Integrated Transcriptomic and Physiological Analysis Reveals the Drought Adaptation Strategies of Sapindus delavayi, an Important Tree for Industrial Use in the Dry–Hot Valleys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Drought Stress Experiment
2.3. RNA Extraction and Transcriptome Sequencing of S. delavayi
2.4. Transcriptomic Data Processing Analysis
2.5. Differentially Expressed Genes
2.6. Weighted Gene Co-Expression Network
2.7. Quantitative Real-Time PCR
3. Results
3.1. Analysis of Sequencing and Assembly Results
3.2. Analysis of GO and KEGG Annotation Results
3.3. Analysis of the Annotation Results of Related Databases
3.4. Analysis of Differentially Expressed Genes (DEGs)
3.4.1. Quantitative Expression Analysis of S. delavayi Genes Under Different Drought Stresses
3.4.2. DEGs of S. delavayi Under Different Drought Stresses
3.5. GO and KEGG Enrichment Analysis of DEGs
3.6. Cluster Analysis of DEGs
3.7. Transcription Factors
3.8. Weighted Gene Co-Expression Network (WGCNA)
3.9. qRT-PCR Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, X.Y.; Chen, D.Z. Sapindaceae. In Flora of China, 1st ed.; Liu, Y.H., Luo, X.Y., Eds.; Science Press: Beijing, China, 1985; Volume 47, p. 17. [Google Scholar]
- Sun, C.W.; Wang, L.C.; Liu, J.M.; Zhao, G.C.; Gao, S.L.; Xia, B.Y.; Duan, J.; Weng, X.H.; Jia, L.M. Genetic structure and biogeographic divergence among Sapindus species: An inter-simple sequence repeat-based study of germplasms in China. Ind. Crops Prod. 2018, 118, 1–10. [Google Scholar] [CrossRef]
- Liu, J.; Gao, S.; Xu, Y.; Wang, M.; Ngiam, J.J.; Rui Wen, N.C.; Yi, J.J.J.; Weng, X.; Jia, L.; Salojärvi, J. Genetic Diversity Analysis of Sapindus in China and Extraction of a Core Germplasm Collection Using EST-SSR Markers. Front. Plant Sci. 2022, 13, 857993. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, K.; Fujino, H.; Kasai, R.; Tanaka, O.; Zhou, J. Saponins of Pericarps of Chinese Sapindus delavayi (Pyi-shiau-tzu), a Source of Natural Surfactants. Chem. Pharm. Bull. 1986, 34, 2209–2213. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Shao, W.H.; Huang, S.Q.; Zhang, Y.Z.; Fang, H.F.; Jiang, J.M. Prediction of Suitable Habitats for Sapindus delavayi Based on the MaxEnt Model. Forests 2022, 13, 1611. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Y.; Yang, Y.; Wang, Q.; Li, S.; Li, F.; Du, L.; Zhang, P.; Wang, X.; Zhang, S.; et al. A system genetics analysis uncovers the regulatory variants controlling drought response in wheat. Plant Biotechnol. J. 2025, 23, 1565–1584. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, J.X.; Su, X.L.; Zhu, T.F.; Wang, L.C. Effects of Substrate and Water on Root Growth of Sapindus delavayi Seedlings. Mol. Plant Breed. 2023, 1–19. [Google Scholar]
- Yang, L.X.; Xie, M.; Fan, L.Y.; Zhang, X.X.; Li, W.; Li, F.J.; Ma, H. Seed germination characteristics and drought resistance of six native trees from the dry-hot valley of Yunnan Province. Seed Sci. Technol. 2024, 52, 309–326. [Google Scholar] [CrossRef]
- Sun, S.D.; Ke, X.Q.; Cui, L.L.; Yang, G.L.; Bi, Y.L.; Song, F.F.; Xu, X.D. Enzymatic epoxidation of Sapindus mukorossi seed oil by perstearic acid optimized using response surface methodology. Ind. Crop. Prod. 2011, 33, 676–682. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Xue, R.; Rui, Y.; Zhao, G.; Li, L.; Wang, X.; Xue, H.; Zhong, C. Biogeographic divergence in leaf traits of Sapindus mukorossi and Sapindus delavayi and its relation to climate in China. J. For. Res. 2021, 32, 1445–1456. [Google Scholar] [CrossRef]
- Wang, M.Z.; Liu, J.M.; Zheng, Y.L.; Wang, X.; Xu, Y.Y.; Wang, L.X.; Zhao, G.C. Environmental Factors Influence the Seed Phenotypic Variation of Sapindus mukorossi Gaertn. and Sapindus delavayi (Franch.) Radlk in China. For. Sci. 2022, 68, 487–495. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Liu, H.; Wang, D.; Li, Q. The complete chloroplast genome sequence of Sapindus delavayi, a species endemic to China. Mitochondrial DNA Part B 2021, 6, 1906–1908. [Google Scholar] [CrossRef] [PubMed]
- Henry, R.J. Next-generation sequencing for understanding and accelerating crop domestication. Brief. Funct. Genom. 2011, 11, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.Q.; Jiang, L.J.; Zhou, X.; Li, C.Z.; Li, P.W.; Yang, Y.; Sheng, K.Z.; Chen, J.Z. Sequencing and Analysis of the Transcriptome on Leaf of Multipurpose Sapindus mukorossi. Mol. Plant Breed. 2022, 1–10. [Google Scholar]
- Wang, X.F.; Liu, T.J.; Feng, T.; Huang, H.R.; Zou, P.; Wei, X.; Wu, X.; Chai, S.F.; Yan, H.F. A telomere-to-telomere genome assembly of Camellia nitidissima. Sci. Data 2025, 12, 815. [Google Scholar] [CrossRef]
- Qiao, Q.; Cao, Q.; Zhang, R.; Wu, M.; Zheng, Y.; Xue, L.; Lei, J.; Sun, H.; Liston, A.; Zhang, T. Genomic analyses provide insights into sex differentiation of tetraploid strawberry (Fragaria moupinensis). Plant Biotechnol. J. 2024, 22, 1552–1565. [Google Scholar] [CrossRef]
- Xie, L.; Gong, X.; Yang, K.; Huang, Y.; Zhang, S.; Shen, L.; Sun, Y.; Wu, D.; Ye, C.; Zhu, Q.-H.; et al. Technology-enabled great leap in deciphering plant genomes. Nat. Plants 2024, 10, 551–566. [Google Scholar] [CrossRef]
- Liu, W.; Wang, T.; Wang, Y.; Liang, X.; Han, J.; Han, D. MbMYBC1, a M. baccata MYB transcription factor, contributes to cold and drought stress tolerance in transgenic Arabidopsis. Front. Plant Sci. 2023, 14, 1141446. [Google Scholar] [CrossRef]
- Gao, L.; Lv, Q.; Wang, L.; Han, S.; Wang, J.; Chen, Y.; Zhu, W.; Zhang, X.; Bao, F.; Hu, Y. Abscisic acid-mediated autoregulation of the MYB41-BRAHMA module enhances drought tolerance in Arabidopsis. Plant Physiol. 2024, 196, 1608–1626. [Google Scholar] [CrossRef]
- Song, C.; Yang, Z.; Luo, Z.; Li, C.; Zhang, R.; Liu, L. Research progress in plant sugar transporter SWEETs. J. Cap. Norm. Univ. (Nat. Sci. Ed.) 2024, 45, 558–567. [Google Scholar]
- Kou, X.; Zhao, Z.; Xu, X.; Li, C.; Wu, J.; Zhang, S. Identification and expression analysis of ATP-binding cassette (ABC) transporters revealed its role in regulating stress response in pear (Pyrus bretschneideri). BMC Genom. 2024, 25, 169–183. [Google Scholar] [CrossRef]
- Xie, C.; Yang, L.; Gai, Y. MAPKKKs in Plants: Multidimensional Regulators of Plant Growth and Stress Responses. Int. J. Mol. Sci. 2023, 24, 4117. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, W.; Zhao, J.; Meng, H.; Yang, Y.; Zheng, G.; Yuan, W. Transcriptional Regulation of the Acer truncatum B. Response to Drought and the Contribution of AtruNAC36 to Drought Tolerance. Antioxidants 2023, 12, 1339. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Liu, Y.; He, B.; Chen, X.; Ma, L.; Luo, Y.; Fei, X.; Wei, A. Integrative physiological, transcriptome, and metabolome analysis uncovers the drought responses of two Zanthoxylum bungeanum cultivars. Ind. Crops Prod. 2022, 189, 115812. [Google Scholar] [CrossRef]
- Li, Y.; Cao, H.; Dong, T.; Wang, X.; Ma, L.; Li, K.; Lou, H.; Song, C.; Ren, D. Phosphorylation of the LCB1 subunit of Arabidopsis serine palmitoyltransferase stimulates its activity and modulates sphingolipid biosynthesis. J. Integr. Plant Biol. 2023, 65, 1585–1601. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, F.; Fang, G.; Zhang, H.; Zhang, Y.; Zhu, H.; Zhang, X.; Han, Y.; Cao, Z.; Guo, F.; et al. A cofactor-induced repressive type of transcription factor condensation can be induced by synthetic peptides to suppress tumorigenesis. EMBO J. 2024, 43, 5586–5612. [Google Scholar] [CrossRef]
- Massudi, H.; Grant, R.; Guillemin, G.J. NAD+ metabolism and oxidative stress: The golden nucleotide on a crown of thorns. Redox Rep. 2012, 17, 28–46. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, B.; Du, J.; Deng, T.; Wang, R.; Chen, Y.; Li, X.; Fu, J.; Pang, J.; Yang, M.; et al. Transcriptomic and proteomic-based analysis of the mechanisms by which drought and salt stresses affect the quality of Isatidis Folium. BMC Plant Biol. 2025, 25, 332–355. [Google Scholar] [CrossRef]
- Li, Y.; Tian, Q.; Wang, Z.; Li, J.; Liu, S.; Chang, R.; Chen, H.; Liu, G. Integrated analysis of transcriptomics and metabolomics of peach under cold stress. Front. Plant Sci. 2023, 14, 1153902. [Google Scholar] [CrossRef]
- Gou, Y.L.; Zhang, L.; Guo, H.; Ma, H.P.; Bao, A.K. Research progress on the AP2/ERF transcription factor in plants. Pratcultural Sci. 2020, 37, 1150–1159. [Google Scholar]
- Amin, N.; Du, Y.; Lu, L.; Khalifa, M.A.S.; Ahmad, N.; Ahmad, S.; Wang, P. GmNAC3 acts as a key regulator in soybean against drought stress. Curr. Plant Biol. 2024, 38, 100346. [Google Scholar] [CrossRef]
- Dong, B.; Lang, S.; Gu, Y.; Liu, X.; Song, X. Identification of the bHLH gene family and functional analysis of ChMYC2 in drought stress of Cerasus humilis. Plant Physiol. Biochem. 2025, 220, 109519. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Qi, G.; Kong, Y.; Kong, D.; Gao, Q.; Zhou, G. Comprehensive Analysis of NAC Domain Transcription Factor Gene Family in Populus trichocarpa. BMC Plant Biol. 2010, 10, 145. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Zhao, L.; Song, X.; Lin, Z.; Gu, B.; Yan, J.; Zhang, S.; Tao, S.; Huang, X. Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri). BMC Plant Biol. 2019, 19, 161. [Google Scholar] [CrossRef]
- Li, W.; Fu, L.; Geng, Z.; Zhao, X.; Liu, Q.; Jiang, X. Physiological Characteristic Changes and Full-Length Transcriptome of Rose (Rosa chinensis) Roots and Leaves in Response to Drought Stress. Plant Cell Physiol. 2020, 61, 2153–2166. [Google Scholar] [CrossRef]
- Kaya, Z.; Değirmenci, F.Ö.; Yorulmaz, S.; Vural, K.B.; Luke, C.; Roosevelt, C.H.; Somel, M.; Neale, D.B. Genomic Variation in Vitis Vinifera, from Extant to Contemporary Varieties. Plant Mol. Biol. Report. 2025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Xie, M.; Wang, L.; Yu, L.; Li, F.; Ma, H. Integrated Transcriptomic and Physiological Analysis Reveals the Drought Adaptation Strategies of Sapindus delavayi, an Important Tree for Industrial Use in the Dry–Hot Valleys. Horticulturae 2025, 11, 603. https://doi.org/10.3390/horticulturae11060603
He X, Xie M, Wang L, Yu L, Li F, Ma H. Integrated Transcriptomic and Physiological Analysis Reveals the Drought Adaptation Strategies of Sapindus delavayi, an Important Tree for Industrial Use in the Dry–Hot Valleys. Horticulturae. 2025; 11(6):603. https://doi.org/10.3390/horticulturae11060603
Chicago/Turabian StyleHe, Xinyu, Meng Xie, Lan Wang, Liangjun Yu, Fengjuan Li, and Hong Ma. 2025. "Integrated Transcriptomic and Physiological Analysis Reveals the Drought Adaptation Strategies of Sapindus delavayi, an Important Tree for Industrial Use in the Dry–Hot Valleys" Horticulturae 11, no. 6: 603. https://doi.org/10.3390/horticulturae11060603
APA StyleHe, X., Xie, M., Wang, L., Yu, L., Li, F., & Ma, H. (2025). Integrated Transcriptomic and Physiological Analysis Reveals the Drought Adaptation Strategies of Sapindus delavayi, an Important Tree for Industrial Use in the Dry–Hot Valleys. Horticulturae, 11(6), 603. https://doi.org/10.3390/horticulturae11060603