5.1. Temperature Extremes
3.5.2. Heat Waves
3.5.3. Droughts
3.5.4. Early and Late Frosts
3.6. Breeding New Cultivars to Guarantee Yield and Product Quality
3.7. Modifying Cultivation Practices
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Midgley, P.M.; Nauels, A.; Xia, Y.; Bex, V. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Kaufmann, H.; Blanke, M. Performance of three numerical models to assess winter chill for fruit trees—A case study using cherry as model crop in Germany. Reg. Environ. Chang. 2017, 17, 715–723. [Google Scholar] [CrossRef]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality—A review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Bisbis, M.; Gruda, N.; Blanke, M. Adapting to climate change with greenhouse technology. Acta Hortic. 2018, 1227, 107–114. [Google Scholar] [CrossRef]
- Gruda, N.; Tanny, J. Protected crops. In Horticulture: Plants for People and Places, Volume 1; Springer: Dordrecht, The Netherlands, 2014; pp. 327–405. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Tanny, J. Influence of climate change on protected cultivation: Impacts and sustainable adaptation strategies—A review. J. Clean. Prod. 2019, 225, 481–495. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Tanny, J. Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production—A review. J. Clean. Prod. 2019, 225, 324–339. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Gruda, N. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit. Rev. Plant Sci. 2005, 24, 227–247. [Google Scholar] [CrossRef]
- Dong, J.; Gruda, N.; Lam, S.K.; Li, X.; Duan, Z. Effects of elevated CO2 on nutritional quality of vegetables: A review. Front. Plant Sci. 2018, 9, 924. [Google Scholar] [CrossRef]
- Kalużewicz, A.; Krzesiński, W.; Knaflewski, M. Effect of temperature on the yield and quality of broccoli heads. Veg. Crops Res. Bull. 2009, 71, 51–58. [Google Scholar] [CrossRef]
- Wiebe, H.J. Effect of temperature and light on growth and development of cauliflower. Gartenbauwissenschaft 1972, 37, 165–178. [Google Scholar]
- Mølmann, J.A.; Steindal, A.L.H.; Bengtsson, G.B.; Seljåsen, R.; Lea, P.; Skaret, J.; Johansen, T.J. Effects of temperature and photoperiod on sensory quality and contents of glucosinolates, flavonols and vitamin C in broccoli florets. Food Chem. 2015, 172, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.C.; Chen, Y.H.; Liu, M. Effects of low temperature and chilling duration on bud break and changes of endogenous hormones of asparagus. Eur. J. Hortic. Sci. 2016, 81, 22–26. [Google Scholar] [CrossRef]
- Feller, C. Wie Gut Kann Sich Eine Spargelanlage Durch Verkürzung der Stechdauer Erholen? Dormanzverhalten von Spargelsorten. Versuchsergebnisse der Spargelversuche aus Großbeeren; Leibniz-Institut für Gemüse-und Zierpflanzenbau: Großbeeren, Germany, 2012. [Google Scholar]
- Wurr, D.C.E.; Fellows, J.R.; Phelps, K. Investigating trends in vegetable crop response to increasing temperature associated with climate change. Sci. Hortic. 1996, 66, 255–263. [Google Scholar] [CrossRef]
- Eriksen, R.L.; Knepper, C.; Cahn, M.D.; Mou, B. Screening of Lettuce Germplasm for Agronomic Traits under Low Water Conditions. HortScience 2016, 51, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Maeda, T. Effect of high-temperature treatments on the breaking of dormancy in one-year-old asparagus (Asparagus officinalis L.). Environ. Control Biol. 2015, 53, 23–26. [Google Scholar] [CrossRef]
- Blanke, M.; Kunz, A. Effects of recent climate change on pome fruit phenology-based on 55 years of climate and phenology records at Klein-Altendorf. Erwerbs-Obstbau 2009, 51, 101–114. [Google Scholar] [CrossRef]
- Kaiser, E.; Stützel, H.; Heuvelink, E. Effect of Cooling Irrigation on the Vernalisation of Cauliflower (Brassica oleracea L. Botrytis). Master’s Thesis, Wageningen University and Research, Wageningen, The Netherlands, Leibniz Universität Hannover, Hannover, Germany, 2011. [Google Scholar]
- Teichmann, C.; Bülow, K.; Otto, J.; Pfeifer, S.; Rechid, D.; Sieck, K.; Jacobet, D. Avoiding Extremes: Benefits of Staying below +1.5 °C Compared to +2.0 °C and +3.0 °C Global Warming. Atmosphere 2018, 9, 115. [Google Scholar] [CrossRef]
- DWD. 2018 war in Deutschland das Jahr der Wetter-Rekorde und Extremen Dürre. Available online: https://www.dwd.de/DE/presse/pressekonferenzen/DE/2019/PK_26_03_2019/rede_deutschlaender.html (accessed on 24 June 2019).
- DWD. Available online: https://www.dwd.de/DE/leistungen/rcccm/int/rcccm_int_spi.html (accessed on 28 June 2019).
- Collier, G.F.; Tibbitts, T.W. Tipburn of lettuce. Hortic. Rev. 1982, 4, 49–65. [Google Scholar]
- Périard, Y.; Caron, J.; Lafond, J.A.; Jutras, S. Root water uptake by romaine lettuce in a muck soil: Linking tip burn to hydric deficit. Vadose Zone J. 2015, 14, 14. [Google Scholar] [CrossRef]
- Simko, I.; Hayes, R.J. Breeding lettuce for improved fresh-cut processing. In Proceedings of the III International Conference on Fresh-Cut Produce: Maintaining Quality and Safety, Davis, CA, USA, 13 September 2015; Acta Horticulturae 1141. pp. 65–76. [Google Scholar]
- Potop, V.; Zahradníček, P.; Türkott, L.; Štěpánek, P.; Soukup, J. Potential impacts of climate change on damaging frost during growing season of vegetables. Sci. Agric. Bohem. 2014, 45, 26–35. [Google Scholar] [CrossRef]
- Hillmann, L.; Kaufmann, H.; Blanke, M. Bioindikatoren für den Dormanzstatus bei Obstgehölzen. Erwerbs-Obstbau 2016, 58, 141–157. [Google Scholar] [CrossRef]
- Uno, Y.; Okubo, H.; Itoh, H.; Koyama, R. Reduction of leaf lettuce tipburn using an indicator cultivar. Sci. Hortic. 2016, 210, 14–18. [Google Scholar] [CrossRef]
- FAO. Climate Smart Agriculture Sourcebook. Available online: http://www.fao.org/climate-smart-agriculture-sourcebook/about/en/ (accessed on 20 July 2019).
- Badr, M.A.; El-Tohamy, W.A.; Hussein, S.D.A.; Gruda, N. Tomato yield, physiological response, water and nitrogen use efficiency under deficit and partial root zone drying irrigation in an arid region. J. Appl. Bot. Food Qual. 2018, 91, 332–340. [Google Scholar] [CrossRef]
- Badr, M.A.; Hussein, S.A.; El-Tohamy, W.A.; Gruda, N. Efficiency of subsurface drip irrigation for potato production under different dry stress conditions. Gesunde Pflanz. 2010, 62, 63–70. [Google Scholar] [CrossRef]
- Peigné, J.; Casagrande, M.; Payet, V.; David, C.; Sans, F.X.; Blanco-Moreno, J.M.; Cooper, J.; Gascoyne, K.; Antichi, D.; Bàrberi, P.; et al. How organic farmers practice conservation agriculture in Europe. Renew. Agric. Food Syst. 2016, 31, 72–85. [Google Scholar] [CrossRef]
Incident | Source | Adverse Effect | Affected Crop | Reference |
---|---|---|---|---|
Lack of chilling | Lack of cold temperatures during the winter | Delayed spears Reduced spear growth | Asparagus | [15] |
Lack of vernalization | Lack of cold temperature during vegetative growth | Delay of head formation | Cauliflower | [16] |
Warm and dry periods | Pressure to complete life cycle | bolting | Lettuce | [17] |
Warm and dry periods | Lack of Ca transport | Tip burn, blossom end rot | Lettuce, Tomato | [17] |
Incident | Source | Adverse Effect | Affected Crop | Reference |
---|---|---|---|---|
Lack of chilling | Lack of cold temperatures during the winter | Delayed flowering and increase in risk of frost | Apple and other fruit crops | [2] |
Frost | Slight increase in the risk of frost | Damage to flowers and fruitlets, yield loss | Cherry, apple, apricot, others | [19] |
Sunny and hot periods | Rise of fruit temperature >50 °C | Sunburn | Apple and other fruit crops | [19] |
Warm and dry periods | Insufficient water supply to the fruit | Smaller and softer fruit, less fruit color | Apple and other fruit crops | [19] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bisbis, M.B.; Gruda, N.S.; Blanke, M.M. Securing Horticulture in a Changing Climate—A Mini Review. Horticulturae 2019, 5, 56. https://doi.org/10.3390/horticulturae5030056
Bisbis MB, Gruda NS, Blanke MM. Securing Horticulture in a Changing Climate—A Mini Review. Horticulturae. 2019; 5(3):56. https://doi.org/10.3390/horticulturae5030056
Chicago/Turabian StyleBisbis, Mehdi B., Nazim S. Gruda, and Michael M. Blanke. 2019. "Securing Horticulture in a Changing Climate—A Mini Review" Horticulturae 5, no. 3: 56. https://doi.org/10.3390/horticulturae5030056
APA StyleBisbis, M. B., Gruda, N. S., & Blanke, M. M. (2019). Securing Horticulture in a Changing Climate—A Mini Review. Horticulturae, 5(3), 56. https://doi.org/10.3390/horticulturae5030056