Applications of Abscisic Acid and Increasing Concentrations of Calcium Affect the Partitioning of Mineral Nutrients between Tomato Leaf and Fruit Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Culture and Harvest
2.2. Elemental Nutrient Determination
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baxter, I. Ionomics: The functional genomics of elements. Brief. Func. Genom. 2010, 9, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marschner, H. Mineral. Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Williams, L.; Salt, D.E. The plant ionome coming into focus. Cur. Opin. Plant. Biol. 2009, 12, 247–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baxter, I.; Hermans, C.; Lahner, B.; Yakubova, E.; Tikhonova, M.; Verbruggen, N.; Chao, D.; Salt, D.E. Biodiversity of mineral nutrients and trace element accumulation in Arabidopsis thaliana. PLoS ONE 2012, 7, e35121. [Google Scholar] [CrossRef] [PubMed]
- Adams, P.; Ho, L.C. Effects of environment on the uptake and distribution of calcium in tomato and on the incidence of blossom-end rot. Plant Soil 1993, 154, 127–132. [Google Scholar] [CrossRef]
- Tadesse, T.; Nichols, M.A.; Hewett, E.W.; Fisher, K.J. Relative humidity around the fruit influences the mineral composition and incidence of blossom-end rot in sweet pepper. J. Hort. Sci. Biotech. 2001, 76, 9–16. [Google Scholar] [CrossRef]
- Brown, P.H.; Shelp, B.J. Boron mobility in plants. Plant Soil 1997, 193, 85–101. [Google Scholar] [CrossRef]
- De Freitas, S.T.; do Amarante, C.V.T.; Labavitch, J.M.; Mitcham, E.J. Postharvest. Biol. Technol. 2010, 57, 6–13. [Google Scholar] [CrossRef]
- Thompson, A.J.; Jackson, A.C.; Parker, R.A.; Morpeth, D.R.; Burbidge, A.; Taylor, I.B. Abscisic acid biosynthesis in tomato: Regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid. Plant Mol. Biol. 2000, 42, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, T.; Shinozaki, K. Perception and transduction of abscisic acid signals: Keys to the function of the versatile plant hormone ABA. Trends Plant Sci. 2007, 12, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.C.; Tachibana, S. Effect of supraoptimal root temperatures on ABA levels in cucumber plants and its control by ABA applied to roots. Acta Hort. 1994, 394, 227–234. [Google Scholar] [CrossRef]
- Barickman, T.C.; Kopsell, D.A.; Sams, C.E. Abscisic acid improves calcium partitioning in ‘micro’ tomato fruit tissue. Acta Hort. 2014, 1042, 113–120. [Google Scholar] [CrossRef]
- Barickman, T.C.; Kopsell, D.A.; Sams, C.E. Foliar applications of abscisic acid decrease the incidence of blossom-end rot in tomato fruit. Sci. Hort. 2014, 179, 356–362. [Google Scholar] [CrossRef]
- Barickman, T.C.; Kopsell, D.A.; Sams, C.E. Exogenous foliar and root applications of abscisic acid increase the influx of calcium into tomato fruit tissue and decrease the incidence of blossom. HortScience 2014, 49, 1397–1402. [Google Scholar] [CrossRef]
- Gaymard, F.; Pilot, G.; Lacombe, B.; Bouchez, D.; Bruneau, D.; Boucherez, J. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 1998, 94, 647–655. [Google Scholar] [CrossRef]
- Maathuis, F.J.M.; Amtmann, A. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann. Bot. 1999, 84, 123–133. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Ann. Rev. Plant. Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- White, P.J. Depolarisation-activated calcium channels shape the calcium signatures induced by low-temperature stress. New Phytol. 2009, 183, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.C.; White, P.J. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann. Bot. 2005, 95, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.; Davies, W.J. ABA-based chemical signaling: The co-ordination of responses to stress in plants. Plant. Cell Environ. 2002, 25, 195–210. [Google Scholar] [CrossRef]
- Jeschke, W.D.; Peuke, A.D.; Pate, J.S.; Hartung, W. Transport, synthesis, and catabolism of abscisic acid (ABA) in intact plants of castor bean (Ricinus communis L.) under phosphate deficiency and moderate salinity. J. Exp. Bot. 1997, 48, 1737–1747. [Google Scholar] [CrossRef]
- Peuke, A.; Jeschke, W.D.; Hartung, W. Flows of elements, ions and abscisic acid in Ricinus communis and site of nitrate reduction under potassium limitation. J. Exp. Bot. 2002, 53, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Hartung, W. Long-distance signaling of abscisic acid (ABA): The factors regulating the intensity of the ABA signal. J. Exp. Bot. 2008, 59, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Hartung, W.; Schraut, D.; Jiang, F. Physiology of abscisic acid (ABA) in roots under stress-a review of the relationship between ABA and radial water and ABA flows. Aus. J. Agric. Res. 2005, 56, 1253–1259. [Google Scholar] [CrossRef]
- United States Department of Agricutlure Agricultural Marketing Service (U.S.D.A.). Color Classification Requirements in United States Standards for Grades of Fresh Tomatoes; U.S.D.A Visual Aid TM-L-1; United States Department of Agricutlure Agricultural Marketing Service: Beltsville, MD, USA, 1975.
- United States Department of Agricutlure Agricultural Marketing Service (U.S.D.A.). United States Standards for Grades of Greenhouse Tomatoes; United States Department of Agricutlure Agricultural Marketing Service: Beltsville, MD, USA, 2007.
- Barickman, T.C.; Kopsell, D.A.; Sams, C.E. Selenium influences glucosinolate and isothiocyanates and increases sulfur uptake in Arabidopsis thaliana and rapid-cycling Brassica oleracea. J. Agric. Food. Chem. 2013, 61, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Eisenreich, W.; Bacher, A.; Arigoni, D.; Rohdich, F. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol. Life Sci. 2004, 61, 1401–1426. [Google Scholar] [CrossRef] [PubMed]
- Fray, A.; Audran, C.; Marin, E.; Cotta, B.; Marion-Poll, A. Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression. Plant Mol. Biol. 1999, 39, 1267–1274. [Google Scholar] [CrossRef]
- Hartung, W.; Sauter, A.; Hose, E. Abscisic acid in the xylem: Where does it come from, where does it go to? J. Exp. Bot. 2002, 53, 27–32. [Google Scholar] [CrossRef]
- Perez-Jimenez, M.; Pazos-Navarro, M.; Lopez-Marin, J.; Galvez, A.; Varo, P.; del Amor, F.M. Foliar applications of plant growth regulators change the nutrient composition of sweet pepper (Capsicum annuum L.). Sci. Hort. 2015, 194, 188–193. [Google Scholar] [CrossRef]
- Mizrahi, Y.; Richmond, A.E. Abscisic acid in relation to mineral deprivation. Plant Physiol. 1972, 50, 667–670. [Google Scholar] [CrossRef]
- Thornley, J.H.M. A balanced quantitative model for root: Shoot ratios in vegetative plants. Ann. Bot. 1972, 36, 431–441. [Google Scholar] [CrossRef]
- Marschner, H.; Kirkby, E.A.; Cakmak, I. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J. Exp. Bot. 1996, 47, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Okada, M.; Lei, K.; Ito, J.; Ohkura, K.; Adu-Gyamfi, J.J.; Mohapatra, P.K. Effect of P-deficiency on photoassimilate partitioning and rhythmic changes in fruit and stem diameter of tomato (Lycopersicon esculentum) during fruit growth. J. Exp. Bot. 2003, 54, 2519–2528. [Google Scholar] [CrossRef]
- Agehara, S.; Leskovar, D.I. Characterizing concentration effects of exogenous abscisic acid on gas exchange, water relations, and growth of muskmelon seedlings during water stress and rehydration. J. Am. Soc. Hort. Sci. 2012, 137, 400–410. [Google Scholar] [CrossRef]
- Schachtman, D.P.; Goodger, J.Q.D. Chemical root to shoot signaling under drought. Trends Plant Sci. 2008, 13, 281–287. [Google Scholar] [CrossRef]
- Wegner, L.H. Interplay of water and nutrient transport: A whole-plant perspective. Prog. Bot. 2015, 76, 109–141. [Google Scholar]
- Wasilewska, A.; Vlad, F.; Sirichandra, C.; Redko, Y.; Jammes, F.; Valon, C.; dit Fray, N.F.; Leung, J. An update on abscisic acid signaling in plant and more. Mol. Plant 2008, 1, 198–217. [Google Scholar] [CrossRef] [PubMed]
- Mori, I.C.; Muto, S. Abscisic acid activates a 48—Kilodalton protein kinase in guard cell protoplasts. Plant Physiol. 1997, 113, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Israelsson, M.; Siegel, R.S.; Young, J.; Hashimoto, M.; Iba, K.; Schroeder, J.I. Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr. Opin. Plant Biol. 2006, 9, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Mori, I.C.; Murata, Y.; Yang, Y.; Munemasa, S.; Wang, Y.; Andreoli, S.; Tiriac, H.; Alonso, J.M.; Harper, J.F.; Ecker, J.R.; et al. CDPKs, CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channelsand stomatal closure. PLoS Biol. 2006, 4, e327. [Google Scholar] [CrossRef]
- Cram, W.J.; Pitman, M.G. The action of abscisic acid on ion uptake and water flow in plant roots. Am. J. Bot. 1972, 25, 1125–1132. [Google Scholar] [CrossRef]
- Schaefer, N.; Wildes, R.A.; Pitman, M.G. Inhibition by p-fluorophenylalanine of protein synthesis and of ion transport across roots in barley seedlings. Aust. J. Plant Physiol. 1975, 2, 61–73. [Google Scholar] [CrossRef]
- Behl, R.; Jeschke, W.D. Influence of abscisic acid on unidirectional fluxes and intracellular compartmentation of K+ and Na+ in excised barley root segments. Physiol. Plant 1981, 53, 95–100. [Google Scholar] [CrossRef]
- Bassir Rad, F.; Blatt, M.R. Temperature-dependent water and ion transport properties of barley and sorghum roots. Plant Physiol. 1992, 99, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.K. Regulation of K+ channels in maize roots by water stress and abscisic acid. Plant Physiol. 1998, 116, 145–153. [Google Scholar] [CrossRef]
- Barickman, T.C.; Kopsell, D.A.; Sams, C.E. Abscisic acid impacts tomato carotenoids, soluble sugars, and organic acids. HortScience 2016, 51, 370–376. [Google Scholar] [CrossRef]
- Barickman, T.C.; Kopsell, D.A.; Sams, C.E. Abscisic acid increases carotenoid and chlorophyll concentrations in leaves and fruit of two tomato genotypes. J. Am. Soc. Hort. Sci. 2014, 139, 261–266. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X.; Sandhu, A.K.; Gu, L. Effects of exogenous abscisic acid on yield, antioxidants capacities, and phytochemical contents of greenhouse grown lettuces. J. Agric. Food Chem. 2010, 58, 6503–6509. [Google Scholar] [CrossRef]
- Barickman, T.C.; Kopsell, D.A.; Sams, C.E. Abscisic acid improves tomato fruit quality by increasing soluble sugar concentrations. J. Plant Nutr. 2017, 40, 964–973. [Google Scholar] [CrossRef]
- De Freitas, S.T.; Shackel, K.A.; Mitcham, E.J. Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. J. Expt. Bot. 2011, 62, 2645–2656. [Google Scholar] [CrossRef] [Green Version]
- De Freitas, S.T.; Meelrone, A.J.; Shackel, K.A.; Mitcham, E.J. Calcium partitioning and allocation and blossom-end rot development in tomato plants in response to whole-plant and fruit-specific abscisic acid treatment. J. Exp. Bot. 2014, 65, 235–247. [Google Scholar] [CrossRef]
- Robson, A.D.; Pitman, M.G. Interactions between nutrients in higher plants. In Encyclopedia of Plant Physiology; New Series; Lauchli, A., Bieleski, R.L., Eds.; Springer Verlag: Berlin, Germany; New York, NY, USA, 1983; Volume 15A, pp. 147–180. [Google Scholar]
- Kopsell, D.E.; Kopsell, D.A.; Sams, C.E.; Barickman, T.C. Ratio of calcium to magnesium influences biomass, elemental accumulation, and pigment concentrations in kale. J. Plant Nutr. 2013, 36, 2154–2165. [Google Scholar] [CrossRef]
- Lohnis, M.P. Effect of magnesium and calcium supply on the uptake of manganese by various crop plants. Plant Soil. 1960, 12, 339–376. [Google Scholar] [CrossRef]
- Baker, A.J.M. The uptake of zinc and calcium from solution culture by zinc tolerant and non tolerant Silene maritima in relation to calcium supply. New Physiol. 1978, 81, 321–330. [Google Scholar] [CrossRef]
- White, P.J. Calcium. In Handbook of Plant Nutrition, 2nd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2015. [Google Scholar]
- Lopez-Lefebre, L.; Rivero, R.M.; Garcia, P.C.; Sanchez, E.; Ruiz, J.M.; Romero, L. Effect of calcium on mineral nutrient uptake and growth of tobacco. J. Sci. Food Agric. 2001, 81, 1334–1338. [Google Scholar] [CrossRef]
- Schachtman, D.P.; Reid, R.J.; Ayling, S.M. Phosphorus uptake by plants: From soil to cell. Plant Physiol. 1998, 116, 447–453. [Google Scholar] [CrossRef]
- Kanai, S.; Ohkura, K.; Aud-Gyamfi, J.J.; Mohapatra, P.K.; Nguyen, N.T.; Saneoka, H.; Fujita, K. Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. J. Exp. Bot. 2007, 58, 2917–2928. [Google Scholar] [CrossRef]
- Suelter, C.H. Enzymes activation by monovalent cations. Science 1970, 168, 789–795. [Google Scholar] [CrossRef]
- Mills, H.A.; Benton Jones, J., Jr. Plant Analysis Handbook II; MicroMacro Publishing, Inc.: Athens, GA, USA, 1996. [Google Scholar]
ABA Treatment | Leaf Tissue Mineral Elements (mg·g−1 Dry Weight) a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mg | P | S | K | Mn | B | Fe | Zn | Cu | Mo b | |
Control | 11.32 | 8.40 | 17.70 | 48.99 | 0.37 | 0.19 | 0.15 | 0.031 | 0.029 | 2.20 |
500 mg·L−1 Spray | 11.28 | 7.12 | 16.04 | 35.81 | 0.34 | 0.13 | 0.13 | 0.022 | 0.020 | 2.20 |
50 mg·L−1 Root | 8.66 | 9.97 | 16.40 | 45.55 | 0.38 | 0.17 | 0.13 | 0.022 | 0.023 | 3.40 |
500 mg·L−1 Spray + 50 mg·L−1 Root | 8.12 | 8.09 | 16.16 | 37.96 | 0.34 | 0.12 | 0.12 | 0.019 | 0.019 | 3.40 |
P-Value c | *** | *** | ns | *** | ns | *** | ns | *** | *** | *** |
ABA Treatment | Fruit Tissue Mineral Elements a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
(mg·g−1 Dry Weight) | (µg·g−1 Dry Weight) | |||||||||
Mg | P | S | K | Mn | B | Fe | Zn | Cu | Mo | |
Control | 6.37 | 18.55 | 6.46 | 160.27 | 75.00 | 57.50 | 258.33 | 239.17 | 118.33 | 2.50 |
500 mg·L−1 Spray | 5.97 | 16.45 | 6.73 | 146.69 | 88.33 | 50.83 | 274.17 | 223.33 | 132.50 | 3.33 |
50 mg·L−1 Root | 6.63 | 19.39 | 7.94 | 166.57 | 85.83 | 54.17 | 299.17 | 215.83 | 121.67 | 3.33 |
500 mg·L−1 Spray + 50 mg·L−1 Root | 6.05 | 16.27 | 6.03 | 144.83 | 87.50 | 47.50 | 237.50 | 189.17 | 118.33 | 3.33 |
P-Value b | ns | ** | ns | * | ** | ** | ns | ns | ns | *** |
ABA Treatment | Partitioning Coefficient (Leaf Nutrient/Fruit Nutrient) a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mg | P | S | K | Mn | B | Fe | Zn | Cu | Mo | |
Control | 1.90 | 0.47 | 3.54 | 0.32 | 5.26 | 3.56 | 0.66 | 0.15 | 0.48 | 1.36 |
500 mg·L−1 Spray | 1.41 | 0.45 | 3.03 | 0.25 | 3.99 | 2.69 | 0.67 | 0.12 | 0.34 | 1.09 |
50 mg·L−1 Root | 1.87 | 0.54 | 3.40 | 0.30 | 4.88 | 3.71 | 0.57 | 0.12 | 0.41 | 1.19 |
500 mg·L−1 Spray + 50 mg·L−1 Root | 1.50 | 0.53 | 3.81 | 0.27 | 4.20 | 2.73 | 0.69 | 0.13 | 0.36 | 0.54 |
P-Value b | *** | ** | ns | ** | ** | *** | ns | * | * | ns |
Location | Fruit Tissue Mineral Elements a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
(mg·g−1 Dry Weight) | (µg·g−1 Dry Weight) | |||||||||
Mg | P | S | K | Mn | B | Fe | Zn | Cu | Mo | |
Proximal | 5.68 | 17.06 | 6.77 | 157.62 | 83.33 | 45.00 | 204.17 | 215.83 | 129.17 | 2.50 |
Distal | 6.83 | 18.27 | 6.81 | 151.55 | 85.00 | 59.17 | 330.00 | 217.50 | 117.50 | 3.33 |
P-Value b | *** | * | ns | ns | ns | *** | *** | ns | ns | ** |
Calcium Treatments | Leaf Tissue Mineral Elements (mg·g−1 Dry Weight) a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mg | P | S | K | Mn | B | Fe | Zn | Cu | Mo | |
60 | 11.09 | 8.61 | 16.22 | 43.12 | 0.38 | 0.16 | 0.16 | 0.025 | 0.024 | 0.0030 |
90 | 10.72 | 8.93 | 16.96 | 45.07 | 0.38 | 0.16 | 0.14 | 0.024 | 0.024 | 0.0030 |
180 | 7.72 | 7.42 | 16.55 | 38.05 | 0.32 | 0.14 | 0.11 | 0.022 | 0.020 | 0.0024 |
P-Value c | *** | ** | ns | ** | ** | * | *** | ns | ** | ** |
Contrast | ||||||||||
Linear | *** | ** | ns | ** | ** | ** | *** | * | ** | ** |
Quadratic | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Calcium Treatments | Fruit Tissue Mineral Elements a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
(mg·g−1 Dry Weight) | (µg·g−1 Dry Weight) | |||||||||
Mg | P | S | K | Mn | B | Fe | Zn | Cu | Mo | |
60 | 6.14 | 17.07 | 6.68 | 146.32 | 87.50 | 50.83 | 260.83 | 221.67 | 119.17 | 3.33 |
90 | 6.59 | 17.80 | 7.10 | 156.55 | 85.83 | 53.33 | 274.17 | 214.17 | 119.17 | 3.33 |
180 | 6.03 | 18.12 | 6.59 | 160.90 | 80.00 | 52.50 | 266.67 | 214.17 | 130.00 | 2.50 |
P-Value b | ns | ns | ns | ns | ns | ns | ns | ns | ns | * |
Contrast | ||||||||||
Linear | ns | ns | ns | * | * | ns | ns | ns | ns | ns |
Quadratic | * | ns | ns | ns | ns | ns | ns | ns | ns | * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barickman, T.C.; Kopsell, D.A.; Sams, C.E. Applications of Abscisic Acid and Increasing Concentrations of Calcium Affect the Partitioning of Mineral Nutrients between Tomato Leaf and Fruit Tissue. Horticulturae 2019, 5, 49. https://doi.org/10.3390/horticulturae5030049
Barickman TC, Kopsell DA, Sams CE. Applications of Abscisic Acid and Increasing Concentrations of Calcium Affect the Partitioning of Mineral Nutrients between Tomato Leaf and Fruit Tissue. Horticulturae. 2019; 5(3):49. https://doi.org/10.3390/horticulturae5030049
Chicago/Turabian StyleBarickman, T. Casey, Dean A. Kopsell, and Carl E. Sams. 2019. "Applications of Abscisic Acid and Increasing Concentrations of Calcium Affect the Partitioning of Mineral Nutrients between Tomato Leaf and Fruit Tissue" Horticulturae 5, no. 3: 49. https://doi.org/10.3390/horticulturae5030049
APA StyleBarickman, T. C., Kopsell, D. A., & Sams, C. E. (2019). Applications of Abscisic Acid and Increasing Concentrations of Calcium Affect the Partitioning of Mineral Nutrients between Tomato Leaf and Fruit Tissue. Horticulturae, 5(3), 49. https://doi.org/10.3390/horticulturae5030049