Mulching for Weed Management in Medicinal and Aromatic Cropping Systems
Abstract
1. Introduction to Mulching: Principles and Agroecological Function
2. The Impacts of Weeds on Medicinal Crop Production
2.1. Growing and Contents of Target Chemical Compounds
2.2. Yield Loses
2.3. Chemical Contamination and Quality of MAPs
3. Mulching: Types and Mechanisms of Action
3.1. Living Mulch
3.2. Mulch Mats
4. Effects of Mulching in Weed Suppression in the Medicinal Crops
4.1. Straw Mulch
4.2. Use of Medicinal Plant Residues as Compost Mulches
4.3. Natural Wood-Derived Organic Mulches
4.4. Sawdust Mulches
4.5. Pine Needles
4.6. Paper-Based Mulch Materials: Newspaper, Cardboard, and Black Paper
4.7. Synthetic and Biodegradable Mulch Films
5. Influence of Mulching on the Content and Chemical Composition of Essential Oils
6. Effects of Mulching on Relative Chlorophyll Content in Leaves
7. Effects of Mulching on Soil Properties
7.1. Influence of Mulching on Soil Temperature
7.2. Influence of Mulching on Soil pH
8. Limitations and Challenges of Mulching in Medicinal Plant Systems
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Singh, M.; Saini, S. Planting date, mulch, and herbicide rate effects on the growth, yield, and physicochemical properties of menthol mint (Mentha arvensis). Weed Technol. 2008, 22, 691–698. [Google Scholar] [CrossRef]
- Carrubba, A.; Militello, M. Nonchemical weeding of medicinal and aromatic plants. Agron. Sustain. Dev. 2013, 33, 551–561. [Google Scholar] [CrossRef]
- Yousefi, A.; Rahimi, M. Integration of soil-applied herbicides at the reduced rates with physical control for weed management in fennel (Foeniculum vulgare Mill.). Crop Prot. 2014, 63, 107–112. [Google Scholar] [CrossRef]
- Carrubba, A. Weed and weeding effects on medicinal herbs. In Medicinal Plants and Environmental Challenges; Springer International Publishing: Cham, Switzerland, 2017; pp. 295–327. [Google Scholar] [CrossRef]
- Dragumilo, A.; Marković, T.; Vrbničanin, S.; Prijić, Ž.; Mrđan, S.; Radanović, D.; Božić, D. Weed suppression by mulches in Mentha x piperita L. J. Appl. Res. Med. Aromat. Plants 2023, 35, 100499. [Google Scholar] [CrossRef]
- Lazarević, J.; Vrbničanin, S.; Dragumilo, A.; Marković, T.; Đurović Pejčev, R.; Roljević Nikolić, S.; Božić, D. Analysis of the Effects of Organic and Synthetic Mulching Films on the Weed, Root Yield, Essential Oil Yield, and Chemical Composition of Angelica archangelica L. Horticulturae 2024, 10, 1199. [Google Scholar] [CrossRef]
- Dragumilo, A.; Pejčev, R.Đ.; Božić, D.; Sarić-Krsmanović, M.; Vrbničanin, S.; Rajković, M.; Marković, T. Impact of synthetic films and organic mulches on yield and quality of Mentha piperita L. essential oil. Ind. Crops Prod. 2025, 224, 120356. [Google Scholar] [CrossRef]
- Dhawan, K.; Singh, B.; Bhullar, B.; Arora, R. Integrated Pest Management; Scientific Publishers: Jodhpur, India, 2013. [Google Scholar]
- Monks, C.; Monks, D.; Basden, T.; Selders, A.; Poland, S.; Rayburn, E. Soil temperature, soil moisture, weed control, and tomato (Lycopersicon esculentum) response to mulching. Weed Technol. 1997, 11, 561–566. [Google Scholar] [CrossRef]
- Unger, P. Straw mulch effects on soil temperatures and sorghum germination and growth. Agron. J. 1978, 70, 858–864. [Google Scholar] [CrossRef]
- Sonsteby, A.; Nes, A.; Måge, F. Effects of bark mulch and NPK fertilizer on yield, leaf nutrient status and soil mineral nitrogen during three years of strawberry production. Acta Agric. Scand. B Soil Plant Sci. 2004, 54, 128–134. [Google Scholar] [CrossRef]
- Awodoyin, O.; Ogbeide, I.; Oluwole, O. Effects of three mulch types on the growth and yield of tomato (Lycopersicon esculentum Mill.) and weed suppression in Ibadan, Rainforest-savanna Transition Zone of Nigeria. TARE 2007, 10, 53–60. [Google Scholar] [CrossRef]
- Brown, W.; Tworkoski, T. Pest management benefits of compost mulch in apple orchards. Agric. Ecosyst. Environ. 2004, 103, 465–472. [Google Scholar] [CrossRef]
- Döring, T.; Brandt, M.; Heß, J.; Finckh, M.; Saucke, H. Effect of straw mulch on soil nitrate dynamics, weeds, yield and soil erosion in organically grown potatoes. Field Crops Res. 2005, 94, 238–249. [Google Scholar] [CrossRef]
- Carrubba, A.; Catalano, C. Essential oil crops for sustainable agriculture—A review. In Climate Change, Intercropping, Pest Control and Beneficial Microorganisms; Springer Science: Heidelberg, Germany, 2009; pp. 137–187. [Google Scholar] [CrossRef]
- Marcelino, S.; Hamdane, S.; Gaspar, P.D.; Paço, A. Sustainable Agricultural Practices for the Production of Medicinal and Aromatic Plants: Evidence and Recommendations. Sustainability 2023, 15, 14095. [Google Scholar] [CrossRef]
- Pergola, M.; De Falco, E.; Belliggiano, A.; Ievoli, C. The Most Relevant Socio-Economic Aspects of Medicinal and Aromatic Plants through a Literature Review. Agriculture 2024, 14, 405. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, P.; Saxena, M.J.; Maurya, P. Chapter 6—Distribution of aromatic plants in the world and their properties. In Feed Additives, Aromatic Plants and Herbs in Animal Nutrition and Health; Elsevier: Cambridge, MA, USA, 2020; pp. 89–114. [Google Scholar] [CrossRef]
- Rohloff, J.; Dragland, S.; Mordal, R.; Iversen, H. Effect of harvest time and drying method on biomass production, essential oil yield, and quality of peppermint (Mentha x piperita L.). J. Agric. Food Chem. 2005, 53, 4143–4148. [Google Scholar] [CrossRef]
- Matković, A.; Marković, T.; Filipović, V.; Radanović, D.; Vrbničanin, S.; Božić, D. Preliminary investigation on efficiency of mulches and other mechanical weeding methods applied in Mentha piperita L. cultivation. Lek. Sirovine 2016, 36, 61–74. [Google Scholar] [CrossRef]
- Gordanić, S.V.; Radanović, D.; Rajković, M.; Lukić, M.; Dragumilo, A.; Mrđan, S.; Batinić, P.; Čutović, N.; Mikić, S.; Prijić, Ž.; et al. Influence of Mulching and Planting Density on Agronomic and Economic Traits of Melissa officinalis L. Horticulturae 2025, 11, 866. [Google Scholar] [CrossRef]
- Ricotta, J.; Masiunas, J. The effects of black plastic mulch and weed control strategies on herb yield. HortScience 1991, 26, 539–541. [Google Scholar] [CrossRef]
- Sarrou, E.; Chatzopoulou, P.; Koutsos, T.; Katsiotis, S. Herbage yield and essential oil composition of sweet basil (Ocimum basilicum L.) under the influence of different mulching materials and fertilizers. J. Med. Plants Stud. 2016, 4, 111–117. [Google Scholar]
- Fontana, E.; Hoeberechts, J.; Nicola, S. Effect of mulching on medicinal and aromatic plants in organic farm guest houses. Int. Symp. Labiatae Adv. Prod. Biotechnol. Util. 2006, 723, 405–410. [Google Scholar] [CrossRef]
- Radanović, D.; Pljevljakušić, D.; Marković, T.; Ristić, M. Influence of fertilization model and PE mulch on yield and quality of arnica (A. montana) at dystric cambisol. Zemljište Biljka 2007, 56, 85–95. [Google Scholar]
- Mrđan, S.; Marković, T.; Predić, T.; Dragumilo, A.; Filipović, V.; Prijić, Ž.; Lukić, M.; Radanović, D. Satureja montana L. Cultivated under Polypropylene Woven Fabric on Clay-Textured Soil in Dry Farming Conditions. Horticulturae 2023, 9, 147. [Google Scholar] [CrossRef]
- Radanović, D.; Marković, T.; Vasin, J.; Banjac, D. The efficiency of using different mulch films in the cultivation of yellow gentian (Gentiana lutea L.) in Serbia. Ratar. Povrt. 2016, 53, 30–37. [Google Scholar] [CrossRef]
- Upadhyay, R.; Baksh, H.; Patra, D.; Tewari, S.; Sharma, S.; Katiyar, R. Integrated weed management of medicinal plants in India. Int. J. Med. Arom. Plants 2011, 1, 51–56. [Google Scholar]
- Božić, D.; Dragumilo, A.; Marković, T.; Šilc, U.; Aćić, S.; Tojić, T.; Rajković, M.; Vrbničanin, S. Survey of Weed Flora Diversity as a Starting Point for the Development of a Weed Management Strategy for Medicinal Crops in Pančevo, Serbia. Horticulturae 2025, 11, 882. [Google Scholar] [CrossRef]
- Jiao, W.; Tingting, S.; Luyao, W.; Lei, Z.; Qing, L.; Chen, W.; Hongping, C.; Rimao, H.; Xiangwei, W. Source and route of pyrrolizidine alkaloid contamination in tea samples. J. Vis. Exp. (JoVE) 2022, 187, e64375. [Google Scholar] [CrossRef]
- Lu, Y.S.; Qiu, J.; Mu, X.Y.; Qian, Y.Z.; Chen, L. Levels, Toxic Effects, and Risk Assessment of Pyrrolizidine Alkaloids in Foods: A Review. Foods 2024, 13, 536. [Google Scholar] [CrossRef]
- Jiao, W.; Zhu, L.; Li, Q.X.; Shi, T.; Zhang, Z.; Wu, X.; Yang, T.; Hua, R.; Cao, H. Pyrrolizidine Alkaloids in Tea (Camellia sinensis L.) from Weeds through Weed-Soil-Tea Transfer and Risk Assessment of Tea Intake. J. Agric. Food Chem. 2023, 71, 19045–19053. [Google Scholar] [CrossRef]
- Pala, F. Weed management in medicinal and aromatic plants. In New Development on Medicinal and Aromatic Plants-II; IKSAD Publishing House: Ankara, Turkey, 2022; p. 151. [Google Scholar]
- Radanović, D.; Nastovski, T. Proizvodnja lekovitog i aromatičnog bilja po principima organske proizvodnje. Lek. Sirovine 2002, 22, 83–99. [Google Scholar]
- Darre, A.; Novo, R.; Zumelzu, G.; Bracamonte, R. Chemical control of annual weeds in Mentha piperita. Agriscientia 2004, 21, 39–44. [Google Scholar]
- Karkanis, A.; Lykas, C.; Liava, V.; Bezou, A.; Petropoulos, S.; Tsiropoulos, N. Weed interference with peppermint (Mentha x piperita L.) and spearmint (Mentha spicata L.) crops under different herbicide treatments: Effects on biomass and essential oil yield. J. Sci. Food Agric. 2018, 98, 43–50. [Google Scholar] [CrossRef]
- Sarić-Krsmanović, M.; Dragumilo, A.; Gajić Umiljendić, J.; Radivojević, L.; Šantrić, L.; Đurović-Pejčev, R. Infestation of Field Dodder (Cuscuta campestris Yunck.) Promotes Changes in Host Dry Weight and Essential Oil Production in Two Aromatic Plants, Peppermint and Chamomile. Plants 2020, 9, 1286. [Google Scholar] [CrossRef]
- Choudhary, I.; Yadav, S.; Yadav, R.; Sharma, P.; Yadav, L. Effect of weed and nitrogen management on coriander (Coriandrum sativum L.) yield and economics. JOSAC 2014, 23, 38–44. [Google Scholar]
- Marković, T.; Radanović, D.; Nastasijević, B.; Antić-Mladenović, S.; Vasić, V.; Matković, A. Yield, quality and safety of yellow gentian roots produced under dry-farming conditions in various single basal fertilization and planting density models. Ind. Crops Prod. 2019, 132, 236–244. [Google Scholar] [CrossRef]
- Prijić, Ž.; Mikić, S.; Peškanov, J.; Zhang, X.; Guo, L.; Dragumilo, A.; Filipović, V.; Anačkov, G.; Marković, T. Diversity of Treatments in Overcoming Morphophysiological Dormancy of Paeonia peregrina Mill. Seeds. Plants 2024, 13, 2178. [Google Scholar] [CrossRef] [PubMed]
- Lazarević, J.; Aćimović, M.; Đurović-Pejčev, R.; Lončar, B.; Vukić, V.; Pezo, L.; Roljević-Nikolić, S.; Vrbničanin, S.; Božić, D. Linking weed control techniques to anti-inflammatory potential: Comparative analysis of Angelica archangelica L. root essential oil profiles. Ind. Crops Prod. 2024, 216, 118656. [Google Scholar] [CrossRef]
- Zheljazkov, V.; Craker, L.; Xing, B. Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environ. Exp. Bot. 2006, 58, 9–16. [Google Scholar] [CrossRef]
- Kothari, S.; Singh, D.; Singh, K. Critical periods of weed interference in Japanese mint (Mentha arvensis L.). Int. J. Pest Manag. 1991, 37, 85–90. [Google Scholar]
- Bond, W.; Grundy, A. Nonchemical weed management in organic farming systems. Weed Res. 2001, 41, 383–405. [Google Scholar] [CrossRef]
- Teasdale, J.; Brandsæter, L.; Calegari, A.; Skora Neto, F. Cover crops and weed management. In Nonchemical Weed Management; Upadhyaya, M.K., Blackshaw, R.E., Eds.; CAB International: Wallingford, UK, 2007; pp. 49–64. [Google Scholar] [CrossRef]
- Didehbaz, G.; Tobeh, A.; Fakhari, R.; Khanzadeh, H.; Saadat, A. The effect of cover crops on weeds control and essential oil yield of mint (Mentha piperita L.). J. Crop Ecophysiol Agric. Sci. 2018, 11, 923–936. [Google Scholar]
- Joogh, S.; Tobeh, A.; Golipori, A.; Ochi, M. Management of cover crops of cold cereal, on total fresh weight, total dry weight weed, yield and yield components peppermint. UCT JRSET 2016, 4, 31–36. [Google Scholar] [CrossRef]
- Pouryousef, M.; Yousefi, A.; Oveisi, M.; Asadi, F. Intercropping of fenugreek as living mulch at different densities for weed suppression in coriander. Crop Prot. 2015, 69, 60–64. [Google Scholar] [CrossRef]
- Enache, A.; Ilnicki, R. Weed control by subterranean clover (Trifolium subterraneum) used as a living mulch. Weed Technol. 1990, 4, 534–538. [Google Scholar] [CrossRef]
- Hartwig, N.; Ammon, H. Cover crop and living mulches. Weed Sci. 2002, 20, 688–699. [Google Scholar] [CrossRef]
- Yeganehpoor, F.; Salmasi, S.; Abedi, G.; Samadiyan, F.; Beyginiya, V. Effects of cover crops and weed management on corn yield. J. Saudi Soc. Agric. Sci. 2015, 14, 178–181. [Google Scholar] [CrossRef]
- Babec, B.; Šeremešić, S.; Hladni, N.; Ćuk, N.; Stanisavljević, D.; Rajković, M. Potential of sunflower-legume intercropping: A way forward in sustainable production of sunflower in temperate climatic conditions. Agronomy 2021, 11, 2381. [Google Scholar] [CrossRef]
- Sheaffer, C.; Gunsolus, J.; Grimsbo, J.; Lee, S. Annual Medicago as mother crop in soybean. J. Agron. Crop Sci. 2002, 188, 408–416. [Google Scholar] [CrossRef]
- Brandsæter, L.O.; Netland, J.; Meadow, R. Yields, weeds, pests and soil nitrogen in a white cabbage-living mulch system. Biol. Agric. Hortic. 1998, 16, 291–309. [Google Scholar] [CrossRef]
- Warren, N.; Smith, R.; Sideman, R. Effects of living mulch and fertilizer on the performance of broccoli in plasticulture. Hortic. Sci. 2015, 50, 218–224. [Google Scholar] [CrossRef]
- Univer, T.; Põrk, K.; Univer, N. Living grass mulches in strawberry cultivation. Agron. Res. 2009, 7, 532–535. [Google Scholar]
- Mulumba, L.; Lal, R. Mulching effects on selected soil physical properties. Soil Tillage Res. 2008, 98, 106–111. [Google Scholar] [CrossRef]
- Lenka, N.; Lal, R. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Tillage Res. 2013, 126, 78–89. [Google Scholar] [CrossRef]
- Pavlović, D.; Vrbničanin, S.; Anđelković, A.; Božić, D.; Rajković, M.; Malidža, G. Non-chemical weed control for plant health and environment: Ecological integrated weed management (EIWM). Agronomy 2022, 12, 1091. [Google Scholar] [CrossRef]
- Gibson, K.; McMillan, J.; Hallett, S.; Jordan, T.; Weller, S. Effect of a living mulch on weed seed banks in tomato. Weed Technol. 2011, 25, 245–251. [Google Scholar] [CrossRef]
- Brainard, C.; Bellinder, R. Weed suppression in a broccoli winter rye intercropping system. Weed Sci. 2004, 52, 281–290. [Google Scholar] [CrossRef]
- Liebman, M.; Dyck, E. Crop rotation and intercropping strategies forweed management. Ecol. Appl. 1993, 3, 92–122. [Google Scholar] [CrossRef]
- Lal, R. Influence of within-and between-row mulching on soil temperature, soil moisture, root development and yield of maize (Zea mays L.) in a tropical soil. Field Crops Res. 1978, 1, 127–139. [Google Scholar] [CrossRef]
- Ji, S.; Unger, P. Soil water accumulation under different precipitation, potential evaporation, and straw mulch conditions. Soil Sci. Soc. Am. J. 2001, 65, 442–448. [Google Scholar] [CrossRef]
- Kar, G.; Kumar, A. Effects of irrigation and straw mulch on water use and tube.r yield of potato in eastern India. Agric. Water Manag. 2007, 94, 109–116. [Google Scholar] [CrossRef]
- Sharratt, B. Corn stubble height and residue placement in the Northern US Corn Belt. Part II. Spring microclimate and wheat development. Soil Tillage Res. 2002, 64, 253–261. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Tam, H.; Wani, S.; Long, T. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res. 2006, 95, 115–125. [Google Scholar] [CrossRef]
- Cook, H.; Valdes, G.; Lee, H. Mulch effects on rainfall interception, soil physical characteristics and temperature under Zea mays L. Soil Tillage Res. 2006, 91, 227–235. [Google Scholar] [CrossRef]
- Jodaugienė, D.; Pupalienė, R.; Marcinkevičienė, A.; Sinkevičienė, A. Integrated evaluation of the effect of organic mulches and different mulch layer on agrocenosis. Acta Sci. Pol. Hortorum Cultus 2012, 11, 71–81. [Google Scholar]
- Matković, A.; Radanović, D.; Marković, T.; Vrbničanin, S.; Božić, D. Weed Control in Peppermint (Mentha × piperita) Using Mulches. In Proceedings of the XIII Plant Protection Symposium, Zlatibor, Serbian, 23–26 November 2015; p. 45. [Google Scholar]
- Greenly, K.; Rakow, D. The effect of wood mulch type and depth on weed and tree growth and certain soil parameters. J. Arboric. 1995, 21, 225–232. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Z.; Malhi, S.; Vera, C.; Zhang, Y. Gravel-sand mulch thickness effects on soil temperature, evaporation, water use efficiency and yield of watermelon in semi-arid Loess Plateau, China. Acta Ecol. Sin. 2014, 34, 261–265. [Google Scholar] [CrossRef]
- Pupalienė, R.; Sinkevičienė, A.; Jodaugienė, D.; Bajorienė, K. Weed control by organic mulch in organic farming system. In Weed Biology and Control; Pilipavicius, V., Ed.; In Tech: Rijeka, Croatia, 2015; pp. 65–86. [Google Scholar] [CrossRef]
- Bell, C.; Sullivan, M.; Cook, W. Mulching Woody Ornamentals with Organic Materials; OSU Extension Service; Oregon State University: Corvallis, OR, USA, 2009; Available online: https://extension.oregonstate.edu/catalog (accessed on 3 July 2025).
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Weber, C. Biodegradable mulch films for weed suppression in the establishment year of matted-row strawberries. HortTechnology 2003, 13, 665–668. [Google Scholar] [CrossRef]
- Munn, D. Comparisons of shredded newspaper and wheat straw as crop mulches. HortTechnology 1992, 2, 361–366. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mohler, C.L. Light transmittance, soil temperature, and soil moisture under residue of hairy vetch and rye. Agron. J. 1993, 85, 673–680. [Google Scholar] [CrossRef]
- Skroch, W.; Powell, M.; Bilderback, T.; Henry, P. Mulches: Durability, aesthetic value, weed control, and temperature. J. Environ. Hortic. 1992, 10, 43–45. [Google Scholar] [CrossRef]
- Palada, M.; Crossman, S.; Kowalski, J.; Collingwood, C. Evaluation of Organic and Synthetic Mulches for Basil Production Under Drip Irrigation. J. Herbs Spices Med. Plants 2000, 6, 39–48. [Google Scholar] [CrossRef]
- Batish, D.; Kaur, M.; Singh, H.; Kohli, R. Phytotoxicity of a medicinal plant, Anisomeles indica, against Phalaris minor and its potential use as natural herbicide in wheat fields. Crop Prot. 2007, 26, 948–952. [Google Scholar] [CrossRef]
- Shahriari, S.; Azizi, M.; Aroiee, H.; Ansari, H. Effect of different irrigation levels and mulch application on growth parameters and essential oil content of peppermint (Mentha piperita L.). IJMAPR 2013, 29, 567–582. [Google Scholar] [CrossRef]
- Sinkevičienė, A.; Jodaugienė, D.; Pupalienė, R.; Urbonienė, M. The influence of organic mulches on soil properties and crop yield. Agron. Res. 2009, 7, 485–491. [Google Scholar]
- Filipović, V.; Jevđović, R.; Dimitrijević, S.; Marković, T.; Grbić, J. Uticaj primene organskih malčeva na agrofizičke osobine i prinos korena mrkve. Lek. Sirovine 2012, 32, 37–46. [Google Scholar]
- Grassbaugh, E.; Regnier, E.; Bennett, M. Comparison of Organic and Inorganic Mulches for Heirloom Tomato Production. Acta Hortic 2004, 638, 171–177. [Google Scholar] [CrossRef]
- Sánchez, E.; Lamont, W.; Orzolek, M. Newspaper mulches for suppressing weeds for organic high-tunnel cucumber production. HortTechnology 2008, 18, 154–157. [Google Scholar] [CrossRef]
- Kosterna, E. The effect of soil mulching with organic mulches, on weed infestation in broccoli and tomato cultivated under polypropylene fibre, and without a cover. J. Plant Prot. Res. 2014, 54, 188–198. [Google Scholar] [CrossRef]
- Matković, A.; Marković, T.; Vrbničanin, S.; Filipović, V.; Radanović, D.; Božić, D. Survey of mulches application for weed control in Mentha x piperita cultivation. In Proceedings of the 6e Conférence sur les MoyensAlternatifs de Protection pour une Production Intégrée, Lille, France, 21–23 March 2017; pp. 565–570. [Google Scholar]
- Anzalone, A.; Cirujeda, A.; Aibar, J.; Pardo, G.; Zaragoza, C. Effect of biodegradable mulch materials on weed control in processing tomatoes. Weed Technol. 2010, 24, 369–377. [Google Scholar] [CrossRef]
- Abouziena, H.; Radwan, S. Allelopathic effects of sawdust, rice straw, bur-clover weed and cogongrass on weed control and development of onion. Int. J. Chem. Tech. Res. 2014, 7, 337–345. [Google Scholar] [CrossRef]
- Massucati, L.; Köpke, U. Effect of straw mulch residues of previous crop oats on the weed population in direct seeded faba bean in Organic Farming. In Proceedings of the 26th German Conference on Weed Biology on Weed Control, Julius-Kuhn-Archiv, Braunschweig, Germany, 11–13 March 2014; Volume 443, pp. 483–492. [Google Scholar] [CrossRef]
- Khera, K.; Singh, B.; Sandhu, B.; Aujula, T. Response of Japanese mint to nitrogen, irrigation and straw mulching on a sandy-loam soil of Punjab [India]. Indian J. Agric. Sci. 1986, 56, 434–438. [Google Scholar]
- Patra, D.; Ram, M.; Singh, D. Influence of straw mulching on fertilizer nitrogen use efficiency, moisture conservation and herb and essential oil yield in Japanese mint (Mentha arvensis L.). Fertil. Res. 1993, 34, 135–139. [Google Scholar] [CrossRef]
- Peachey, E.; William, R.; Mallory-Smith, C. Effect of no-till or conventional planting and cover crops residues on weed emergence in vegetable row crop. Weed Technol. 2004, 18, 1023–1030. [Google Scholar] [CrossRef]
- Teasdale, J.; Daughtry, C. Weed Suppression by Live and Desiccated Hairy Vetch (Vicia villosa). Weed Sci. 1993, 41, 207–212. [Google Scholar] [CrossRef]
- Reddy, K.; Koger, C. Live and killed hairy vetch cover crop effects on weeds and yield in glyphosate-resistant corn. Weed Technol. 2004, 18, 835–840. [Google Scholar] [CrossRef]
- Božić, D.; Filipović, V.; Matković, A.; Marković, T.; Vrbničanin, S. Effect of composting on weed seeds survival. In Proceedings of the VII Congress on Plant Protectıon, Zlatibor, Serbia, 24–28 November 2015; pp. 171–174. [Google Scholar]
- Kamariari, I.; Papastylianou, P.; Bilalis, D.; Travlos, I.; Kakabouki, I. The role of mulching with residues of two medicinal plants on weed diversity in maize. In Proceedings of the 4th ISOFAR Scientific Conference ‘Building Organic Bridges’, at the Organic World Congress, Istanbul, Turkey, 13–15 October 2014; pp. 567–569. [Google Scholar]
- O’Brien, T.; Barker, A. Growth of peppermint in compost. J. Herbs Spices Med. Plants 1996, 4, 19–27. [Google Scholar] [CrossRef]
- Ram, M.; Kumar, S. Yield improvement in the regenerated and transplanted mint Mentha arvensis by recycling the organic wastes and manures. Bioresour. Technol. 1997, 59, 141–149. [Google Scholar] [CrossRef]
- Ligneau, L.; Watt, T. The effects of domestic compost upon the germination and emergence of barley and six arable weeds. Ann. Appl. Biol. 1995, 126, 153–162. [Google Scholar] [CrossRef]
- Laskowska, H.; Pogroszewska, E.; Durlak, W.; Kozak, D. The effect of bulb planting time and type of mulch on the yield of Allium aflatunense B. Fedtsch. Acta Agrobot. 2012, 65, 117–122. [Google Scholar] [CrossRef]
- Cochran, D.R.; Gilliam, C.H.; Eakes, D.J.; Wehtje, G.R.; Knight, P.R.; Olive, J. Mulch depth affects weed seed germination. J. Environ. Hort. 2009, 2, 85–90. [Google Scholar]
- Saha, D.; Marble, S.C.; Pearson, B.J.; Pérez, H.E.; MacDonald, G.E.; Odero, D.C. Mulch type and depth, herbicide formulation, and postapplication irrigation volume influence on control of common landscape weed species. HortTechnology 2019, 29, 65–77. [Google Scholar] [CrossRef]
- Olabode, O.; Ogunyemi, S.; Adesina, G. Response of okra (Abelmoschus esculentus (L). Moench) to weed control by mulching. Ghana J. Food, Agri. Environ. 2007, 5, 324. [Google Scholar] [CrossRef]
- Duryea, L.; English, J.; Hermansen, A. A comparison of landscape mulches: Chemical, allelopathic, and decomposition properties. J. Arboric. 1999, 25, 88–97. [Google Scholar] [CrossRef]
- Shahriari, S. The study on the effect of irrigation levels and mulch application on growth indices and essential oil content of peppermint (Mentha piperita L.). Planta Medica 2011, 77, 18. [Google Scholar] [CrossRef]
- Broschat, T. Effects of Mulch Type and Fertilizer Placement on Weed Growth and Soil pH and Nutrient Content. HortTechnology 2007, 17, 174–178. [Google Scholar] [CrossRef]
- Pakdel, P.; Tehranifar, A.; Nemati, H.; Lakzian, A.; Kharrazi, M. Effect of different mulching materials on soil properties under semi-arid conditions in northeastern Iran. J. Agric. Res. 2012, 2, 80–85. [Google Scholar]
- Haynes, R.; Swift, R. Effect of soil amendments and sawdust mulching on growth, yield and leaf nutrient content of highbush blueberry plants. Sci. Hortic. 1986, 29, 229–238. [Google Scholar] [CrossRef]
- Sanderson, K.; Cutcliffe, J. Effect of sawdust mulch on yields of select clones of lowbush blueberry. Can. J. Plant Sci. 1991, 71, 1263–1266. [Google Scholar] [CrossRef]
- Błażewicz-Woźniak, M.; Madej, J.; Rtemi, D.; Wartacz, W. The growth and flowering of Salvia splendens Sellow ex Roem. et Schultunder flowerbed conditions. Acta Agrobot. 2011, 65, 99–108. [Google Scholar] [CrossRef]
- Anderson, D.; Garisto, M.; Bourrut, J.; Schonbeck, M.; Jaye, R.; Wurzberger, A.; De Gregorio, R. Evaluation of a Paper Mulch Made from Recycled Materials as an Alternative to Plastic Film Mulch for Vegetables. J. Sustain. Agric. 2008, 7, 39–61. [Google Scholar] [CrossRef]
- Elfving, D.; Bache, C.; Lisk, D. Lead content of vegetables, millet, and apple trees grown on soils amended with colored newsprint. J. Agric. Food Chem. 1979, 27, 138–140. [Google Scholar] [CrossRef]
- Jodaugienė, D.; Marcinkevičienė, A.; Pupalienė, R.; Sinkevičienė, A.; Bajorienė, K. Changes of weed ecological groups under different organic mulches. In Proceedings of the 26th German Conference on weed Biology an Weed Control, Julius-Kuhn-Archiv, Braunschweig, Germany, 11–13 March 2014; Volune 443, pp. 244–251. [Google Scholar]
- Pellett, N.; Heleba, D. Chopped newspaper for weed control in nursery crops. J. Environ. Hortic. 1995, 13, 77–81. [Google Scholar] [CrossRef]
- Splawski, C.; Regnier, E.; Harrison, S.; Bennett, M.; Metzger, J. Weed suppression in pumpkin by mulches composed of organic municipal waste materials. HortScience 2016, 51, 720–726. [Google Scholar] [CrossRef]
- Ustuner, T.; Ustuner, M. Investigation on different mulch materials and chemical control for controlling weeds in apple orchard in Turkey. Sci. Res. Essays. 2011, 6, 3979–3985. [Google Scholar]
- Grundy, A.; Bond, B. Use of non-living mulches for weed control. In Non-Chemical Weed Management; CABI: Wallingford, UK, 2007; pp. 135–153. [Google Scholar] [CrossRef]
- Hoeberechts, J.; Nicola, S.; Fontana, E. Growth of lavender (Lavandula officinalis) and rosemary (Rosmarinus officinalis) in response to different mulches. In Proceedings of the XXVI International Horticultural Congress: The Future for Medicinal and Aromatic Plants, Toronto, ON, Canada, 11–17 August 2002; Volume 629, pp. 245–251. [Google Scholar]
- Cirujeda, A.; Aibar, J.; Anzalone, Á.; Martín-Closas, L.; Meco, R.; Moreno, M.; Pardo, A.; Pelacho, M.; Rojo, F.; Royo-Esnal, A.; et al. Biodegradable mulch instead of polyethylene for weed control of processing tomato production. Agron. Sustain. Dev. 2012, 32, 889–897. [Google Scholar] [CrossRef]
- Li, Y.; Pang, H.; Han, X.; Yan, S.; Zhao, Y.; Wang, J.; Zhai, Z.; Zhang, J. Buried straw layer and plastic mulching increase microflora diversity in salinized soil. J. Integr. Agric. 2016, 15, 1602–1611. [Google Scholar] [CrossRef]
- Li, L.; Liu, L.; Zou, G.; Wang, X.; Xu, L.; Yang, Y.; Liu, J.; Liu, H.; Liu, D. Composted PBST Biodegradable Mulch Film Residues Enhance Crop Development: Insights into Microbial Community Assembly, Network Interactions, and Soil Metabolism. Plants 2025, 14, 1902. [Google Scholar] [CrossRef]
- Locher, J.; Ombódi, A.; Kassai, T.; Dimeny, J. Influence of coloured mulches on soil temperature and yield of sweet pepper. Eur. J. Hortic. Sci. 2005, 70, 135–141. [Google Scholar] [CrossRef]
- Singh, V.; Pandey, P. Physical Methods in Management of Plant Diseases. In Eco-friendly Innovative Approaches in Plant Disease Management; International Book Distributors: Dehradun, India, 2012; Volume 2, pp. 21–30. [Google Scholar]
- Kostić, I.; Marković, T.; Krnjajić, S. Sekretorne strukture aromatičnih biljaka sa posebnim osvrtom na strukture sa etarskim uljima, mestima sinteze ulja i njihove važnije funkcije. Lek. Sirovine 2012, 32, 3–25. [Google Scholar]
- Ramakrishna, A.; Ravishankar, G. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Čorović, M.; Stjepanović, L.; Nikolić, R.; Pavlović, S.; Živanović, P. Uporedna ispitivanja visine osmotskih vrednosti, transpiracije i količine etarskog ulja kod nekih vrsta iz familije Labiatae. Glas. Bot. Zavoda Bašte Univ. Beogr. 1969, 4, 19–27. [Google Scholar]
- Rita, P.; Animesh, D. An updated overview on peppermint (Mentha piperita L.). Int. Res. J. Pharm. 2011, 2, 1–10. [Google Scholar]
- Saxena, A.; Singh, J. Effect of irrigation, mulch and nitrogen on yield and composition of Japanese Mint (Mentha arvensis L. subsp. haplocalyx var. piperascens) oil. J. Agron. Crop Sci. 1995, 175, 183–188. [Google Scholar] [CrossRef]
- Tabatabaie, S.; Nazari, J. Influence of nutrient concentrations and NaCl salinity on the growth, photosynthesis, and essential oil content of peppermint and lemon verbena. Turk. J. Agric. For. 2007, 31, 245–253. [Google Scholar]
- Khorasaninejad, S.; Mousavi, A.; Soltanloo, H.; Hemmati, K.; Khalighi, A. The effect of salinity stress on growth parameters, essential oil yield and constituent of peppermint (Mentha piperita L.). World Appl. Sci. J. 2010, 11, 1403–1407. [Google Scholar]
- Scora, R.; Chang, A. Essential oil quality and heavy metal concentrations of peppermint grown on a municipal sludge-amended soils. J. Environ. Qual. 1997, 26, 975–979. [Google Scholar] [CrossRef]
- Zheljazkov, V.; Zhalnov, I.; Nedkov, N. Herbicides for weed control in blessed thistle (Silybum marianum) L. Weed Technol. 2006, 20, 1030–1034. [Google Scholar] [CrossRef]
- Kassahun, B.; Teixeira da Silva, J.; Mekonnen, S. Agronomic characters, leaf and essential oil yield of peppermint (Mentha piperiata L.) as influenced by harvesting age and row spacing. J. Environ. Qualy 2011, 5, 49–53. [Google Scholar]
- Maffei, M.; Canova, D.; Bertea, C.; Scannerini, S. UV-A effects on photomorphogenesis and essential-oil composition in Mentha piperita. J. Photochem. Photobiol. B Biol. 1999, 52, 105–110. [Google Scholar] [CrossRef]
- Behn, H.; Albert, A.; Marx, F.; Noga, G.; Ulbrich, A. Ultraviolet-B and photosynthetically active radiation interactively affect yield and pattern of monoterpenes in leaves of peppermint (Mentha × piperita L.). J. Agric. Food Chem. 2010, 58, 7361–7367. [Google Scholar] [CrossRef]
- Ram, D.; Ram, M.; Singh, R. Optimization of water and nitrogen application to menthol mint (Mentha arvensis L.) through sugarcane trash mulch in a sandy loam soil of semi-arid subtropical climate. Bioresour. Technol. 2006, 97, 886–893. [Google Scholar] [CrossRef]
- Brar, S.; Gill, B.; Brar, A.; Kaur, T. Planting date and Straw mulch affect biomass yield, oil yield and oil quality of Japanese mint (Mentha arvensis L.) harvested at successive intervals. J. Essent. Oil-Bear. Plants 2014, 17, 676–695. [Google Scholar] [CrossRef]
- Brar, S. Organic mulch as a temperature regulator & its effect on growth and oil productivity of Japanese mint: A review. Pharma Innov. 2018, 7, 383–386. [Google Scholar]
- Duraes, M.; Gama, G.; Magalhaes, C.; Mariel, E.; Casela, R.; Oliveira, C.; Luchiari Junior, A.; Shanahan, F. The usefulnes of chlorophyll fluorescence in screening for disease resistance, water stress tolerance, aluminium toxicity tolerance, and N use efficincy in maize. In Proceedings of the Seventh Eastern and Southern Africa Regional Maize Conference, Nairobi, Kenya, 11–15 February 2001; pp. 356–360. [Google Scholar]
- Anonymous. WHO (World Health Organization) Monographs on Selected Medicinal Plants: Volume 2 (PDF); World Health Organization: Geneva, Switzerland, 2002; p. 358. [Google Scholar]
- Lichtenthaler, H.; Wellburn, A. Determinations of total carotenoides and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 603, 591–592. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Li, W.; Li, C. Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China. J. Zhejiang Univ. Sci. B. 2006, 7, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Dell, O. Blueberry Mulching Re-visited. Va. Veg. Small Fruit Spec. Crops 2005, 85, 250–252. [Google Scholar]
- Weih, M.; Karlsson, S. Growth response of Mountain birch to air and soil temperature: Is increasing leaf-nitrogen content an acclimation to lower air temperature? New Phytol. 2001, 150, 147–155. [Google Scholar] [CrossRef]
- Van Wijk, W.; Larson, W.; Burrows, W. Soil temperature and the early growth of corn from mulched and unmulched soil. Soil Sci. Soc. Am. J. 1959, 23, 428–434. [Google Scholar] [CrossRef]
- Brengle, G.; Whitfield, J. Effect of soil temperature on the growth of spring wheat with and without wheat straw mulch. Agron. J. 1969, 61, 377–379. [Google Scholar] [CrossRef]
- Momirović, N.; Oljača, M.; Dolijanović, Ž.; Poštić, D. Energetska efikasnost proizvodnje paprike u zaštićenom prostoru u funkciji primene različitih tipova polietilenskih (PE) folija. Poljopr. Teh. 2010, 35, 1–13. [Google Scholar]
- Momirović, N.; Savić, J. Efekat primene različitih malč folija u plasteničkoj proizvodnji paprike. In Proceedings of the Zbornik Radova, III Simpozijum Inovacije u Ratarstvu i Povrtarstvu, Beograd, Serbia, 19–20 October 2007. [Google Scholar]
- Singh, M. Studies on Combined Performance of Herbicides, Mulching and Date of Planting in Mentha Species. Doctoral Dissertation, Punjab Agricultural University, Ludhiana, India, 2003. [Google Scholar]
- Pakdel, P.; Tehranifar, A.; Nemati, H.; Lakzian, A. Effect of four types of mulch including wood chips, municipal compost, sawdust and gravel in four different thicknesses on soil temperature, soil moisture and weeds growth. In Proceedings of the International Symposium on Organic Matter Management and Compost Use in Horticulture, Adelaide, Australia, 4–7 April 2011; p. 404. [Google Scholar]
- Hanks, R.; Bowers, S.; Bark, L. Influence of soil surface conditions on net radiation, soil temperature, and evaporation. Soil Sci. 1961, 91, 233–238. [Google Scholar] [CrossRef]
- Prihar, S.; Sandhu, K.; Khera, K. Maize (Zea mays L.) and weed control as affected by level of straw mulching with and without herbicide under conventional and minimum tillage. Indian J. Ecol. 1975, 2, 13–22. [Google Scholar]
- Bragagnolo, N.; Mielniczuk, J. Soil mulching by wheat straw and its relation to soil temperature and moisture. RBCS 1990, 14, 369–373. [Google Scholar]
- McCalla, T.; Duley, F. Effect of crop residues on soil temperature. Agron. J. 1946, 38, 75–89. [Google Scholar] [CrossRef]
- Ponjičan, O.; Bajkin, A. Uticaj nastiranja zemljišta i pokrivanja biljaka na temperature vazduha pri proizvodnji salate. Savrem. Poljopr. Teh. 2008, 34, 163–170. [Google Scholar]
- Belić, M.; Nešić, L.; Ćirić, V. Praktikum iz pedologije; Poljoprivredni Fakultet, Univerzitet u Novom Sadu: Novi Sad, Serbia, 2014. [Google Scholar]
- Billeaud, A.; Zajicek, M. Influence of mulches on weed control, soil pH, soil nitrogen content, and growth of Ligustrum japonicum. J. Environ. Hortic. 1989, 7, 155–157. [Google Scholar] [CrossRef]
- Tindall, J.; Beverly, R.; Radcliffe, D. Mulch effect on soil properties and tomato growth using micro-irrigation. Agron. J. 1991, 83, 1028–1034. [Google Scholar] [CrossRef]
- Alharbi, A. Effect of mulch on soil properties under organic farming conditions in center of Saudi Arabia. Agron. J. 2015, 11, 108–115. [Google Scholar]
- Sharma, R.; Bhardwaj, S. Effect of mulching on soil and water conservation—A review. Agric. Rev. 2017, 38, 311–315. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Lv, J.; Fu, T.; Ma, Q.; Song, W.; Wang, W.; Li, F. Continuous plastic-film mulching increases soil aggregation but decreases soil pH in semiarid areas of China. Soil Tillage Res. 2017, 167, 46–53. [Google Scholar] [CrossRef]
- Chan, Y.; Fahey, J.; Newell, M.; Barchia, I. Using composted mulch in vineyards—Effects on grape yield and quality. Int. J. Fruit Sci. 2010, 10, 441–453. [Google Scholar] [CrossRef]
Type of Mulch | Examples | Advantages | Disadvantages | Application in MAPs | References |
---|---|---|---|---|---|
Non-biodegradable (synthetic) | Polyethylene (PE) and polypropylene (PP) films | High weed suppression, durable, effective moisture retention | Must be removed after harvest, risk of overheating, poor aeration, microplastic pollution | Often used for perennial MAP crops (e.g., lavender, rosemary) where long-term weed control is needed | [75,76] |
Biodegradable (natural) | Straw, compost, sawdust, pine needles | Environmentally friendly, improve soil structure and microbial activity, low cost | Degrade quickly under rain/snow, shorter weed suppression period (one season) | Suitable for annual MAP crops (e.g., chamomile, basil, coriander) to reduce costs and improve soil health | [76,77] |
Biodegradable (bio-based synthetic) | PLA (polyactic acid) films, strach-based films | High weed suppression, biodegradable, less labor for removal | Higher initial cost, degradation rate depends on climate and soil microbiology | Tested in perennial MAPs such as thyme and oregano as sustainable alternative to PE | [75,78,79] |
Post-harvest MAP residues (fresh) | Residues of chamomile, peppermint, or sage | Weed suppression, potential pest deterrence | Possible phytotoxicity from allelopathic compounds if used fresh | Applied in annual MAP production for integrated weed and pest control | [80,81] |
Composted MAP residues | Composted lavender stalks, mint waste | Improves soil fertility, reduces allelopathic effects, long-lasting organic matter input | Requires composting facilities and time | Suitable for high-value MAPs like lemon balm and mint | [80,81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragumilo, A.; Marković, T.; Vrbničanin, S.; Gordanić, S.; Lukić, M.; Rajković, M.; Prijić, Ž.; Božić, D. Mulching for Weed Management in Medicinal and Aromatic Cropping Systems. Horticulturae 2025, 11, 998. https://doi.org/10.3390/horticulturae11090998
Dragumilo A, Marković T, Vrbničanin S, Gordanić S, Lukić M, Rajković M, Prijić Ž, Božić D. Mulching for Weed Management in Medicinal and Aromatic Cropping Systems. Horticulturae. 2025; 11(9):998. https://doi.org/10.3390/horticulturae11090998
Chicago/Turabian StyleDragumilo, Ana, Tatjana Marković, Sava Vrbničanin, Stefan Gordanić, Milan Lukić, Miloš Rajković, Željana Prijić, and Dragana Božić. 2025. "Mulching for Weed Management in Medicinal and Aromatic Cropping Systems" Horticulturae 11, no. 9: 998. https://doi.org/10.3390/horticulturae11090998
APA StyleDragumilo, A., Marković, T., Vrbničanin, S., Gordanić, S., Lukić, M., Rajković, M., Prijić, Ž., & Božić, D. (2025). Mulching for Weed Management in Medicinal and Aromatic Cropping Systems. Horticulturae, 11(9), 998. https://doi.org/10.3390/horticulturae11090998