Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization
Abstract
:1. Introduction
2. Effects on Vegetable Growth and Nutrition
3. Alkalization
4. Vegetable Tolerance to Salinity
5. Management Practices
5.1. Soil Reclamation
5.2. Fertilization
5.3. Irrigation
5.4. Maintenance Leaching
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Stolte, J.; Tesfai, M.; Øygarden, L.; Kværnø, S.; Keizer, J.; Verheijen, F.; Panagos, P.; Ballabio, C.; Hessel, R. Soil threats in Europe: Status, Methods, Drivers and Effects on Ecosystem Services. A Review Report, Deliverable 2.1 of the RECARE Project; Office for Official Publications of the European Community: Luxembourg, 2015; Vol. EUR 27607, pp. 69–78. [Google Scholar]
- Bowyer, C.; Withana, S.; Fenn, I.; Bassi, S.; Lewis, M.; Cooper, T.; Benito, P.; Mudgal, S. Land Degradation and Desertification Policy Department Economic and Scientific Policy IP/A/ENVI/ST/2008-23; European Parliament: Brussels, Belgium, 2009. [Google Scholar]
- Pimentel, D.; Berger, B.; Filiberto, D.; Newton, M.; Wolfe, B; Karabinakis, E.; Clark, S.; Poon, E.; Abbett, E.; Nandaopal, S. Water Resources: Agricultural and Environmental Issues. BioScience 2004, 54, 909–918. [Google Scholar] [CrossRef]
- Bartels, D.; Sunkar, R. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 2005, 24, 23–58. [Google Scholar] [CrossRef]
- Increasing Fruit and Vegetable Consumption Becomes a Global Priority. Available online: http://www.erails.netconsulted (accessed on 2 February 2017).
- Munns, R.; Husain, S.; Rivelli, A.R.; Richard, A.J.; Condon, A.G.; Megan, P.L.; Evans, S.L.; Schachtman, D.P.; Hare, R.A. Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 2002, 247, 93–105. [Google Scholar] [CrossRef]
- Läuchli, A.; Grattan, S.R. Plant growth and development under salinity stress. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops; Springer: Dordrecht, The Netherlands, 2007; pp. 1–32. [Google Scholar]
- Läuchli, A.; Epstein, E. Plant responses to saline and sodic conditions. In Agricultural Salinity Assessment and Management; Tanji, K.K., Ed.; American Society of Civil Engineers: Reston, VA, USA, 1990; Volume 71, pp. 113–137. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Schachtman, D.P.; Condon, A.G. The significance of a two-phase growth response to salinity in wheat and barley. Funct. Plant Biol. 1995, 22, 561–569. [Google Scholar] [CrossRef]
- López-Berenguer, C.; García-Viguera, C.; Carvajal, M. Are root hydraulic conductivity responses to salinity controlled by aquaporins in broccoli plants? Plant Soil 2006, 279, 13–23. [Google Scholar] [CrossRef]
- Flexas, J.; Diaz-Espejo, A.; Galmés, J.; Kaldenhoff, R.; Medrano, H; Ribas-Carbo, M. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ. 2007, 30, 1284–1298. [Google Scholar] [CrossRef] [PubMed]
- Delfine, S; Alvino, A.; Villani, M.C.; Loreto, F. Restrictions to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol. 1999, 119, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Di Martino, C.; Delfine, S.; Alvino, A.; Loret, F. Photorespiration rate in spinach leaves under moderate NaCl stress. Photosynthetica 1999, 36, 233–242. [Google Scholar] [CrossRef]
- Delfine, S.; Alvino, A.; Zacchini, M.; Loreto., F. Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Funct. Plant Biol. 1998, 25, 395–402. [Google Scholar] [CrossRef]
- Alvino, A.; D’Andria, R.; Delfine, S.; Lavini, A.; Zanetti, P. Effect of water and salinity stress on radiation absorption and efficiency in sunflower. Ital. J. Agron. 2000, 4, 53–60. [Google Scholar]
- Marcelis, L.F.M.; Van Hooijdonk, J. Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant Soil 1999, 215, 57–64. [Google Scholar] [CrossRef]
- Yeo, A.R. Salinity. In Plant Solute Transport; Yeo, A.R., Flowers, T.J., Eds.; Blackwell: Oxford, UK, 2007; pp. 340–365. [Google Scholar]
- Paranychianakis, N.V.; Chartzoulakis, K.S. Irrigation of Mediterranean crops with saline water: From physiology to management practices. Agric. Ecosyst. Environ. 2005, 106, 171–187. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Publisher Sinauer: Sunderland, UK, 2002; p. 690. [Google Scholar]
- Grattan, S.R.; Grieve, C.M. Mineral element acquisition and growth response of plants grown in saline environments. Agric. Ecosyst. Environ. 1992, 38, 275–300. [Google Scholar] [CrossRef]
- Adams, P.; Ho, L.C. Effects of constant and fluctuating salinity on the yield, quality and calcium status of tomatoes. J. Hortic. Sci. 1989, 64, 725–732. [Google Scholar] [CrossRef]
- Zribi, L.; Gharbi, F.; Rezgui, F.; Rejeb, S.; Nahdi, H.; Rejeb, M.N. Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato “Solanum lycopersicum (variety Rio Grande)”. Sci. Hortic. 2009, 120, 367–372. [Google Scholar] [CrossRef]
- Giuffrida, F.; Scuderi, D.; Giurato, R.; Leonardi, C. Physiological response of broccoli and cauliflower as affected by NaCl salinity. Acta Hortic. 2013, 1005, 435–441. [Google Scholar] [CrossRef]
- Maggio, A.; De Pascale, S.; Fagnano, M.; Barbieri, G. Saline agriculture in Mediterranean environments. Ital. J. Agron. 2011, 6, 7. [Google Scholar] [CrossRef]
- Snapp, S.S.; Shennan, C.; Bruggen, A.V. Effects of salinity on severity of infection by Phytophthora parasitica Dast., ion concentrations and growth of tomato, Lycopersicon esculentum Mill. New Phytol. 1991, 119, 275–284. [Google Scholar] [CrossRef]
- Shannon, M.C.; Grieve, C.M. Tolerance of vegetable crops to salinity. Sci. Hortic. 1998, 78, 5–38. [Google Scholar] [CrossRef]
- De Pascale, S.; Maggio, A.; Orsini, F.; Stanghellini, C.; Heuvelink, E. Growth response and radiation use efficiency in tomato exposed to short-term and long-term salinized soils. Sci. Hortic. 2105, 189, 139–149. [Google Scholar] [CrossRef]
- López-Berenguer, C.; Martínez-Ballesta, M.D.C.; Moreno, D.A.; Carvajal, M.; García-Viguera, C. Growing hardier crops for better health: Salinity tolerance and the nutritional value of broccoli. J. Agric. Food Chem. 2009, 57, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Fonseca, J.M.; Choi, J.; Kubota, C.; Kwon, D.Y. Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.). J. Agric. Food Chem. 2008, 56, 3772–3776. [Google Scholar] [CrossRef] [PubMed]
- Shimomachi, T.; Kawahara, Y.; Kobashigawa, C.; Omoda, E.; Hamabe, K.; Tamaya, K. Effect of residual salinity on spinach growth and nutrient contents in polder soil. Acta Hortic. 2008, 797, 419–424. [Google Scholar] [CrossRef]
- Botía, P.; Navarro, J.M.; Cerdá, A.; Martínez, V. Yield and fruit quality of two melon cultivars irrigated with saline water at different stages of development. Eur. J. Agron. 2005, 23, 243–253. [Google Scholar] [CrossRef]
- Khajanchi, L.; Meena, R.L. Diagnosis of soil and water for salinity’. In Conjunctive Use of Canal and Groundwater; Intech Graphics: Karnal, India, 2008; pp. 57–66. [Google Scholar]
- Sumner, M.E.; Naidu, R. Sodic Soils Distribution, Properties, Management, and Environmental Consequences; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance—Current assessment. ASCE J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar]
- Maas, E.V. Crop salt tolerance. In Agricultural salinity assessment and management; ASCE Manuals and Reports on Engineering Practice; Tanji, K.K., Ed.; American Society of Civil Engineers: Reston, VA, USA, 1990. [Google Scholar]
- Genuchten, M.T.; Hoffman., G.J. Analysis of crop salt tolerance data. In Soil Salinity under Irrigation, Processes and Management, Ecological Studies; Shainberg, I., Shalhevet., J., Eds.; Springer: New York, NY, USA, 1984; Volume 3, pp. 258–271. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water quality for agriculture. In FAO Irrigation and Drainage Paper 29 (Rev. 1); Food and Agricultural Organization: Rome, Italy, 1985. [Google Scholar]
- Dalton, F.N.; Maggio, A.; Piccinni, G. Effect of root temperature on plant response functions for tomato: Comparison of static and dynamic salinity stress indices. Plant Soil 1997, 192, 307–319. [Google Scholar] [CrossRef]
- Maggio, A.; Dalton, F.N.; Piccinni, G. The effects of elevated carbon dioxide on static and dynamic indices for tomato salt tolerance. Eur. J. Agron. 2002, 16, 197–206. [Google Scholar] [CrossRef]
- Giuffrida, F.; Carla, C.; Angelo, M.; Cherubino, L. Effects of salt stress imposed during two growth phases on cauliflower production and quality. J. Sci. Food Agric. 2016, 97, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Grattan, S. Irrigation Water Salinity and Crop Production; UCANR Publications, University of California: Oakland, CA, USA, 2002; p. 9. [Google Scholar]
- Hanson, B.; Grattan, A.; Fulton, A. Agricultural Salinity and Drainage; Davis, California Irrigation Program WMS (Water Management Series) 3375; University of California: Oakland, CA, USA, 2006; pp. 1–159. [Google Scholar]
- Maas, E.V.; Grattan, S.R. Crop yields as affected by salinity. Agronomy 1999, 38, 55–110. [Google Scholar]
- Machado, R.M.A.; Bryla, D.R.; Verissimo, M.L.; Sena, A.M.; Oliveira, M.R.G. Nitrogen requirements for growth and early fruit development of drip-irrigated processing tomato (Lycopersicon esculentum Mill.) in Portugal. J. Food Agric. Environ. 2008, 6, 215–218. [Google Scholar]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: New York, NY, USA, 2009; p. 423. [Google Scholar]
- Machado, R.M.A. Estudos Sobre a Influência da Rega-Gota-a-Gota Subsuperficial na Dinamica de Enraizamento, no Rendimento Físico e na Qualidade da Matéria-Prima do Tomate de Indústria. Ph.D. Thesis, Universidade de Évora, Évora, Portugal, 2002. [Google Scholar]
- Machado, R.M.; Bryla, D.R.; Vargas, O. Effects of salinity induced by ammonium sulfate fertilizer on root and shoot growth of highbush blueberry. Acta Hortic. 2014, 1017, 407–414. [Google Scholar] [CrossRef]
- Xu, G.; Magen, H.; Tarchitzky, J.; Kafkafi, U. Advances in chloride nutrition of plants. Adv. Agron. 1999, 68, 97–150. [Google Scholar]
- Silvertooth, J.C. Fertigation in Arid Regions and Saline Soils Fertigation. In Selected Papers of the IPI-NATESC-CAU-CAAS, Proceedings of the International Symposium on Fertigation, Beijing, China, 20–24 September 2005; pp. 20–24. [Google Scholar]
- Shahbaz, M.; Ashraf, M.; Al-Qurainy, F.; Harris, P.J.C. Salt tolerance in selected vegetable crops. Crit. Rev. Plant Sci. 2012, 31, 303–320. [Google Scholar] [CrossRef]
- Martinez, V.; Cerda, A. Influence of N source on rate of Cl, N, Na and K uptake by cucumber seedling grown in saline condition. J. Plant Nutr. 1989, 12, 971–983. [Google Scholar] [CrossRef]
- Ghanem, M.E.; Martínez-Andújar, C.; Albacete, A.; Pospíšilová, H.; Dodd, I.C.; Pérez-Alfocea, F.; Lutts, S. Nitrogen form alters hormonal balance in salt-treated tomato (Solanum lycopersicum L.). J. Plant Growth Regul. 2011, 30, 144–157. [Google Scholar] [CrossRef]
- Flores, P.; Carvajal, M.; Cerda, A.; Martinez, V. Salinity and ammonium/nitrate interactions on tomato plant development, nutrition, and metabolites. J. Plant Nutr. 2001, 24, 1561–1573. [Google Scholar] [CrossRef]
- Sandoval-Villa, M.; Wood, C.W.; Guertal, E.A. Effects of nitrogen form, nighttime nutrient solution strength, and cultivar on greenhouse tomato production. J. Plant. Nutr. 1999, 22, 1931–1945. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Bagci, E.G.; Coban, S.; Sahin, O. Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biol. Plant. 2007, 51, 571–574. [Google Scholar] [CrossRef]
- Ouni, Y.; Ghnaya, T.; Montemurro, F.; Abdelly, C.; Lakhdar, A. The role of humic substances in mitigating the harmful effects of soil salinity and improve plant productivity. Int. J. Agron. Plant Prod. 2014, 8, 353–374. [Google Scholar]
- Bacilio, M.; Moreno, M.; Bashan, Y. Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri in a salt-tolerant and a salt-susceptible pepper. Appl. Soil Ecol. 2016, 107, 394–404. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Lugtenberg, B. Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In Use of Microbes for the Alleviation of Soil Stresses; Miransari, M., Ed.; Springer: New York, NY, USA, 2014; Volume 1, pp. 73–96. [Google Scholar]
- Mahmood, S.; Daur, I.; Al-Solaimani, S.G.; Ahmad, S.; Madkour, M.H.; Yasir, M.; Ali, Z. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean. Front Plant Sci. 2016, 7, 876. [Google Scholar] [CrossRef] [PubMed]
- Latef, A.A.H.A.; Chaoxing, H. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hortic. 2011, 127, 228–233. [Google Scholar] [CrossRef]
- Cantrell, I.C.; Linderman, R.G. Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 2001, 233, 269–281. [Google Scholar] [CrossRef]
- Aroca, R.; Ruiz-Lozano, J.M.; Zamarreño, Á.M.; Paz, J.A.; García-Mina, J.M.; Pozo, M.J.; López-Ráez, J.A. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 2013, 170, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Aydin, A.; Canan, K.; Metin, T. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr. J. Agric. Res. 2012, 7, 1073–1086. [Google Scholar] [CrossRef]
- Bargaz, A.; Nassar, R.M.A.; Rady, M.M.; Gaballah, M.S.; Thompson, S.M.; Brestic, M.; Abdelhamid, M.T. Improved Salinity Tolerance by Phosphorus Fertilizer in Two Phaseolus vulgaris Recombinant Inbred Lines Contrasting in Their P-Efficiency. J. Agron. Crop Sci. 2016, 202, 497–507. [Google Scholar] [CrossRef]
- Elwan, M.W. Ameliorative effects of di-potassium hydrogen orthophosphate on salt-stressed eggplant. J. Plant Nutr. 2010, 33, 1593–1604. [Google Scholar] [CrossRef]
- Kaya, C.; Tuna, A.L.; Ashraf, M.; Altunlu, H. Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environ. Exp. Bot. 2007, 60, 397–403. [Google Scholar] [CrossRef]
- Paksoy, M.; Türkmen, Ö.; Dursun, A. Effects of potassium and humic acid on emergence, growth and nutrient contents of okra (Abelmoschus esculentus L.) seedling under saline soil conditions. Afr. J. Biotechnol. 2010, 9, 5343–5346. [Google Scholar]
- Manivannan, A.; Soundararajan, P.; Muneer, S.; Ko, C.H.; Jeong, B.R. Silicon Mitigates Salinity Stress by Regulating the Physiology, Antioxidant Enzyme Activities, and Protein Expression in Capsicum annuum ‘Bugwang’. BioMed Res. Int. 2016, 2016, 3076357. [Google Scholar] [CrossRef] [PubMed]
- Karlidag, H.; Yildirim, E.; Turan, M. Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Sci. Agric. 2009, 66, 180–187. [Google Scholar] [CrossRef]
- Kaya, C.; Ak, B.E.; Higgs, D. Response of salt-stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrate. J. Plant Nutr. 2003, 26, 543–560. [Google Scholar] [CrossRef]
- Stevens, J.; Senaratna, T.; Sivasithamparam, K. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): Associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul. 2006, 49, 77–83. [Google Scholar]
- Mimouni, H.; Wasti, S.; Manaa, A.; Gharbi, E.; Chalh, A.; Vandoorne, B.; Ahmed, H.B. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects on Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters. Omics 2016, 20, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Satti, S.M.E.; Lopez, M. Effect of increasing potassium levels for alleviating sodium chloride stress on the growth and yield of tomato. Commun. Soil Sci. Plant Anal. 1994, 25, 2807–2823. [Google Scholar] [CrossRef]
- Romero-Aranda, M.R.; Jurado, O.; Cuartero, J. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J. Plant Physiol. 2006, 163, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Al-Aghabary, K.; Zhu, Z.; Shi, Q.H. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J. Plant Nutr. 2004, 27, 2101–2115. [Google Scholar] [CrossRef]
- Kaya, C.; Higgs, D.; Kirnak, H. The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Bulg. J. Plant Physiol. 2001, 27, 47–59. [Google Scholar]
- Yildirim, E.; Turan, M.; Guvenc, I. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J. Plant Nutr. 2008, 31, 593–612. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, G.; Li, J.; Qian, Q.; Yu, J. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 2004, 167, 527–533. [Google Scholar] [CrossRef]
- Savvas, D.; Giotis, D.; Chatzieustratiou, E.; Bakea, M.; Patakioutas, G. Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. Environ. Exp. Bot. 2009, 65, 11–17. [Google Scholar] [CrossRef]
- Malash, N.M.; Flowers, T.J.; Ragab, R. Effect of irrigation methods, management and salinity of irrigation water on tomato yield, soil moisture and salinity distribution. Irrig. Sci. 2008, 26, 313–323. [Google Scholar] [CrossRef]
- Hanson, B.; May, D. Drip Irrigation Salinity Management for Row Crops; Publication 8447; University of California: Oakland, CA, USA, 2011; pp. 1–13. [Google Scholar]
- Pizarro, F. Riegos Localizados de Alta Frequência; Goteo, Microaspersion, Exudacion, Ediciones Mundi-Prensa: Madrid, España, 1996; p. 513. [Google Scholar]
- Lamm, F.R. Cotton, tomato, corn and onion production with subsurface drip irrigation: A review. Trans. ASABE 2016, 59, 263–278. [Google Scholar]
- Kahlaoui, B.; Hachicha, M.; Rejeb, S.; Rejeb, M.N.; Hanchi, B.; Misle, E. Effects of saline water on tomato under subsurface drip irrigation: Nutritional and foliar aspects. J. Soil Sci. Plant Nutr. 2011, 11, 69–86. [Google Scholar] [CrossRef]
- Kirda, C.; Cetin, M.; Dasgan, Y.; Topcu, S.; Kaman, H.; Ekici, B.; Derici, M.R.; Ozguven, A.I. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agric Water Manag. 2004, 69, 191–201. [Google Scholar] [CrossRef]
- Liu, F.; Shahnazari, A.; Andersen, M.N.; Jacobsen, S.E.; Jensen, C.R. Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Sci. Hortic. 2006, 109, 113–117. [Google Scholar] [CrossRef]
- Letey, J.; Hoffman, G.J.; Hopmans, J.W.; Grattan, S.R.; Suarez, D.; Corwin, D.L.; Oster, J.D.; Wu, L.; Amrhein, C. Evaluation of soil salinity leaching requirement guidelines. Agric. Water Manag. 2011, 98, 502–506. [Google Scholar] [CrossRef]
- Hoffman, G.J.; Rhoades, J.D.; Letey, J.; Sheng., F. Salinity management. In Management of Farm Irrigation Systems (ASAE Monograph); Hoffman, G.J., Howell, T.A., Solomon, K.H., Eds.; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 1990; pp. 667–671. [Google Scholar]
- Levy, Y.; Syvertsen, J.P. Irrigation water quality and salinity effects in citrus trees. Hortic. Ver. 2004, 30, 37–82. [Google Scholar]
Cation | Hydrated Radius (nm) | Relative Flocculating Power |
---|---|---|
Na+ | 0.77 | 1.0 |
K+ | 0.53 | 1.7 |
Mg2+ | 1.08 | 27.0 |
Ca2+ | 0.96 | 43.0 |
Vegetable | Soil | Irrigation Water | Rating 2 | |
---|---|---|---|---|
Threshold 1 (dS·m−1) | Slope | Threshold 2 (dS·m−1) | ||
ECe | (% per dS·m−1) | ECW | ||
Asparagus | 4.1 | 2.0 | 2.7 | T |
Bean | 1.0 | 19.0 | 0.7 | S |
Broccoli | 2.8 | 9.2 | 1.9 | MS |
Carrot | 1.0 | 14.0 | 0.7 | S |
Cauliflower | - | - | 1.9 | MS |
Celery | 1.8 | 6.2 | 1.2 | MS |
Eggplant | 1.1 | 6.9 | 0.7 | MS |
Lettuce | 2.0 | 13.0 | 0.9 | MS |
Muskmelon | 1.0 | 1.0 | - | MS |
Okra | 1.2 | - | - | S |
Onion | 1.2 | 16.0 | 0.8 | S |
Pea | 1.5 | 14.6 | - | MS |
Pepper | 1.5 | 14.0 | 1.0 | MS |
Potato | 1.7 | 12.0 | 1.1 | MS |
Purslane | 6.3 | 9.6 | - | MT |
Red beet | 4.0 | - | 2.7 | MT |
Spinach | 2.0 | 7.6 | 1.3 | S |
Strawberry | 1.0 | 33.0 | 0.7 | S |
Tomato | 2.5 | 9.9 | 1.7 | MS |
Nutrients | Crop | References |
---|---|---|
Humic acid | Bean | Aydin et al. [66] |
P | Bargaz et al. [67] | |
KH2PO4 | Eggplant | Elwan [68] |
KNO3 | Melon | Kaya et al. [69] |
Humic acid | Okra | Paksoy et al. [70] |
Humic acid | Pepper | Bacilio et al. [60] |
Silicon | Manivannan et al. [71] | |
Salicylic acid | Strawberry | Karlidag et al. [72] |
Calcium | Kaya et al. [73] | |
Salicylic acid | Tomato | Stevens et al. [74], Mimouni et al. [75], |
KNO3 | Satti and Lopez [76] | |
Silicon | Romero-Aranda et al. [77], Al-Aghabary et al. [78] | |
P and K | Spinach | Kaya et al. [79] |
Salicylic acid | Cucumber | Yildirim et al. [80] |
Silicon | Zhu et al. [81] | |
Silicon | Zucchini squash | Savvas et al. [82] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, R.M.A.; Serralheiro, R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. https://doi.org/10.3390/horticulturae3020030
Machado RMA, Serralheiro RP. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae. 2017; 3(2):30. https://doi.org/10.3390/horticulturae3020030
Chicago/Turabian StyleMachado, Rui Manuel Almeida, and Ricardo Paulo Serralheiro. 2017. "Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization" Horticulturae 3, no. 2: 30. https://doi.org/10.3390/horticulturae3020030
APA StyleMachado, R. M. A., & Serralheiro, R. P. (2017). Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030