Optimizing Ergothioneine Biosynthesis and Antioxidant Activity in Agaricus spp. Through Amino Acid Supplementation and Yeast–Peptone Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Inoculation and Fermentation Conditions
Supplementation with Amino Acid
2.3. Optimization of Different Organic Nitrogen Sources
2.4. Harvesting of Mycelia and Determination of Mycelia Growth
2.5. Extraction Procedures
2.6. Antioxidant-Related Parameters
2.6.1. DPPH Radical Scavenging Activity
2.6.2. Ferric Reducing Antioxidant Power (FRAP) Assay
2.6.3. Total Phenolic Content
2.7. Ergo Content
2.8. Statistical Analyses
3. Results
3.1. Effects of Different Amino Acids on Ergo Contents and Growth Rate
3.2. Effects of Yeast Extract and Peptone on Ergo Contents and Growth Rate
3.3. Effects of Different Amino Acids on Antioxidant-Related Parameters
3.4. Effects of Yeast Extract and Peptone on Antioxidant-Related Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ergo | Ergothioneine |
Met | Methionine |
His | Histidine |
Cys | Cysteine |
CRD | Completely randomized design |
DW | Dry weight |
FRAP | Ferric reducing antioxidant power |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
ROS | Reactive oxygen species |
References
- Mumivand, H.; Babalar, M.; Tabrizi, L.; Craker, L.E.; Shokrpour, M.; Hadian, J. Antioxidant properties and principal phenolic phytochemicals of Iranian tarragon (Artemisia dracunculus L.) accessions. Hortic. Environ. Biotechnol. 2017, 58, 414–422. [Google Scholar] [CrossRef]
- Alamzeb, M.; Khan, B.; Ullah, I.; Omer, M. Natural Antioxidants: An Update. In Medicinal Plants—Chemical, Biochemical, and Pharmacological Approaches; IntechOpen: London, UK, 2023; Chapter 2.3. [Google Scholar]
- Ghahremani-Majd, H.; Dashti, F.; Dastan, D.; Mumivand, H.; Hadian, J.; Esna-Ashari, M. Antioxidant and antimicrobial activities of Iranian mooseer (Allium hirtifolium Boiss) populations. Hortic. Environ. Biotechnol. 2012, 53, 116–122. [Google Scholar] [CrossRef]
- Tellez-Tellez, M. Wild edible mushrooms as an alternative for the consumption of antioxidants and phenolic com-pounds: An overview. BioResources 2024, 19, 3945. [Google Scholar] [CrossRef]
- Wijesekara, T.; Xu, B. Occurrence, dietary sources, quantification and bioactivities of natural antioxidant ergothioneine–A longavity vitamin? Int. J. Food Sci. Technol. 2024, 59, 5951–5963. [Google Scholar] [CrossRef]
- Wei, L.; Liu, L.; Gong, W. Structure of mycobacterial ergothioneine-biosynthesis CS lyase EgtE. J. Biol. Chem. 2024, 300, 105539. [Google Scholar] [CrossRef]
- Chen, F.; Wang, B.; Sun, X.; Wang, Y.; Wang, R.; Li, K. Ergothioneine improves cognitive function by ameliorating mitochondrial damage and decreasing neuroinflammation in ad-galactose-induced aging model. Food Funct. 2024, 15, 11686–11696. [Google Scholar] [CrossRef]
- Fu, T.T.; Shen, L. Ergothioneine as a natural antioxidant against oxidative stress-related diseases. Front. Pharmacol. 2022, 13, 850813. [Google Scholar] [CrossRef]
- Liu, H.M.; Tang, W.; Wang, X.Y.; Jiang, J.J.; Zhang, W.; Wang, W. Safe and effective antioxidant: The biological mechanism and potential pathways of ergothioneine in the skin. Molecules 2023, 28, 1648. [Google Scholar] [CrossRef]
- Sprenger, H.G.; Mittenbuehler, M.J.; Sun, Y.; Van Vranken, J.G.; Schindler, S.; Jayaraj, A.; Spiegelman, B.M. Ergothioneine boosts mitochondrial respiration and exercise performance via direct activation of MPST. bioRxiv 2024. [Google Scholar] [CrossRef]
- Beelman, R.B.; Kalaras, M.D.; Phillips, A.T.; Richie, J.P., Jr. Is ergothioneine a ‘longevity vitamin’limited in the American diet? J. Nutr. Sci. 2020, 9, e52. [Google Scholar] [CrossRef]
- Borodina, I.; Kenny, L.C.; McCarthy, C.M.; Paramasivan, K.; Pretorius, E.; Roberts, T.J.; Kell, D.B. The biology of ergothioneine, an antioxidant nutraceutical. Nutr. Res. Rev. 2020, 33, 190–217. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Thorne, J.L.; Moore, J.B. Ergothioneine: An underrecognised dietary micronutrient required for healthy ageing? Br. J. Nutr. 2023, 129, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Mao, Y.; Liao, X.; Luo, J.; Ma, H.; Jiang, W. Recent progress in ergothioneine biosynthesis: A review. Sheng Wu Gong Cheng Xue Bao = Chin. J. Biotechnol. 2022, 38, 1408–1420. [Google Scholar]
- Dedousi, M.; Melanouri, E.M.; Panagopoulou, I.; Gardeli, C.; Papanikolaou, S.; Diamantopoulou, P. Biochemical, Functional and Antioxidant Dynamics Potential of Higher Fungi Cultivated on Agro-Industrial Residues. Part I: Cultures on Media Supplemented with Yeast Extract, Gypsum and Commodity Vegetable Oils. Resour. Chem. Mater. 2024, 3, 258–269. [Google Scholar] [CrossRef]
- Zhu, M.; Han, Y.; Hu, X.; Gong, C.; Ren, L. Ergothioneine production by submerged fermentation of a medicinal mush-room Panus conchatus. Fermentation 2022, 8, 431. [Google Scholar] [CrossRef]
- Tang, B.; Lai, P.; Weng, M.; Wu, L.; LI, Y. Optimization of submerged fermentation conditions for biosynthesis of ergothioneine and enrichment of selenium from Pleurotus eryngii 528. Food Sci. Technol. 2022, 42, e40022. [Google Scholar] [CrossRef]
- Portela, V.O.; da Rosa, O.R.; Souza, M.; de Oliveira Adolpho, L.; Dalcol, I.I.; Jacques, R.J.S. Chemical composition and bioherbicidal activity of metabolites of Mycoleptodiscus indicus produced in three culture media. Biocatal. Agric. Biotechnol. 2024, 58, 103147. [Google Scholar] [CrossRef]
- Proust, L.; Haudebourg, E.; Sourabié, A.; Pedersen, M.; Besançon, I.; Monnet, V.; Juillard, V. Multi-omics approach reveals how yeast extract peptides shape Streptococcus thermophilus metabolism. Appl. Environ. Microbiol. 2020, 86, e01446-20. [Google Scholar] [CrossRef]
- Sardar, T.; Maqbool, M.; Ishtiaq, M.; Mazhar, M.W.; El-Sheikh, M.A.; Casini, R.; Elansary, H.O. Synergistic influence of yeast extract and calcium oxide nanoparticles on the synthesis of bioactive antioxidants and metabolites in swertia chi-rata in vitro callus cultures. Molecules 2023, 28, 4607. [Google Scholar] [CrossRef]
- Liu, G.; Tiang, M.F.; Ma, S.; Wei, Z.; Liang, X.; Sajab, M.S.; Ding, G. An alternative peptone preparation using Hermetia illucens (Black soldier fly) hydrolysis: Process optimization and performance evaluation. PeerJ 2024, 12, e16995. [Google Scholar] [CrossRef]
- Rossi, E.; Efendi, R.; Rahmayuni Brsinulingga, M.S.; Yoenissa, R. Utilization of waste mixed Pangasius fish fillet and pineapple core to produce peptone for lactic acid bacteria growth media. Int. J. Vet. Sci. 2022, 11, 272–279. [Google Scholar]
- Almeida, C.F.; Manrique, Y.A.; Lopes, J.C.B.; Martins, F.G.; Dias, M.M. Recovery of ergosterol from Agaricus bisporus mushrooms via supercritical fluid extraction: A response surface Methodology optimisation. Heliyon 2024, 10, e21943. [Google Scholar] [PubMed]
- Xiong, K.; Dong, N.; Yang, B.; Chen, Y.; Liang, H.; Lin, X.; Zhang, S. Ergothioneine yield of Rhodotorula species positively correlated with hydrogen peroxide tolerance. Food Biosci. 2023, 53, 102745. [Google Scholar]
- González-Burgos, E.; Gómez-Serranillos, M.P. Effect of phenolic compounds on human health. Nutrients 2021, 13, 3922. [Google Scholar] [CrossRef]
- Ul Islam, S.N.; Arshad, M.; Ahmad, S.; Asgher, M. Role of sulfur and its crosstalk with phytohormones under abiotic stress in plants. Improv. Stress Resil. Plants 2024, 225–247. [Google Scholar] [CrossRef]
- Shumaev, K.B.; Kosmachevskaya, O.V.; Nasybullina, E.I.; Ruuge, E.K.; Kalenikova, E.I.; Topunov, A.F. Histidine-Bound Dinitrosyl Iron Complexes: Antioxidant and Antiradical Properties. Int. J. Mol. Sci. 2023, 24, 17236. [Google Scholar] [CrossRef]
- Mumivand, H.; Ebrahimi, A.; Shayganfar, A.; Khoshro, H.H. Screening of tarragon accessions based on physiological and phytochemical responses under water deficit. Sci. Rep. 2021, 11, 17839. [Google Scholar]
- Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and antioxidant properties of Rosemary and Sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 2007, 55, 7879–7885. [Google Scholar] [CrossRef]
- Jadidi, M.; Mumivand, H.; Nia, A.E.; Shayganfar, A.; Maggi, F. UV-A and UV-B combined with photosynthetically active radiation change plant growth, antioxidant capacity and essential oil composition of Pelargonium graveolens. BMC Plant Biol. 2023, 23, 555. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual Methods. Am. J. Enol. Vitic. 1997, 28, 49–55. [Google Scholar] [CrossRef]
- Dubost, N.J.; Ou, B.; Beelman, R.B. Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chem. 2007, 105, 727–735. [Google Scholar] [CrossRef]
- Adah, A. The Potentials of Ergothioneine in the management of diseases in animals. Media Kedokt. Hewan 2023, 34, 36–52. [Google Scholar] [CrossRef]
- Tanaka, N.; Kawano, Y.; Satoh, Y.; Dairi, T.; Ohtsu, I. Gram-scale fermentative production of ergothioneine driven by overproduction of cysteine in Escherichia coli. Sci. Rep. 2019, 9, 1895. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Li, J.; DU, G.; Kang, Z. Construction and optimization of ergothioneine-producing Escherichia coli. Sheng Wu Gong Cheng Xue Bao = Chin. J. Biotechnol. 2022, 38, 796–806. [Google Scholar]
- Yang, X.; Lin, S.; Lin, J.; Wang, Y.; Lin, J.F.; Guo, L.Q. The biosynthetic pathway of ergothioneine in culinary-medicinal winter mushroom, Flammulina velutipes (Agaricomycetes). Int. J. Med. Mushrooms 2020, 22, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Pluskal, T.; Ueno, M.; Yanagida, M. Genetic and metabolomic dissection of the ergothioneine and selenoneine biosynthetic pathway in the fission yeast, S. pombe, and construction of an overproduction system. PLoS ONE 2014, 9, e97774. [Google Scholar] [CrossRef]
- Kathuria, K.R.; Irani, S.; Liu, P.; Zhang, Y. Examining the mechanism of Egt2 in ergothioneine biosynthesis. FASEB J. 2017, 31, 606–608. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, J.; Feng, M.; Chen, S. Engineering methyltransferase and sulfoxide synthase for high-yield production of ergothioneine. J. Agric. Food Chem. 2022, 71, 671–679. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Zhao, M.; Zabed, H.M.; Qi, X. Fermentative production of ergothioneine by exploring novel biosynthetic pathway and remodulating precursor synthesis pathways. J. Agric. Food Chem. 2024, 72, 14264–14273. [Google Scholar] [CrossRef]
- Jordá, T.; Puig, S. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes 2020, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Jahanbani, S.; Mumivand, H.; Zahedi, B.; Argento, S. Foliar Application of Urea and Amino Acids Regulates Growth, Photosynthesis, Pigments, Antioxidant Activity, and the Essential Oil Content and Composition of Basil (Ocimum basilicum L.). Agronomy 2024, 14, 2950. [Google Scholar] [CrossRef]
- Hacham, Y.; Kaplan, A.; Cohen, E.; Gal, M.; Amir, R. Sulfur Metabolism under stress: Oxidized glutathione inhibits me-thionine biosynthesis by destabilizing the enzyme cystathionine γ-synthase. J. Integr. Plant Biol. 2024, 67, 87–100. [Google Scholar] [PubMed]
- Sahiba, N.; Sethiya, A.; Teli, P.; Agarwal, S. Imidazole containing heterocycles as antioxidants. In Imidazole-Based Drug Discovery; Elsevier: Amsterdam, The Netherlands, 2021; p. 263. [Google Scholar]
- Khanizadeh, P.; Mumivand, H.; Morshedloo, M.R.; Maggi, F. Application of Fe2O3 nanoparticles improves the growth, antioxidant power, flavonoid content, and essential oil yield and composition of Dracocephalum kotschyi Boiss. Front. Plant Sci. 2024, 15, 1475284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hou, X.; Xu, D.; Xue, M.; Zhang, J.; Wang, J.; Zhou, L. Effects of carbon, nitrogen, ambient pH and light on mycelial growth, sporulation, sorbicillinoid biosynthesis and related gene expression in Ustilaginoidea virens. J. Fungi 2023, 9, 390. [Google Scholar] [CrossRef]
- Tao, Z.; Yuan, H.; Liu, M.; Liu, Q.; Zhang, S.; Liu, H.; Jiang, Y.; Huang, D.; Wang, T. Yeast extract: Characteristics, production, applications and future perspectives. J. Microbiol. Biotechnol. 2022, 33, 151. [Google Scholar]
- Semper, C.; Pham, T.T.M.; Ram, S.; Palys, S.; Evdokias, G.; Ouedraogo, J.P.; Moisan, M.-C.; Geoffrion, N.; Reid, I.; Di Falco, M.; et al. Global survey of secondary metabolism in Aspergillus niger via activation of specific transcription factors. bioRxiv 2024. [Google Scholar] [CrossRef]
- Van der Hoek, S.A.; Darbani, B.; Zugaj, K.E.; Prabhala, B.K.; Biron, M.B.; Randelovic, M.; Borodina, I. Engineering the yeast Saccharomyces cerevisiae for the production of L-(+)-ergothioneine. Front. Bioeng. Biotechnol. 2019, 7, 262. [Google Scholar]
- Sripilai, K.; Chaicharoenaudomrung, N.; Phonchai, R.; Chueaphromsri, P.; Kunhorm, P.; Noisa, P. Development of an animal-free nitrogen source for the liquid surface culture of Cordyceps militaris. Lett. Appl. Microbiol. 2023, 76, ovad053. [Google Scholar]
- Ahmadi, S.Z.; Zahedi, B.; Ghorbanpour, M.; Mumivand, H. Comparative morpho-physiological and biochemical responses of Capsicum annuum L. plants to multi-walled carbon nanotubes, fullerene C60 and graphene nanoplatelets exposure under water deficit stress. BMC Plant Biol. 2024, 24, 116. [Google Scholar] [CrossRef]
- Shrivastava, M.; Feng, J.; Coles, M.; Clark, B.; Islam, A.; Dumeaux, V.; Whiteway, M. Modulation of the complex regulatory network for methionine biosynthesis in fungi. Genetics 2021, 217, iyaa049. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Jiang, X.; Wang, S.; Tian, X.; Chu, J. Transcriptomics-guided optimization of vitamins to enhance erythromycin yield in saccharopolyspora erythraea. Bioresour. Bioprocess. 2024, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Arslan, N.P.; Dawar, P.; Albayrak, S.; Doymus, M.; Azad, F.; Esim, N.; Taskin, M. Fungi-derived natural antioxidants. Crit. Rev. Food Sci. Nutr. 2023, 65, 1593–1616. [Google Scholar] [CrossRef]
- Nethravathy, V.; Dakshayini, M. Potential Antioxidant Enzymes from Fungi and Their Clinical Significance. In Fungal Resources for Sustainable Economy: Current Status and Future Perspectives; Springer: Singapore, 2023; pp. 147–177. [Google Scholar]
- Jin, M.Y.; Wang, M.; Wu, X.H.; Fan, M.Z.; Li, H.X.; Guo, Y.Q.; Lian, M.L. Improving flavonoid accumulation of bioreac-tor-cultured adventitious roots in Oplopanax elatus using yeast extract. Plants 2023, 12, 2174. [Google Scholar] [CrossRef]
- Nester, G.V.; Ditchenko, T.I. Stimulation of phenolic nature secondary metabolites biosynthesis in Echinacea purpurea L. Moench Suspens. Cell Cult. Under Influ. Yeast Extr. Elisitors 2020, 2, 37–48. [Google Scholar] [CrossRef]
- Rani, D.; Meelaph, T.; De-Eknamkul, W.; Vimolmangkang, S. Yeast extract elicited isoflavonoid accumulation and bio-synthetic gene expression in Pueraria candollei var. mirifica cell cultures. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 141, 661–667. [Google Scholar]
- Wang, C.; Ma, W.; Xu, L.; Wei, Z.; Tang, K.; Zhou, J.; Chen, J. Integrative metabolic and cellular organelle engineering for improving biosynthesis of flavonoid compounds in saccharomyces cerevisiae. Food Biosci. 2024, 60, 103996. [Google Scholar]
Amino Acid (mM) | Agaricus bitorquis | Agaricus blazei | Agaricus bisporus (White) | Agaricus bisporus (Brown) | ||||
---|---|---|---|---|---|---|---|---|
Met * + Cys ** + His *** | Ergothioneine (mg/g DW) | Growth Rate (g DW/L) | Ergothioneine (mg/g DW) | Growth Rate (g DW/L) | Ergothioneine (mg/g DW) | Growth Rate (g DW/L) | Ergothioneine (mg/g DW) | Growth Rate (g DW/L) |
0 + 0 + 0 | 1.03 ± 0.1 e **** | 3.1 ± 0.43 a | 0.89 ± 0.13 j | 2.86 ± 0.48 a | 0.46 ± 0.14 i | 2.7 ± 0.37 a | 0.57 ± 0.15 j | 2.48 ± 0.35 a |
0.5 + 0 + 0 | 1.24 ± 0.12 cd | 2.87 ± 0.52 b | 1.12 ± 0.18 g | 2.64 ± 0.43 c | 0.67 ± 0.16 ef | 2.55 ± 0.5 cd | 0.85 ± 0.19 fg | 2.22 ± 0.43 de |
1 + 0 + 0 | 1.45 ± 0.25 bcd | 2.75 ± 0.4 cd | 1.27 ± 0.21 e | 2.55 ± 0.44 d | 0.79 ± 0.15 cde | 2.47 ± 0.25 ef | 0.96 ± 0.16 d | 2.22 ± 0. 5 de |
2 + 0 + 0 | 1.65 ± 0.11 ab | 2.66 ± 0.4 de | 1.45 ± 0.23 c | 2.54 ± 0.38 d | 0.87 ± 0.23 c | 2.42 ± 0.34 fg | 1.05 ± 0.25 c | 2.1 ± 0.37 ef |
0 + 0.5 + 0 | 1.17 ± 0.12 d | 2.93 ± 0.53 b | 0.92 ± 0.15 i | 2.74 ± 0.42 b | 0.57 ± 0.16 h | 2.67 ± 0.33 b | 0.70 ± 0.14 i | 2.36 ± 0.44 b |
0 + 1 + 0 | 1.25 ± 0.12 cd | 2.87 ± 0.41 b | 1.11 ± 0.21 g | 2.66 ± 0.56 c | 0.67 ± 0.18 fg | 2.58 ± 0.52 c | 0.81 ± 0.18 gh | 2.29 ± 0.43 bc |
0 + 2 + 0 | 1.32 ± 0.11 cd | 2.73 ± 0.3 de | 1.16 ± 0.24 f | 2.56 ± 0.45 d | 0.72 ± 0.24 ef | 2.46 ± 0.39 ef | 0.85 ± 0.19 fg | 2.19 ± 0.41 ef |
0 + 0 + 0.5 | 1.19 ± 0.13 d | 2.85 ± 0.4 bc | 1.06 ± 0.16 h | 2.66 ± 0.38 c | 0.63 ± 0.12 gh | 2.57 ± 0.4 cd | 0.77 ± 0.17 h | 2.29 ± 0.55 bc |
0 + 0 + 1 | 1.33 ± 0.13 cd | 2.7 ± 0.53 de | 1.17 ± 0.14 f | 2.53 ± 0.39 d | 0.75 ± 0.16 ef | 2.49 ± 0.35 fg | 0.89 ± 0.22 ef | 2.18 ± 0.38 ef |
0 + 0 + 2 | 1.45 ± 0.2 bcd | 2.64 ± 0.32 e | 1.26 ± 0.23 e | 2.47 ± 0.35 e | 0.78 ± 0.13 e | 2.39 ± 0.33 g | 0.94 ± 0.23 de | 2.14 ± 0.36 f |
0.5 + 0.5 + 0.5 | 1.84 ± 0.14 a | 2.89 ± 0.33 b | 1.58 ± 0.26 b | 2.64 ± 0.43 c | 0.98 ± 0.25 b | 2.68 ± 0.57 b | 1.17 ± 0.28 b | 2.41 ± 0.46 b |
1 + 1 + 1 | 1.81 ± 0.14 a | 2.38 ± 0.41 f | 1.82 ± 0.27 a | 2.15 ± 0.39 f | 1.21 ± 0.27 a | 2.05 ± 0.39 h | 1.33 ± 0.23 a | 1.11 ± 0.13 g |
2 + 2 + 2 | 1.51 ± 0.15 abc | 1.93 ± 0.28 g | 1.38 ± 0.29 d | 1.83 ± 0.27 g | 0.86 ± 0.15 cd | 1.74 ± 0.23 i | 1.04 ± 0.25 c | 1.06 ± 0.27 h |
Yeast + Peptone (g/L) | Agaricus bitorquis | Agaricus blazei | Agaricus bisporus (White) | Agaricus bisporus (Brown) | ||||
---|---|---|---|---|---|---|---|---|
Ergothioneine (mg/g DW) | Growth Rate (g DW/L) | Ergothioneine (mg/g DW) | Growth Rate (g DW/L) | Ergothioneine (mg/g DW) | Growth Rate (g DW/L) | Ergothioneine (mg/g DW) | Growth Rate (g DW/L) | |
0 + 0 | 1.02 ± 0.11 d * | 1.25 ± 0.15 d | 0.92 ± 0.13 f | 1.17 ± 0.25 d | 0.49 ± 0.14 d | 0.88 ± 0.13 d | 0.58 ± 0.15 f | 0.95 ± 0.21 d |
2 + 0 | 2.15 ± 0.18 b | 2.43 ± 0.27 b | 1.84 ± 0.33 b | 2.27 ± 0.32 b | 1.56 ± 0.31 b | 1.18 ± 0.18 b | 1.53 ± 0.34 b | 1.84 ± 0.34 b |
4 + 0 | 1.91 ± 0.24 c | 2.02 ± 0.35 bc | 1.61 ± 0.24 d | 1.91 ± 0.31 c | 1.38 ± 0.23 c | 1.43 ± 0.19 bc | 1.34 ± 0.22 d | 1.54 ± 0.33 bc |
0 + 2 | 2.1 ± 0.25 b | 1.92 ± 0.33 c | 1.73 ± 0.33 c | 1.79 ± 0.23 c | 1.52 ± 0.27 b | 1.35 ± 0.21 c | 1.44 ± 0.21 c | 1.45 ± 0.27 c |
0 + 4 | 1.81 ± 0.21 c | 2 ± 0.39 c | 1.51 ± 0.24 e | 1.88 ± 0.25 c | 1.31 ± 0.22 c | 1.41 ± 0.26 c | 1.25 ± 0.29 e | 1.52 ± 0.19 c |
2 + 2 | 2.17 ± 0.38 a | 3.05 ± 0.62 a | 2.04 ± 0.29 a | 2.85 ± 0.53 a | 1.96 ± 0.26 a | 2.14 ± 0.29 a | 1.69 ± 0.28 a | 2.31 ± 0.39 a |
4 + 4 | 1.14 ± 0.26 d | 1.26 ± 0.28 d | 1.1 ± 0.18 e | 1.18 ± 0.32 d | 0.74 ± 0.21 d | 0.89 ± 0.18 d | 0.83 ± 0.13 e | 0.93 ± 0.13 d |
Amino Acid (mM) | Agaricus bitorquis | Agaricus blazei | Agaricus bisporus (White) | Agaricus bisporus (Brown) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Met * + Cys ** + His *** | DPPH (mg/mL) | FRAP (µmol T/g DW) | Total Phenolic (mg GAE/g DW) | DPPH (mg/mL) | FRAP (µmol T/g DW) | Total Phenolic (mg GAE/g DW) | DPPH (mg/mL) | FRAP (µmol T/g DW) | Total Phenolic (mg GAE/g DW) | DPPH (mg/mL) | FRAP (µmol T/g DW) | Total Phenolic (mg GAE/g DW) |
0 + 0 + 0 | 4.21 ± 0.5 a **** | 320.3 ± 22.5 h | 5.73 ± 1.12 f | 4.73 ± 0.65 a | 308.8 ± 22.6 i | 5.42 ± 1.02 f | 5.11 ± 0.94 a | 257.2 ± 22.9 i | 4.83 ± 0.93 c | 4.85 ± 0.86 a | 281.5 ± 24.9 i | 5.00 ± 1.04 g |
0.5 + 0 + 0 | 4.13 ± 0.45 ab | 340.7 ± 28.5 g | 5.95 ± 0.95 de | 4.47 ± 0.67 b | 324.6 ± 31.5 g | 5.56 ± 0.82 de | 4.86 ± 0.87 b | 270.9 ± 26.6 gh | 4.97 ± 1.04 bc | 4.65 ± 0.99 b | 297.4 ± 28.8 g | 5.05 ± 1.33 fg |
1 + 0 + 0 | 3.93 ± 0.39 c | 367.9 ± 31.3 d | 6.03 ± 1.24 cd | 4.35 ± 0.72 c | 346.0 ± 28.7 d | 5.65 ± 0.91 bc | 4.69 ± 0.82 de | 291.1 ± 28.2 de | 5.05 ± 1.11 abc | 4.47 ± 0.93 de | 319.1 ± 32.1 d | 5.22 ± 1.11 bc |
2 + 0 + 0 | 3.90 ± 0.54 c | 368.4 ± 11.5 d | 6.16 ± 1.05 b | 4.26 ± 0.63 d | 345.8 ± 29.4 d | 5.68 ± 0.96 b | 4.65 ± 0.94 e | 294.8 ± 32.6 d | 5.05 ± 0.84 abc | 4.43 ± 1.14 e | 320.2 ± 27.4 d | 5.23 ± 1.22 bc |
0 + 0.5 + 0 | 4.13 ± 0.65 ab | 337.3 ± 16.7 g | 6.06 ± 0.88 bc | 4.47 ± 0.65 b | 317.4 ± 33.5 h | 5.62 ± 1.22 c | 4.85 ± 1.01 b | 266.3 ± 31.7 h | 4.95 ± 0.87 c | 4.55 ± 1.22 cd | 292.2 ± 24.4 h | 5.12 ± 1.29 def |
0 + 1 + 0 | 4.07 ± 0.76 b | 345.1 ± 33.4 fg | 5.95 ± 1.11 de | 4.44 ± 0.95 b | 333.1 ± 37.6 f | 5.57 ± 1.18 d | 4.77 ± 0.71 c | 276.8 ± 28.6 fg | 6.63 ± 1.08 c | 4.57 ± 0.74 bc | 303.7 ± 23.3 f | 5.12 ± 1.24 de |
0 + 2 + 0 | 4.06 ± 0.73 b | 337.9 ± 23.7 g | 5.93 ± 0.85 de | 4.49 ± 0.91 b | 322.8 ± 26.9 g | 5.52 ± 1.01 e | 4.89 ± 0.79 b | 269.2 ± 25.4 gh | 4.92 ± 1.24 c | 4.64 ± 0.77 b | 296.1 ± 25.6 g | 5.06 ± 1.35 efg |
0 + 0 + 0.5 | 3.93 ± 0.55 c | 349.4 ± 42.5 ef | 6.07 ± 1.22 bc | 4.37 ± 0.82 c | 331.1 ± 25.5 f | 5.62 ± 1.13 c | 4.74 ± 0.77 cd | 277.1 ± 20.4 fg | 5.00 ± 1.33 bc | 4.50 ± 0.82 cde | 303.9 ± 29.9 f | 5.15 ± 1.41 cd |
0 + 0 + 1 | 3.95 ± 0.52 c | 347.1 ± 38.7 fg | 6.08 ± 1.16 bc | 4.35 ± 0.75 c | 334.6 ± 37.8 f | 5.63 ± 1.06 c | 4.69 ± 0.96 de | 280.5 ± 22.6 f | 5.03 ± 1.14 abc | 4.49 ± 0.84 de | 305.2 ± 21.3 f | 5.20 ± 1.44 bc |
0 + 0 + 2 | 3.91 ± 0.59 c | 357.5 ± 25.9 e | 5.95 ± 0.98 de | 4.28 ± 0.62 d | 341.1 ± 39.5 e | 5.52 ± 0.88 d | 4.65 ± 0.98 e | 285.1 ± 22.6 ef | 4.92 ± 1.33 c | 4.43 ± 1.14 e | 312.1 ± 32.3 e | 5.21 ± 1.13 bc |
0.5 + 0.5 + 0.5 | 3.71 ± 0.48 d | 424.1 ± 23.4 b | 6.37 ± 0.93 a | 4.09 ± 0.96 e | 407.2 ± 51.4 b | 5.92 ± 1.02 a | 4.42 ± 0.66 f | 338.1 ± 20.9 b | 5.26 ± 0.84 ab | 4.21 ± 1.11 f | 371.8 ± 33.1 b | 5.48 ± 1.19 a |
1 + 1 + 1 | 3.43 ± 0.44 e | 448.2 ± 33.7 a | 6.17 ± 1.21 b | 3.75 ± 0.52 f | 426.7 ± 42.4 a | 5.66 ± 1.08 b | 4.10 ± 0.69 g | 361.3 ± 28.9 a | 4.87 ± 0.88 c | 3.90 ± 0.77 g | 392.8 ± 26.6 a | 5.28 ± 1.41 b |
2 + 2 + 2 | 3.70 ± 0.45 d | 394.1 ± 26. 5 c | 5.85 ± 0.84 e | 4.05 ± 0.55 e | 375.1 ± 38.7 c | 5.45 ± 1.01 f | 4.44 ± 0.90 f | 319.1 ± 32.7 c | 4.85 ± 0.99 c | 4.20 ± 0.84 f | 346.5 ± 25.9 c | 5.24 ± 1.03 b |
Yeast + Peptone (g/L) | Agaricus bitorquis | Agaricus blazei | Agaricus bisporus (White) | Agaricus bisporus (Brown) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DPPH (mg/mL) | FRAP (µmol T/g DW) | Total Phenolic (mg GAE/g DW) | DPPH (mg/mL) | FRAP (µmol T/g DW) | Total Phenolic (mg GAE/g DW) | DPPH (mg/mL) | FRAP (µmol T/g DW) | Total Phenolic (mg GAE/g DW) | DPPH (mg/mL) | FRAP (µmol T/g DW) | Total Phenolic (mg GAE/g DW) | |
0 + 0 | 4.06 ± 1.01 a * | 328.8 ± 21.1 d | 5.28 ± 1.07 e | 4.63 ± 1.01 a | 303.5 ± 31.1 c | 5.45 ± 1.55 d | 5.11 ± 1.09 a | 251.1 ± 26 c | 5.33 ± 1.11 c | 4.85 ± 1.05 a | 280.6 ± 32.9 c | 5.02 ± 1.05 c |
2 + 0 | 3.55 ± 0.84 c | 359.7 ± 27.3 b | 6.12 ± 1.05 d | 4.27 ± 1.22 b | 334.6 ± 33.5 b | 5.76 ± 1.23 c | 4.86 ± 1.05 b | 273.3 ± 27 b | 4.97 ± 1.16 d | 4.79 ± 1.01 a | 287.4 ± 33.4 c | 5.22 ± 1.14 b |
4 + 0 | 3.77 ± 1.01 b | 347.4 ± 24.9 c | 6.13 ± 1.41 d | 4.15 ± 1.27 bc | 335.2 ± 41.4 b | 5.88 ± 1.07 bc | 4.69 ± 1.44 c | 288.4 ± 35 ab | 5.25 ± 1.09 c | 4.47 ± 1.22 b | 322.1 ± 22.7 ab | 5.31 ± 1.22 ab |
0 + 2 | 3.45 ± 1.09 c | 371.5 ± 26.8 a | 6.43 ± 1.55 b | 3.96 ± 1.08 c | 348.1 ± 28.9 a | 5.93 ± 1.09 b | 4.65 ± 1.23 c | 297.4 ± 33 a | 5.22 ± 1.18 c | 4.43 ± 1.11 b | 333.2 ± 32.9 a | 5.43 ± 1.32 a |
0 + 4 | 3.68 ± 1.14 b | 358.3 ± 31.4 b | 6.1 ± 1.32 d | 3.97 ± 1.09 c | 327.3 ± 44.8 b | 5.98 ± 1.02 b | 4.85 ± 1.20 b | 296.3 ± 31 a | 5.35 ± 1.22 c | 4.45 ± 0.89 b | 333.7 ± 25.9 a | 5.22 ± 1.38 b |
2 + 2 | 3.07 ± 0.74 d | 375.1 ± 41.7 a | 6.71 ± 1.62 a | 3.72 ± 0.81 d | 353.4 ± 31.9 a | 6.17 ± 1.28 a | 4.51 ± 1.3 d | 286.8 ± 37 ab | 5.92 ± 1.31 a | 4.27 ± 0.89 c | 326.6 ± 32.6 ab | 5.42 ± 1.09 a |
4 + 4 | 3.76 ± 1.22 b | 359.9 ± 40.1 b | 6.23 ± 1.66 c | 3.99 ± 0.86 c | 332.4 ± 33.2 b | 6.22 ± 1.27 a | 4.89 ± 1.09 b | 279.2 ± 44 b | 5.63 ± 1.19 b | 4.24 ± 1.02 c | 312.2 ± 8.8 b | 5.33 ± 1.15 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghahremani-majd, H.; Mumivand, H.; Khanizadeh, P.; Bakhshipoor, F.; Argento, S. Optimizing Ergothioneine Biosynthesis and Antioxidant Activity in Agaricus spp. Through Amino Acid Supplementation and Yeast–Peptone Mixtures. Horticulturae 2025, 11, 348. https://doi.org/10.3390/horticulturae11040348
Ghahremani-majd H, Mumivand H, Khanizadeh P, Bakhshipoor F, Argento S. Optimizing Ergothioneine Biosynthesis and Antioxidant Activity in Agaricus spp. Through Amino Acid Supplementation and Yeast–Peptone Mixtures. Horticulturae. 2025; 11(4):348. https://doi.org/10.3390/horticulturae11040348
Chicago/Turabian StyleGhahremani-majd, Hojat, Hasan Mumivand, Parisa Khanizadeh, Fatemeh Bakhshipoor, and Sergio Argento. 2025. "Optimizing Ergothioneine Biosynthesis and Antioxidant Activity in Agaricus spp. Through Amino Acid Supplementation and Yeast–Peptone Mixtures" Horticulturae 11, no. 4: 348. https://doi.org/10.3390/horticulturae11040348
APA StyleGhahremani-majd, H., Mumivand, H., Khanizadeh, P., Bakhshipoor, F., & Argento, S. (2025). Optimizing Ergothioneine Biosynthesis and Antioxidant Activity in Agaricus spp. Through Amino Acid Supplementation and Yeast–Peptone Mixtures. Horticulturae, 11(4), 348. https://doi.org/10.3390/horticulturae11040348