Study on the Detection of Chlorophyll Content in Tomato Leaves Based on RGB Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leaf Data Collection
2.2. Chlorophyll Content Measurement
2.3. Leaf Color Feature Parameter Extraction
2.4. Construction of Chlorophyll Prediction Models
3. Results and Analysis
3.1. Correlation Analysis Between Color Features and Chlorophyll Content
3.2. Chlorophyll Content Prediction Model
- (1)
- Multiple Linear Regression Model (MLR)
- (2)
- Support Vector Regression Model (SVR)
- (3)
- Random Forest Model (RF)
- (4)
- Ridge Regression Model (RR)
3.3. Model Performance Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, J.T.; Zhao, Y.; Sun, Y.J. Recent Advances in Research on Flavor Substances in Tomato Fruit and Their Influential Factors. Food Sci. 2023, 44, 169–177. [Google Scholar]
- Tieman, D.; Zhu, G.; Resende, M.F., Jr.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.L.; Beltran, K.S.O.; Taylor, M.; Zhang, B. A Chemical Genetic Roadmap to Improved Tomato Flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.C.; Zhao, Y.; Zhao, S.N.; Zhu, C.H.; Li, H.N. Analysis of Current Situation and Development Trend of Tomato Products. China Fruit Veg. 2021, 41, 144–148. [Google Scholar] [CrossRef]
- Xiao, Q.; Tang, W.; Zhang, C.; Zhou, L.; Feng, L.; Shen, J.; Yan, T.; Gao, P.; He, Y.; Wu, N. Spectral Preprocessing Combined with Deep Transfer Learning to Evaluate Chlorophyll Content in Cotton Leaves. Plant Phenomics 2022, 2022, 9813841. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Wu, F.; Zou, X.C. Estimation of Winter Wheat Chlorophyll Relative Content Combing with Canopy Spectrum Red Edge Parameters and Random Forest Machine Learning. Trans. Chin. Soc. Agric. Eng. 2024, 40, 171–182. [Google Scholar] [CrossRef]
- Pérez-Patricio, M.; Camas-Anzueto, J.L.; Sanchez-Alegría, A.; Aguilar-González, A.; Gutiérrez-Miceli, F.; Escobar-Gómez, E.; Voisin, Y.; Rios-Rojas, C.; Grajales-Coutiño, R. Optical Method for Estimating the Chlorophyll Contents in Plant Leaves. Sensors 2018, 18, 650. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Y.K.; Mao, P.J.; Wang, J.; Qiu, Z.M. Status and Development of Measuring Method in Plant Chlorophyll Content. J. Agric. Mech. Res. 2014, 4, 238–241. [Google Scholar] [CrossRef]
- Lin, F.F.; Deng, J.S.; Shi, Y.Y.; Chen, L.S.; Wang, K. Investigation of SPAD Meter-Based Indices for Estimating Rice Nitrogen Status. Comput. Electron. Agric. 2010, 71, S60–S65. [Google Scholar] [CrossRef]
- Uddling, J.; Gelang-Alfredsson, J.; Piikki, K.; Pleijel, H. Evaluating the Relationship between Leaf Chlorophyll Concentration and SPAD-502 Chlorophyll Meter Readings. Photosynth. Res. 2007, 91, 37–46. [Google Scholar] [CrossRef]
- Markwell, J.; Osterman, J.C.; Mitchell, J.L. Calibration of the Minolta SPAD-502 Leaf Chlorophyll Meter. Photosynth. Res. 1995, 46, 467–472. [Google Scholar] [CrossRef]
- Tan, L.; Zhou, L.; Zhao, N.; He, Y.; Qiu, Z. Development of a Low-Cost Portable Device for Pixel-Wise Leaf SPAD Estimation and Blade-Level SPAD Distribution Visualization Using Color Sensing. Comput. Electron. Agric. 2021, 190, 106487. [Google Scholar] [CrossRef]
- Li, L.J.; Shi, Y.; Liu, Y.C.; Guo, J.X. Research on Predicting Hami Melon Leaf Chlorophyll Based on RGB Image Processing. J. Chin. Agric. Mech. 2024, 45, 149–155. [Google Scholar] [CrossRef]
- Zhang, J.; Han, W.; Huang, L.; Zhang, Z.; Ma, Y.; Hu, Y. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors. Sensors 2016, 16, 437. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, R.; Zhang, J.; Ni, L.; Shen, H.; Xie, P. A Novel and Convenient Method for Early Warning of Algal Cell Density by Chlorophyll Fluorescence Parameters and Its Application in a Highland Lake. Front. Plant Sci. 2018, 9, 869. [Google Scholar] [CrossRef] [PubMed]
- Dian, R.; Li, S.; Sun, B.; Guo, A. Recent Advances and New Guidelines on Hyperspectral and Multispectral Image Fusion. Inf. Fusion 2021, 69, 40–51. [Google Scholar] [CrossRef]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking Hyperspectral Image Classification with Transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5518615. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Qiao, L.; Zhang, Z.Y.; Chen, L.S.; Sun, H.; Li, M.Z.; Li, L.; Ma, J.Y. Detection of Chlorophyll Content in Maize Canopy from UAV Imagery. IFAC-Pap. 2019, 52, 330–335. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, X.; Shi, M.; Wang, P. Performance Comparison of RGB and Multispectral Vegetation Indices Based on Machine Learning for Estimating Hopea Hainanensis SPAD Values under Different Shade Conditions. Front. Plant Sci. 2022, 13, 928953. [Google Scholar] [CrossRef]
- Liang, Y.; Urano, D.; Liao, K.-L.; Hedrick, T.L.; Gao, Y.; Jones, A.M. A Nondestructive Method to Estimate the Chlorophyll Content of Arabidopsis Seedlings. Plant Methods 2017, 13, 26. [Google Scholar] [CrossRef]
- Li, L.; Cheng, L. A Method for Rapid Detection of Chlorophyll Content in Tomato Leaves Based on RGB Model. Mol. Plant 2021, 19, 6906–6909. [Google Scholar] [CrossRef]
- Mercado-Luna, A.; Rico-García, E.; Lara-Herrera, A.; Soto-Zarazúa, G.; Ocampo-Velázquez, R.; Guevara-González, R.; Herrera-Ruiz, G.; Torres-Pacheco, I. Nitrogen Determination on Tomato (Lycopersicon esculentum Mill.) Seedlings by Color Image Analysis (RGB). Afr. J. Biotechnol. 2010, 9, 5326–5332. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Riccardi, M.; Mele, G.; Pulvento, C.; Lavini, A.; d’Andria, R.; Jacobsen, S.-E. Non-Destructive Evaluation of Chlorophyll Content in Quinoa and Amaranth Leaves by Simple and Multiple Regression Analysis of RGB Image Components. Photosynth. Res. 2014, 120, 263–272. [Google Scholar] [CrossRef]
- Hu, H.; Liu, H.Q.; Zhang, H.; Zhu, J.H.; Yao, X.G.; Zhang, X.B.; Zheng, K.F. Assessment of Chlorophyll Content Based on Image Color Analysis, Comparison with SPAD-502. In Proceedings of the 2010 2nd International Conference on Information Engineering and Computer Science, Wuhan, China, 25–26 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–3. [Google Scholar] [CrossRef]
- Sulistyo, S.B.; Woo, W.L.; Dlay, S.S. Regularized Neural Networks Fusion and Genetic Algorithm Based On-Field Nitrogen Status Estimation of Wheat Plants. IEEE Trans. Ind. Inform. 2016, 13, 103–114. [Google Scholar] [CrossRef]
- do Amaral, E.S.; Vieira Silva, D.; Dos Anjos, L.; Schilling, A.C.; Dalmolin, Â.C.; Mielke, M.S. Relationships Between Reflectance and Absorbance Chlorophyll Indices with RGB (Red, Green, Blue) Image Components in Seedlings of Tropical Tree Species at Nursery Stage. New For. 2019, 50, 377–388. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, G.; Sun, H.; Wang, H.; Chen, S.; Senthilnath, J.; Wang, J.; Fu, Y. Scaling Effects on Chlorophyll Content Estimations with RGB Camera Mounted on a UAV Platform Using Machine-Learning Methods. Sensors 2020, 20, 5130. [Google Scholar] [CrossRef]
- Yu, S.; Bu, H.; Hu, X.; Dong, W.; Zhang, L. Establishment and Accuracy Evaluation of Cotton Leaf Chlorophyll Content Prediction Model Combined with Hyperspectral Image and Feature Variable Selection. Agronomy 2023, 13, 2120. [Google Scholar] [CrossRef]
- Salgueiro, J.L.; Pérez, L.; Sanchez, Á.; Cancela, Á.; Míguez, C. Microalgal Biomass Quantification from the Non-Invasive Technique of Image Processing through Red–Green–Blue (RGB) Analysis. J. Appl. Phycol. 2022, 34, 871–881. [Google Scholar] [CrossRef]
- Naqvi, S.M.Z.A.; Awais, M.; Khan, F.S.; Afzal, U.; Naz, N.; Khan, M.I. Unmanned Air Vehicle Based High Resolution Imagery for Chlorophyll Estimation Using Spectrally Modified Vegetation Indices in Vertical Hierarchy of Citrus Grove. Remote Sens. Appl. Soc. Environ. 2021, 23, 100596. [Google Scholar]
- Agarwal, A.; Gupta, S.D. Assessment of Spinach Seedling Health Status and Chlorophyll Content by Multivariate Data Analysis and Multiple Linear Regression of Leaf Image Features. Comput. Electron. Agric. 2018, 152, 281–289. [Google Scholar] [CrossRef]
- Zhang, H.C.; Bian, L.M.; Ge, Y.F.; Li, X.P. Estimation and Visualization of Chlorophyll Content in Plant Based on YOLO V5. Trans. Chin. Soc. Agric. Mach. 2021, 53, 313–321. [Google Scholar] [CrossRef]
- Montanaro, G.; Petrozza, A.; Rustioni, L.; Cellini, F.; Nuzzo, V. Phenotyping Key Fruit Quality Traits in Olive Using RGB Images and Back Propagation Neural Networks. Plant Phenomics 2023, 5, 0061. [Google Scholar] [CrossRef]
- Mohan, P.J.; Gupta, S.D. Intelligent Image Analysis for Retrieval of Leaf Chlorophyll Content of Rice from Digital Images of Smartphone under Natural Light. Photosynthetica 2019, 57, 388–398. [Google Scholar] [CrossRef]
- Li, X.H.; Lu, X.J.; Xi, J.Y.; Zhang, Y.H.; Zhang, M.Q. Univeisal Method to Detect the Chlorophyll Content in Plant Leaves with RGB Images Captured by Smart Phones. Trans. Chin. Soc. Agric. Eng. 2021, 37, 145–151. [Google Scholar] [CrossRef]
- Jiang, C.; Johkan, M.; Hohjo, M.; Tsukagoshi, S.; Maruo, T. A Correlation Analysis on Chlorophyll Content and SPAD Value in Tomato Leaves. HortResearch 2017, 71, 37–42. [Google Scholar] [CrossRef]
- Went, F.W. Plant Growth under Controlled Conditions. II. Thermoperiodicity in Growth and Fruiting of the Tomato. Am. J. Bot. 1944, 31, 135–150. [Google Scholar] [CrossRef]
- Abdikan, S.; Sekertekin, A.; Narin, O.G.; Delen, A.; Sanli, F.B. A Comparative Analysis of SLR, MLR, ANN, XGBoost and CNN for Crop Height Estimation of Sunflower Using Sentinel-1 and Sentinel-2. Adv. Space Res. 2023, 71, 3045–3059. [Google Scholar] [CrossRef]
- Özreçberoğlu, N.; Kahramanoğlu, İ. Mathematical Models for the Estimation of Leaf Chlorophyll Content Based on RGB Colours of Contact Imaging with Smartphones: A Pomegranate Example. Folia Hortic. 2020, 32, 57–67. [Google Scholar] [CrossRef]
- Al-Gaadi, K.A.; Tola, E.; Madugundu, R.; Zeyada, A.M.; Alameen, A.A.; Edrris, M.K.; Edrees, H.F.; Mahjoop, O. Response of Leaf Photosynthesis, Chlorophyll Content and Yield of Hydroponic Tomatoes to Different Water Salinity Levels. PLoS ONE 2024, 19, e0293098. [Google Scholar] [CrossRef]
Color Space | Number | Color Features | Formula and Meaning |
---|---|---|---|
RGB | 19 | R | R |
G | G | ||
B | B | ||
R/B | R/B | ||
G/B | G/B | ||
B/R | B/R | ||
B/G | B/G | ||
R − B | R − B | ||
G − B | G − B | ||
R − B − G | R − B − G | ||
(G + B − R)/(2B) | (G + B − R)/(2B) | ||
(G + B − R)/(2G) | (G + B − R)/(2G) | ||
(G + B − R)/(2R) | (G + B − R)/(2R) | ||
(B − G − R)/(B + G) | (B − G − R)/(B + G) | ||
(2G − R − B)/(2G + R + B) | (2G − R − B)/(2G + R + B) | ||
(R − G − B)/(R + G) | (R − G − B)/(R + G) | ||
(R − G − B)/(G + B) | (R − G − B)/(G + B) | ||
(B − G − R)/(R + B) | (B − G − R)/(R + B) | ||
(B − G − R)/(G + R) | (B − G − R)/(G + R) | ||
Normalized RGB | 8 | r | R/(R + G + B) |
g | G/(R + G + B) | ||
b | B/(R + G + B) | ||
r/b | r/b | ||
g/b | g/b | ||
r − b | r − b | ||
g − b | g − b | ||
r − g | r − g | ||
HSI | 3 | H | H channel average value, Represents the type of color (Hue). |
S | S channel average value, Represents the purity of the color (Saturation). | ||
I | I channel average value, Represents the overall brightness of the color (Intensity). | ||
Lab | 3 | L | L channel average value, Represents the brightness (Lightness). |
A | A channel average value, Represents the green-red axis (Green-Red). | ||
B_1 | B channel average value, Represents the blue-yellow axis (Blue-Yellow). | ||
Others | 9 | RGBVI | (g2 − r2)/(g2 + r2) |
GRVI | (g − r)/(g + r) | ||
ExG | 2g − r − b | ||
GLA | (2g − r − b)/(2g + r + b) | ||
ExR | 1.4r − g | ||
ExGR | ExG − 1.4r − g | ||
MGRVI | (g2 − br)/(g2 + br) | ||
VARI | (g − r)/(g + r − b) | ||
CIVE | 0.441r − 0.881g + 0.3856b + 18.78745 |
Color Features | Correlation Coefficient | Color Features | Correlation Coefficient | Color Features | Correlation Coefficient |
---|---|---|---|---|---|
R | 0.27 | R − B | −0.43 | CIVE | 0.75 |
G | 0.14 | G − B | −0.51 | RGBVI | −0.75 |
B | 0.82 | R − B − G | −0.68 | GRVI | −0.39 |
r | −0.35 | (B − G − R)/(B + G) | 0.62 | ExG | −0.75 |
g | −0.75 | (2G − R − B)/(2G + R + B) | −0.75 | GLA | −0.75 |
b | 0.66 | (R − G − B)/(R + G) | −0.44 | ExR | 0.32 |
g/b | −0.71 | (R − G − B)/(G + B) | −0.35 | ExGR | −0.62 |
r/b | −0.61 | (B − G − R)/(R + B) | 0.70 | MGRVI | −0.39 |
R/B | −0.61 | (B − G − R)/(G + R) | 0.66 | VARI | −0.18 |
G/B | −0.71 | (G + B − R)/(2B) | −0.69 | L | 0.18 |
B/R | 0.59 | (G + B − R)/(2G) | 0.53 | A | 0.50 |
B/G | 0.70 | (G + B − R)/(2R) | 0.34 | B_1 | −0.53 |
r − g | 0.49 | g − b | −0.71 | S | −0.70 |
r − b | −0.59 | H | 0.18 | I | 0.14 |
Model | Parameters | Meaning | Set Values |
---|---|---|---|
C | Penalty parameter | 1 | |
SVR | Kernel gamma | kernel function kernel parameter | linear scale |
RF | n_estimators max_depth min_samples_split min_samples_leaf | number of decision trees maximum depth of the tree minimum samples required to split a leaf node minimum samples per leaf | 80 3 2 8 |
RR | λ | control the strength of regularization | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yu, H.; Yan, J.; Meng, X. Study on the Detection of Chlorophyll Content in Tomato Leaves Based on RGB Images. Horticulturae 2025, 11, 593. https://doi.org/10.3390/horticulturae11060593
Zhang X, Yu H, Yan J, Meng X. Study on the Detection of Chlorophyll Content in Tomato Leaves Based on RGB Images. Horticulturae. 2025; 11(6):593. https://doi.org/10.3390/horticulturae11060593
Chicago/Turabian StyleZhang, Xuehui, Huijiao Yu, Jun Yan, and Xianyong Meng. 2025. "Study on the Detection of Chlorophyll Content in Tomato Leaves Based on RGB Images" Horticulturae 11, no. 6: 593. https://doi.org/10.3390/horticulturae11060593
APA StyleZhang, X., Yu, H., Yan, J., & Meng, X. (2025). Study on the Detection of Chlorophyll Content in Tomato Leaves Based on RGB Images. Horticulturae, 11(6), 593. https://doi.org/10.3390/horticulturae11060593