In Vitro and In Vivo Effects of UV-C Irradiation Against Fusarium solani in Potatoes
Abstract
1. Introduction
2. Materials and Methods
2.1. Source of Potatoes and Pathogen (Fusarium solani)
2.2. Pathogenicity Test of F. solani on Potato Cultivar Sifra
2.2.1. Preparation of Conidial Spore Suspension of F. solani
2.2.2. Inoculation of Potatoes with a Spore Suspension
2.3. Investigation of the In Vitro Effects of UV-C Irradiation Against F. solani
2.3.1. Source of UV-C Light
2.3.2. In Vitro Screening of UV-C Against F. solani
2.4. In Vivo Screening of UV-C Against F. solani
2.5. Scanning Electron Microscopy Analysis of the Interaction Between F. solani and UV-C Irradiation In Vitro and In Vivo
2.6. Statistical Analysis
3. Results
3.1. Pathogenicity of F. solani on Potato Cultivar Sifra
3.2. In Vitro Effect of UV-C Against F. solani
3.3. In Vivo Effect of UV-C Treatment Against F. solani on Potatoes
3.4. SEM Analysis of the Interaction Between F. solani and UV-C Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stevenson, W.R. Compendium of potato diseases. Late blight. In Compendium of Potato Diseases, 2nd ed.; American Phytopathological Society: St. Paul, MN, USA, 2001; pp. 28–30. [Google Scholar]
- Ranjan, R.K.; Singh, D.; Rai, D. Postharvest Diseases of Potato and Their Management. In Postharvest Handling and Diseases of Horticultural Produce; CRC Press: Boca Raton, FL, USA, 2021; pp. 305–326. [Google Scholar]
- Wharton, P.; Hammerschmidt, R.; Kirk, W. Fusarium dry rot. In Michigan Potato Diseases Extension Bulletin; Michigan State University: East Lansing, MI, USA, 2007; pp. 213–221. [Google Scholar]
- Miller, J.S.; Olsen, N.; Woodell, L.; Porter, L.D.; Clayson, S. Postharvest applications of zoxamide and phosphite for control of potato tuber rots caused by oomycetes at harvest. Am. J. Potato Res. 2006, 83, 269–278. [Google Scholar] [CrossRef]
- Johnson, S.B. Postharvest applications of phosphorous acid materials for control of Phytophthora infestans and Phytophthora erythroseptica on potatoes. Plant Pathol. J. 2008, 7, 50–53. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- de Chaves, M.A.; Reginatto, P.; da Costa, B.S.; de Paschoal, R.I.; Teixeira, M.L.; Fuentefria, A.M. Fungicide resistance in Fusarium graminearum species complex. Curr. Microbiol. 2022, 79, 62. [Google Scholar] [CrossRef] [PubMed]
- Civello, P.M.; Vicente, A.R.; Martínez, G.A. UV-C technology to control postharvest diseases of fruits and vegetables. In Recent Advances in Alternative Postharvest Technologies to Control Fungal Diseases in Fruits and Vegetables; Transworld Research Network: Trivandrum, India, 2006; pp. 71–102. [Google Scholar]
- Terao, D.; de Carvalho Campos, J.S.; Benato, E.A.; Hashimoto, J.M. Alternative strategy on control of postharvest diseases of mango (Mangifera indica L.) by use of low dose of ultraviolet-C irradiation. Food Eng. Rev. 2015, 7, 171–175. [Google Scholar] [CrossRef]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Mbili, N.C. Effect of ultraviolet irradiation on postharvest quality and composition of tomatoes: A review. J. Food Sci. Technol. 2017, 54, 3025–3035. [Google Scholar] [CrossRef] [PubMed]
- Bambalele, N.L.; Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z. Recent advances on postharvest technologies of mango fruit: A review. Int. J. Fruit Sci. 2021, 21, 565–586. [Google Scholar] [CrossRef]
- Ranganna, B.; Kushalappa, A.C.; Raghavan, G.S.V. Ultraviolet irradiance to control dry rot and soft rot of potato in storage. Can. J. Plant Pathol. 1997, 19, 30–35. [Google Scholar] [CrossRef]
- Stevens, C.; Khan, V.A.; Lu, J.Y.; Wilson, C.L.; Chalutz, E.; Droby, S.; Kabwe, M.K.; Haung, Z.; Adeyeye, O.; Pusey, L.P.; et al. Induced resistance of sweet potato to Fusarium root rot by UV-C hormesis. Crop Prot. 1999, 18, 463–470. [Google Scholar] [CrossRef]
- Liu, J.; Stevens, C.; Khan, V.A.; Lu, J.Y.; Wilson, C.L.; Adeyeye, O.; Kabwe, M.K.; Pusey, P.L.; Chalutz, E.; Sultana, T.; et al. Application of ultraviolet-C light on storage rots and ripening of tomatoes. J. Food Prot. 1993, 56, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zheng, H.; Sheng, K.; Liu, W.; Zheng, L. Effects of UV-C treatment on the phenylpropanoid metabolism of postharvest peach fruit. Postharvest Biol. Technol. 2010, 56, 103–109. [Google Scholar]
- Guo, M.; Yang, R.; Chen, B.; Wang, F.; Qin, G.; Zhang, J. UV-C irradiation inhibits fungal growth and triggers DNA damage and oxidative stress in Aspergillus flavus. Front. Microbiol. 2021, 12, 658765. [Google Scholar]
- Allende, A.; Artés, F. Combined ultraviolet-C and modified atmosphere packaging treatments for reducing microbial growth of fresh processed lettuce. LWT-Food Sci. Technol. 2003, 36, 779–786. [Google Scholar] [CrossRef]
- Khubone, L.W.; Mditshwa, A. The effects of UV-C irradiation on postharvest quality of tomatoes (Solanum lycopersicum). Acta Hortic. 2017, 1201, 75–82. [Google Scholar] [CrossRef]
- Gumede, M.; Mditshwa, A.; Tesfay, S.; Magwaza, L.; Mbili, N. The effect of ozone and UV-C irradiation on strawberry postharvest quality. Acta Hortic. 2020, 1275, 15–22. [Google Scholar] [CrossRef]
- George, D.S.; Razali, Z.; Santhirasegaram, V.; Somasundram, C. Effects of ultraviolet light (UV-C) and heat treatment on fresh-cut Chokanan mango and Josephine pineapple quality. J. Food Sci. 2015, 80, S426–S434. [Google Scholar] [CrossRef] [PubMed]
- González-Aguilar, G.A.; Wang, C.Y.; Buta, J.G.; Krizek, D.T. Use of UV-C irradiation to prevent decay and maintain postharvest quality of ripe ‘Tommy Atkins’ mangoes. Int. J. Food Sci. Technol. 2001, 36, 767–773. [Google Scholar] [PubMed]
- Charles, M.T.; Tano, K.; Asselin, A.; Arul, J. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. V. Constitutive defence enzymes and inducible pathogenesis-related proteins. Postharvest Biol. Technol. 2009, 51, 414–424. [Google Scholar] [CrossRef]
- Charles, M.T.; Mercier, J.; Makhlouf, J.; Arul, J. Physiological basis of UVC-induced resistance to Botrytis cinerea in tomato fruit: I. Role of pre-and postchallenge accumulation of the phytoalexin-rishitin. Postharvest Biol. Technol. 2008, 47, 10–20. [Google Scholar] [CrossRef]
- Romero, L.; Colivet, J.; Aron, N.M.; Ramosvillarroel, A. Impact of ultraviolet light on quality attributes of stored fresh-cut mango. Ann. Univ. Dunarea Jos Galati. Fascicle VI Food Technol. 2017, 41, 62–80. [Google Scholar]
- Yin, R.; Dai, T.; Avci, P.; Jorge, A.E.S.; de Melo, W.C.M.A.; Vecchio, D.; Huang, Y.; Gupta, A.; Hamblin, M.R. Light based anti-infectives: Ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Curr. Opin. Pharmacol. 2013, 13, 731–762. [Google Scholar] [CrossRef] [PubMed]
- Chivasa, S.; Murphy, A.M.; Hamilton, J.M.; Lindsey, K.; Carr, J.P.; Slabas, A.R. Extracellular ATP is a regulator of pathogen defence in plants. Plant J. 2009, 60, 436–448. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.; Pajonk, S.; Micali, C.; O’cOnnell, R.; Schulze-Lefert, P. Extracellular transport and integration of plant secretory proteins into pathogen induced cell wall compartments. Plant J. 2009, 57, 986–999. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.J.; Kroon, J.T.M.; Simon, W.J.; Slabas, A.R.; Chivasa, S. A novel function for Arabidopsis CYCLASE1 in programmed cell death revealed by isobaric tags for relative and absolute quantitation (iTRAQ) analysis of extracellular matrix proteins. Mol. Cell. Proteom. 2015, 14, 1556–1568. [Google Scholar] [CrossRef] [PubMed]
- Otte, O.; Barz, W. Characterization and oxidative in vitro cross-linking of an extensin-like protein and a proline-rich protein purified from chickpea cell walls. Phytochemistry 2000, 53, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Haywood, V.; Kragler, F.; Lucas, W.J. Plasmodesmata: Pathways for protein and ribonucleoprotein signalling. Plant Cell 2002, 14, S303–S325. [Google Scholar] [CrossRef] [PubMed]
- Seifert, G.J.; Blaukopf, C. Irritable walls: The plant extracellular matrix and signaling. Plant Physiol. 2010, 153, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Orozco-Cárdenas, M.L.; Narváez-Vásquez, J.; Ryan, C.A. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 2001, 13, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Walters, D. Resistance to plant pathogens: Possible roles for free polyamines and polyamine catabolism. New Phytol. 2003, 159, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Ricci, P. Induction of the hypersensitive response and systemic acquired resistance by fungal proteins: The case of elicitins. In Plant-Microbe Interactions; Springer: Boston, MA, USA, 1997; pp. 53–75. [Google Scholar]
- Velasquez, L.A. The Pathogenesis Related Protein, Chitinase, and Its Role in the Systemic Acquired Resistance Phenotype in Cucumber Plants (Cucumis sativus L.). Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 2002. [Google Scholar]
UV Treatment Time | MG (mm) | Inhibition % 7 dpi |
---|---|---|
Control | 81.67 c | - |
5 min | 63.00 b | 22.86 |
10 min | 39.67 a | 51.43 |
15 min | 34.33 a | 57.96 |
p-value | <0.001 | |
LSD | 5.803 | |
CV | 5.6 | |
SED | 2.517 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buthelezi, G.; Mbili, N.C.; Mditshwa, A. In Vitro and In Vivo Effects of UV-C Irradiation Against Fusarium solani in Potatoes. Horticulturae 2025, 11, 1098. https://doi.org/10.3390/horticulturae11091098
Buthelezi G, Mbili NC, Mditshwa A. In Vitro and In Vivo Effects of UV-C Irradiation Against Fusarium solani in Potatoes. Horticulturae. 2025; 11(9):1098. https://doi.org/10.3390/horticulturae11091098
Chicago/Turabian StyleButhelezi, Gcinokuhle, Nokwazi Carol Mbili, and Asanda Mditshwa. 2025. "In Vitro and In Vivo Effects of UV-C Irradiation Against Fusarium solani in Potatoes" Horticulturae 11, no. 9: 1098. https://doi.org/10.3390/horticulturae11091098
APA StyleButhelezi, G., Mbili, N. C., & Mditshwa, A. (2025). In Vitro and In Vivo Effects of UV-C Irradiation Against Fusarium solani in Potatoes. Horticulturae, 11(9), 1098. https://doi.org/10.3390/horticulturae11091098