Amino Acid Biostimulants Enhance Drought and Heat Stress Tolerance of Creeping Bentgrass (Agrostis Stolonifera L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Measurements
2.1.1. Turf Quality
2.1.2. Photochemical Efficiency (PE)
2.1.3. Leaf Chlorophyll Content
2.1.4. Leaf Normalized Difference Vegetation Index (NDVI)
2.1.5. Leaf Protein and N Content
2.1.6. Leaf Superoxide Dismutase (SOD) Activity and H2O2 Content
2.1.7. Root Growth Characteristics and Viability
2.1.8. Experimental Design and Statistical Analysis
3. Results
3.1. Turf Quality
3.2. Photochemical Efficiency (PE)
3.3. Leaf Chlorophyll Content
3.4. NDVI
3.5. Leaf Protein Content
3.6. Leaf N Content
3.7. Leaf Antioxidant Enzyme SOD Activity
3.8. Leaf H2O2 Content
3.9. Root Growth Characteristics and Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Taylor, Z.; Goatley, M.; Booth, J.; Brown, I.; Kosiarski, K. Seaweed extract-based biostimulant impacts on nitrate reductase activity and root viability of ultradwarf bermudagrass subjected to heat and drought stress. HortScience 2022, 57, 1328–1333. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definitioan, concept, main categories, and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Cox, T. What the U.S. Farm Bill Really Means for Biostimulants? Available online: https://www.agribusinessglobal.com/plant-health/biostimulants/what-the-u-s-farm-bill-really-meansfor-biostimulants/ (accessed on 1 March 2019).
- Rai, V.K. Role of amino acids in plants responses to stress. Biol. Plant. 2002, 45, 481–487. [Google Scholar] [CrossRef]
- Chang, Z.; Liu, Y.; Dong, H.; Teng, K.; Han, L.; Zhang, X. Effects of cytokinin and nitrogen on drought stress tolerance of creeping bentgrass. PLoS ONE 2016, 11, e0154005. [Google Scholar] [CrossRef]
- Joy, K.W.; Antcliff, A.J. Translocation of amino-acids in sugar beet. Nature 1966, 211, 210–211. [Google Scholar] [CrossRef] [PubMed]
- Makela, P.; Peltonen-Sainio, P.; Jokinen, K.; Pehu, E.; Setala, H.; Hinkkanen, R.; Somersalo, S. Uptake and translocation of foliar-applied glycine betaine in crop plants. Plant Sci. 1996, 121, 221–230. [Google Scholar] [CrossRef]
- McCoy, R.M.; Meyer, G.W.; Rhodes, D.; Murray, G.C.; Sors, T.G.; Widhalm, J.R. Exploratory study on the foliar incorporation and stability of isotopically labeled amino acids applied to turfgrass. Agronomy 2020, 10, 358. [Google Scholar] [CrossRef]
- Carbonera, D.; Iadarola, B.; Cella, R. Effects of exogenous amino acids on the intracellular content of proline and other amino acids in Daucus carota cells. Plant Cell Rep. 1989, 8, 422–424. [Google Scholar] [CrossRef] [PubMed]
- Vidmar, J.J.; Zhou, D.; Siddiqi, M.Y.; Schjoerring, J.K.; Touraine, B.; Glass, A.D.M. Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiol. 2000, 123, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Summer, P.; Ervin, E. Foliar amino acids impact on creeping bentgrass drought resistance. Int. Turfgrass Soc. Res. J. 2013, 12, 42–436. [Google Scholar]
- Mertz, I.T.; Christians, N.; Thoms, A.W. Branched-chain amino acids for use as a nitrogen source on creeping bentgrass. HortScience 2019, 29, 833–837. [Google Scholar] [CrossRef]
- Zhang, X.; Ervin, E.; Evanylo, G.K.; Haering, K.C. Impact of biosolids on hormone metabolism in drought-stressed tall fescue. Crop Sci. 2009, 49, 1893–1901. [Google Scholar] [CrossRef]
- Malecange, M.; Sergheraert, R.; Teulat, B.; Mounier, E.; Lothier, J.; Sakr, S. Biostimulant properties of protein hydrolysates: Recent advances and future challenges. Int. J. Mol. Sci. 2023, 24, 9714. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H.; Kuang, Y.; Wang, N. Amino acids biostimulants and protein hydrolysates in agricultural sciences. Plants 2024, 13, 210. [Google Scholar] [CrossRef] [PubMed]
- Morris, K. A Guide to NTEP Turfgrass Quality Ratings. 2022. Available online: https://www.ntep.org/reports/ratings.htm#:~:text=How%20is%20Turfgrass%20Quality%20Evaluated,an%20absolutely%20outstanding%20treatment%20plot (accessed on 2 March 2019).
- Bernt, E.; Bergmeyer, H. Methods of Enzymatic Analysis; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Mertz, I.; Christians, N.; Ervin, E.; Zhang, X. Physiological response of creeping bentgrass (Agrostis stolonifera L.) to a tryptophan-containing organic byproduct. Int. Turfgrass Soc. Res. J. 2017, 13, 575–583. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant cation of plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef] [PubMed]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, F.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activities of two protein hydrolysates on the growth and nitrogen metabolism in maize seedlings. J. Plant Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unravelling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Merwad, A.; Mohamed, A.H.; Sitohy, M. Foliar spry with pepsin-and papain-whey protein hydrolysates promotes the productivity of pea plants cultivated in clay loam soil. Molecules 2021, 26, 2805. [Google Scholar] [CrossRef] [PubMed]
- Tallarita, A.V.; Vecchietti, L.; Golubkina, N.A.; Sekara, A.; Cozzolino, E.; Mirabella, M.; Cuciniella, M.; Cuciniello, A.; Maiello, R.; Cenvinzo, V.; et al. Effects of plant biostimulation time span and soil electrical conductivity on greenhouse tomato Miniplum yield and quality in diverse crop seasons. Plants 2023, 12, 1423. [Google Scholar] [CrossRef] [PubMed]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P.; Colla, G. The effects of a plant-derived biostimulant on metabolic profiling and crop performance of lettice grpwn under saline conditions. Sci. Hortic. 2015, 182, 124–133. [Google Scholar] [CrossRef]
- Mackiewicz-Walec, E.; Olszewska, M. Biostimulants in the production of forage grasses and turfgrasses. Agriculture 2023, 13, 1796. [Google Scholar] [CrossRef]
- Bahuguna, A.; Sharma, S.; Rai, A.; Bhardwaj, R.; Sahoo, S.K.; Pandey, A.; Yadav, B. Advanced technologiy for biostimulants in africulture. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 393–412. [Google Scholar]
Treatment | Rate | 0 | 14 | 28 | 42 | 56 | |
---|---|---|---|---|---|---|---|
(g m−2) | 6 June | 20 June | 4 July | 18 July | 1 August | Ave. | |
Turf quality (1–9, 9 = best) | |||||||
Control | 0 | 7.5 a | 6.75 c | 6.48 c | 6.25 c | 5.60 d | 6.53 d |
Superbia | 2.19 | 7.5 a | 7.35 a | 7.15 a | 7.03 a | 6.93 a | 7.19 a |
Amino Pro V | 4.39 | 7.5 a | 7.08 b | 7.03 a | 6.95 a | 6.70 b | 7.05 b |
Siapton | 2.19 | 7.5 a | 7.33 a | 6.75 b | 6.58 b | 6.45 d | 6.92 c |
Benvireo | 1.37 | 7.5 a | 7.35 a | 6.68 b | 6.85 a | 6.53 cd | 6.98 bc |
Surety | 14.65 | 7.5 a | 7.18 ab | 7.03 a | 6.98 a | 6.63 bc | 7.06 b |
PE (Fv/Fm) | |||||||
6 June | 20 June | 4 July | 18 July | 1 August | Ave. | ||
Control | 0 | 0.823 a | 0.808 b | 0.748 b | 0.743 c | 0.645 b | 0.753 c |
Superbia | 2.19 | 0.828 a | 0.826 a | 0.823 a | 0.808 a | 0.781 a | 0.813 a |
Amino Pro V | 4.39 | 0.826 a | 0.815 ab | 0.814 a | 0.800 a | 0.777 a | 0.806 ab |
Siapton | 2.19 | 0.827 a | 0.817 ab | 0.811 a | 0.790 ab | 0.765 a | 0.802 ab |
Benvireo | 1.37 | 0.834 a | 0.821 a | 0.770 ab | 0.761 bc | 0.754 a | 0.788 b |
Surety | 14.65 | 0.838 a | 0.823 a | 0.796 ab | 0.799 a | 0.769 a | 0.805 ab |
Treatment | Rate | 0 | 14 | 28 | 42 | 56 | |
---|---|---|---|---|---|---|---|
(g m−2) | 6 June | 20 June | 4 July | 18 July | 1 August | Ave. | |
Chl (mg g−1 FW) | |||||||
Control | 0 | 606.8 a | 519.0 a | 475.5 b | 433.0 b | 392.5 c | 485.4 b |
Superbia | 2.19 | 587.8 a | 577.3 a | 544.8 a | 510.5 a | 459.8 a | 536.0 a |
Amino Pro V | 4.39 | 583.3 a | 503.3 a | 534.0 a | 509.0 a | 568.5 a | 519.6 a |
Siapton | 2.19 | 594.3 a | 548.8 a | 511.5 ab | 492.0 a | 411.3 bc | 511.6 ab |
Benvireo | 1.37 | 570.6 a | 560.5 a | 510.3 ab | 494.5 a | 430.5 abc | 513.2 ab |
Surety | 14.65 | 596.5 a | 550.8 a | 526.0 ab | 502.5 a | 447.3 ab | 524.6 a |
NDVI | |||||||
6 June | 20 June | 4 July | 18 July | 1 August | Ave. | ||
Control | 0 | 0.855 a | 0.854 a | 0.815 b | 0.798 c | 0.722 d | 0.809 b |
Superbia | 2.19 | 0.871 a | 0.894 a | 0.879 a | 0.860 a | 0.816 a | 0.864 a |
Amino Pro V | 4.39 | 0.869 a | 0.869 a | 0.861 b | 0.856 a | 0.814 ab | 0.854 a |
Siapton | 2.19 | 0.812 a | 0.806 a | 0.874 b | 0.800 c | 0.780 c | 0.814 b |
Benvireo | 1.37 | 0.871 a | 0.857 a | 0.873 b | 0.823 bc | 0.791 c | 0.843 ab |
Surety | 14.65 | 0.845 a | 0.869 a | 0.852 b | 0.849 ab | 0.796 bc | 0.842 ab |
Treatment | Rate | 0 | 14 | 28 | 42 | 56 | |
---|---|---|---|---|---|---|---|
(g m−2) | 6 June | 20 June | 4 July | 18 July | 1 August | Ave. | |
Leaf protein content (mg g−1 FW) | |||||||
Control | 0 | 5.02 a | 4.05 a | 3.96 b | 3.64 c | 3.41 b | 4.01 b |
Superbia | 2.19 | 4.84 a | 4.87 a | 4.84 a | 4.17 a | 3.87 a | 4.56 a |
Amino Pro V | 4.39 | 4.77 a | 4.63 a | 4.52 ab | 4.15 ab | 3.87 a | 4.39 ab |
Siapton | 2.19 | 4.77 a | 4.70 a | 4.28 ab | 3.80 bc | 3.62 ab | 4.23 ab |
Benvireo | 1.37 | 5.00 a | 4.45 a | 4.20 ab | 3.70 c | 3.59 ab | 4.19 ab |
Surety | 14.65 | 4.89 a | 4.43 a | 4.44 ab | 3.97 abc | 3.70 ab | 4.29 ab |
Leaf N content (mg g−1 FW) | |||||||
6 June | 20 June | 4 July | 18 July | 1 August | Ave. | ||
Control | 0 | 1.13 a | 0.91 a | 0.89 b | 0.82 c | 0.77 b | 0.91 b |
Superbia | 2.19 | 1.09 a | 1.10 a | 1.09 a | 0.94 a | 0.87 a | 1.02 a |
Amino Pro V | 4.39 | 1.08 a | 1.04 a | 1.02 ab | 0.93 ab | 0.87 a | 0.99 ab |
Siapton | 2.19 | 1.08 a | 1.06 a | 0.97 ab | 0.86 bc | 0.82 ab | 0.96 ab |
Benvireo | 1.37 | 1.13 a | 1.01 a | 0.95 ab | 0.83 c | 0.81 ab | 0.95 ab |
Surety | 14.65 | 1.10 a | 1.00 a | 1.00 ab | 0.90 abc | 0.84 ab | 0.97 ab |
Treatment | Rate | 0 | 14 | 28 | 42 | 56 | |
---|---|---|---|---|---|---|---|
(g m−2) | 6 June | 20 June | 4 July | 18 July | 1 August | Ave. | |
Leaf SOD activity (Unit g−1 FW) | |||||||
Control | 0 | 887.3 a | 852.4 a | 805.0 b | 786.4 b | 772.3 d | 817.0 c |
Superbia | 2.19 | 854.2 a | 871.2 a | 842.2 a | 829.8 a | 826.4 a | 844.8 a |
Amino Pro V | 4.39 | 878.6 a | 869.8 a | 838.6 a | 824.9 a | 813.0 ab | 845.0 a |
Siapton | 2.19 | 831.2 a | 849.7 a | 828.2 ab | 823.7 a | 781.8 c | 822.9 bc |
Benvireo | 1.37 | 902.1 a | 864.4 a | 832.7 a | 816.9 a | 781.2 c | 839.5 ab |
Surety | 14.65 | 875.6 a | 865.1 a | 836.1 a | 820.0 a | 810.2 b | 841.4 a |
Leaf H2O2 content (ng g−1 FW) | |||||||
6 June | 20 June | 4 July | 18 July | 1 August | Ave. | ||
Control | 0 | 22.1 a | 27.6 a | 42.6 a | 48.8 a | 56.4 a | 39.5 a |
Superbia | 2.19 | 22.2 a | 25.3 ab | 30.1 c | 35.0 c | 47.0 d | 31.9 d |
Amino Pro V | 4.39 | 22.1 a | 23.8 b | 31.2 c | 35.7 c | 46.8 d | 31.9 d |
Siapton | 2.19 | 22.0 a | 24.7 ab | 36.9 b | 45.3 b | 52.1 bc | 36.2 bc |
Benvireo | 1.37 | 22.5 a | 26.3 ab | 39.3 ab | 45.9 b | 52.6 b | 37.3 b |
Surety | 14.65 | 22.7 a | 26.7 ab | 38.4 b | 36.7 c | 49.5 cd | 34.8 c |
Treatment | Rate | Root Length | SA | Diam. | Vol. | Biomass | Viability |
---|---|---|---|---|---|---|---|
(g m−2) | (cm cm−3) | (cm2 cm−3) | (mm) | (cm3 dm−3) | (g pot−1) | A490 g−1 FW | |
Control | 0 | 21.4 c | 0.96 c | 0.12 a | 3.45 c | 0.79 c | 0.500 c |
Superbia | 2.19 | 30.2 a | 1.44 a | 0.15 a | 5.55 a | 1.18 a | 0.605 a |
Amino Pro V | 4.39 | 29.4 ab | 1.36 ab | 0.13 a | 4.64 ab | 1.17 ab | 0.596 ab |
Siapton | 2.19 | 25.1 abc | 1.16 abc | 0.15 a | 4.28 bc | 0.94 bc | 0.522 abc |
Benvireo | 1.37 | 23.8 bc | 1.16 bc | 0.16 a | 4.36 bc | 0.93 bc | 0.507 bc |
Surety | 14.65 | 27.1 abc | 1.25 ab | 0.15 a | 4.63 ab | 0.99 abc | 0.507 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Goatley, M.; Focke, M.; Sherman, G.; Smith, B.; Motsinger, T.; Roué, C.; Goos, J. Amino Acid Biostimulants Enhance Drought and Heat Stress Tolerance of Creeping Bentgrass (Agrostis Stolonifera L.). Horticulturae 2025, 11, 853. https://doi.org/10.3390/horticulturae11070853
Zhang X, Goatley M, Focke M, Sherman G, Smith B, Motsinger T, Roué C, Goos J. Amino Acid Biostimulants Enhance Drought and Heat Stress Tolerance of Creeping Bentgrass (Agrostis Stolonifera L.). Horticulturae. 2025; 11(7):853. https://doi.org/10.3390/horticulturae11070853
Chicago/Turabian StyleZhang, Xunzhong, Mike Goatley, Maude Focke, Graham Sherman, Berit Smith, Taylor Motsinger, Catherine Roué, and Jay Goos. 2025. "Amino Acid Biostimulants Enhance Drought and Heat Stress Tolerance of Creeping Bentgrass (Agrostis Stolonifera L.)" Horticulturae 11, no. 7: 853. https://doi.org/10.3390/horticulturae11070853
APA StyleZhang, X., Goatley, M., Focke, M., Sherman, G., Smith, B., Motsinger, T., Roué, C., & Goos, J. (2025). Amino Acid Biostimulants Enhance Drought and Heat Stress Tolerance of Creeping Bentgrass (Agrostis Stolonifera L.). Horticulturae, 11(7), 853. https://doi.org/10.3390/horticulturae11070853