Effect of Plastic MAH Storage, 1-MCP, and Coating on Fruit Storability of ‘Sweet Gold’ and ‘Goldone’ Kiwifruit
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Treatment
2.3. Fruit Quality Parameters
2.4. Antioxidant Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Changes in Fruit Respiration Rates
3.2. Changes in Fruit Quality Parameters
3.3. Changes in Antioxidants
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
1-MCP | 1-Methylcyclopropene |
ABTS | 2,2′-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) |
DAS | Days after storage |
MA | Modified atmosphere |
MAH | Modified atmosphere and humidity |
TSS | Total soluble solids |
References
- Chen, Y.; Hu, X.; Shi, Q.; Lu, Y.; Yan, J.; Wu, D.T.; Qin, W. Changes in the fruit quality, phenolic compounds, and antioxidant potential of red-fleshed kiwifruit during postharvest ripening. Foods 2023, 12, 1509. [Google Scholar] [CrossRef]
- Ferguson, A.R. Kiwifruit cultivars: Breeding and selection. Acta Hortic. 1999, 498, 43–52. [Google Scholar] [CrossRef]
- Huang, W.; Billing, D.; Cooney, J.; Wang, R.; Burdon, J. The role of ethylene and abscisic acid in kiwifruit ripening during postharvest dehydration. Postharvest Biol. Technol. 2021, 178, 111559. [Google Scholar] [CrossRef]
- Statista. Statista Research Department Report, Production Volume of Kiwis Worldwide in 2022, by Leading Country. 2024. Available online: https://www.statista.com/statistics/812434/production-volume-of-leading-kiwi-producing-countries/ (accessed on 1 August 2025).
- Kim, S.C.; Kim, C.H.; Lim, C.K.; Song, E.Y. ‘Sweet Gold’, A kiwifruit variety with high firmness. Korean J. Breed. Sci. 2018, 50, 245–248. [Google Scholar] [CrossRef]
- Kim, S.H.; Cho, J.G.; Kim, H.L.; Lee, M.H.; Chae, W.B.; Kang, S.K.; Kwack, Y.B. Fruit characteristics of kiwifruit as affected by weather conditions during the period of fruit growth. Korean J. Int. Agric. 2021, 33, 75–81. [Google Scholar] [CrossRef]
- Atkinson, R.G.; Gunaseelan, K.; Wang, M.Y.; Luo, L.; Wang, T.; Norling, C.L.; Johnston, S.L.; Maddumage, R.; Schröder, R.; Schaffer, R.J. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line. J. Exp. Bot. 2011, 62, 3821–3835. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Wu, D.T.; Ali, M.; Liu, Y.; Zhuang, Q.G.; Wadood, S.A.; Liao, Q.H.; Liu, H.Y.; Gan, R.Y. Innovative postharvest strategies for maintaining the quality of kiwifruit during storage: An updated review. Food Front. 2024, 5, 1933–1950. [Google Scholar] [CrossRef]
- Goldberg, T.; Agra, H.; Ben-Arie, R. Quality of “Hayward” kiwifruit in prolonged cold storage as affected by the stage of maturity at harvest. Horticulturae 2021, 7, 358. [Google Scholar] [CrossRef]
- Watkins, C.B. The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol. Adv. 2006, 24, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Wang, Y.; Liu, Y.; Yong, K.; Liu, Z. 1-MCP extends the shelf life of ready-to-eat “Hayward” and “Qihong” kiwifruit stored at room temperature. Sci. Hortic. 2021, 289, 110437. [Google Scholar] [CrossRef]
- Park, Y.S.; Im, M.H.; Gorinstein, S. Shelf life extension and antioxidant activity of “Hayward” kiwi fruit as a result of prestorage conditioning and 1-methylcyclopropene treatment. J. Food Sci. Technol. 2015, 52, 2711–2720. [Google Scholar] [CrossRef]
- Allegra, A.; Inglese, P.; Sortino, G.; Settanni, L.; Todaro, A.; Liguori, G. The influence of Opuntia ficus-indica mucilage edible coating on the quality of “Hayward” kiwifruit slices. Postharvest Biol. Technol. 2016, 120, 45–51. [Google Scholar] [CrossRef]
- Benítez, S.; Achaerandio, I.; Pujolà, M.; Sepulcre, F. Aloe vera as an alternative to traditional edible coatings used in fresh-cut fruits: A case of study with kiwifruit slices. LWT Food Sci. Technol. 2015, 61, 184–193. [Google Scholar] [CrossRef]
- Diab, T.; Biliaderis, C.G.; Gerasopoulos, D.; Sfakiotakis, E. Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. J. Sci. Food Agric. 2001, 81, 988–1000. [Google Scholar] [CrossRef]
- Kumarihami, H.M.P.C.; Kim, Y.H.; Kwack, Y.B.; Kim, J.; Kim, J.G. Application of chitosan as edible coating to enhance storability and fruit quality of kiwifruit: A review. Sci. Hortic. 2022, 292, 110647. [Google Scholar] [CrossRef]
- Xia, Y.; Zhuo, R.; Li, B.; Tian, S. Effects of 1-methylcyclopropene on disease resistance of red-fleshed kiwifruit during long-term cold storage and the possible mechanisms. N. Z. J. Crop Hortic. Sci. 2021, 49, 182–195. [Google Scholar] [CrossRef]
- Belay, Z.A.; Caleb, O.J.; Mahajan, P.V.; Opara, U.L. Design of active modified atmosphere and humidity packaging (MAHP) for “Wonderful” pomegranate arils. Food Bioprocess Technol. 2018, 11, 1478–1494. [Google Scholar] [CrossRef]
- Jung, S.K.; Lee, J.K.; Choi, H.S. Antioxidants and shelf-life of “Changbang” peaches as affected by coating after cooling. Sustainability 2023, 15, 14242. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Odriozolaserrano, I.; Hernandezjover, T.; Martinbelloso, O. Comparative evaluation of UV-HPLC methods and reducing agents to determine vitamin C in fruits. Food Chem. 2007, 105, 1151–1158. [Google Scholar] [CrossRef]
- Lin, D.; Zhao, Y. Innovation in development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr. Rev. Food Sci. Food Saf. 2007, 6, 60–75. [Google Scholar] [CrossRef]
- Ali, S.; Ishtiaq, S.; Nawaz, A.; Naz, S.; Ejaz, S.; Haider, M.W.; Shah, A.A.; Ali, M.M.; Javad, S. Layer by layer application of chitosan and carboxymethyl cellulose coatings delays ripening of mango fruit by suppressing cell wall polysaccharides disassembly. Int. J. Biol. Macromol. 2024, 256, 128429. [Google Scholar] [CrossRef]
- Bansal, H.; Singh, H.P.; Singh, S.; Sharma, A.; Singh, J.; Kaur, K.; Mehta, S.K. Preserving plum perfection: Buckwheat starch edible coating with xanthan gum and lemongrass essential oil. Int. J. Biol. Macromol. 2024, 274, 133239. [Google Scholar] [CrossRef]
- Riva, S.C.; Opara, U.O.; Fawole, O.A. Recent developments on postharvest application of edible coatings on stone fruit: A review. Sci. Hortic. 2020, 262, 109074. [Google Scholar] [CrossRef]
- Valero, D.; Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol. Technol. 2013, 77, 1–6. [Google Scholar] [CrossRef]
- Zhou, W.; He, Y.; Liu, F.; Liao, L.; Huang, X.; Li, R.; Zou, Y.; Zhou, L.; Zou, L.; Liu, Y.; et al. Carboxymethyl chitosan-pullulan edible films enriched with galangal essential oil: Characterization and application in mango preservation. Carbohydr. Polym. 2021, 256, 117579. [Google Scholar] [CrossRef]
- Manolopoulou, H.; Papadopoulou, P. A study of respiratory and physico-chemical changes of four kiwi fruit cultivars during cool-storage. Food Chem. 1998, 63, 529–534. [Google Scholar] [CrossRef]
- Fullerton, C.G.; Prakash, R.; Ninan, A.S.; Atkinson, R.G.; Schaffer, R.J.; Hallett, I.C.; Schröder, R. Fruit from two kiwifruit genotypes with contrasting softening rates show differences in the xyloglucan and pectin domains of the cell wall. Front. Plant Sci. 2020, 11, 964. [Google Scholar] [CrossRef]
- Yang, F.; Zhao, R.; Suo, J.; Ding, Y.; Tan, J.; Zhu, Q.; Ma, Y. Understanding quality differences between kiwifruit varieties during softening. Food Chem. 2024, 430, 136983. [Google Scholar] [CrossRef]
- Hatfield, S.G.S.; Knee, M. Effects of water loss on apples in storage. Int. J. Food Sci. Technol. 1988, 23, 575–583. [Google Scholar] [CrossRef]
- Celano, G.; Minnocci, A.; Sebastiani, L.; D’Auria, M.; Xiloyannis, C. Changes in the structure of the skin of kiwifruit in relation to water loss. J. Hortic. Sci. Biotechnol. 2009, 84, 41–46. [Google Scholar] [CrossRef]
- Choi, H.R.; Tilanhun, S.; Park, D.S.; Lee, Y.M.; Choi, J.H.; Back, M.W.; Jeong, C.S. Harvest time affects quality and storability of kiwifruit (Actinidia spp.): Cultivars during long-term cool storage. Sci. Hortic. 2019, 256, 108523. [Google Scholar] [CrossRef]
- Gullo, G.; Dattola, A.; Liguori, G.; Vonella, V.; Zappia, R.; Inglese, P. Evaluation of fruit quality and antioxidant activity of kiwifruit during ripening and after storage. J. Berry Res. 2016, 6, 25–35. [Google Scholar] [CrossRef]
- Kang, H.H.; Oh, E.U.; Lee, K.U.; Kwack, Y.B.; Lee, M.H.; Song, K.J. Comparison of fruit development characteristics and sucrose metabolizing enzyme activity in different kiwifruit cultivars. Hortic. Sci. Technol. 2021, 39, 213–223. [Google Scholar] [CrossRef]
- Xiong, Y.; He, J.; Li, M.; Du, K.; Lang, H.; Gao, P.; Xie, Y. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in yellow-fleshed kiwifruit. Int. J. Mol. Sci. 2023, 24, 1573. [Google Scholar] [CrossRef]
- Moon, K.M.; Kwon, E.B.; Lee, B.; Kim, C.Y. Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules 2020, 25, 2754. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, Y.; Chen, X.; He, H.; Liu, Z.; Zhang, Z.; Ren, Y.; Ren, X. Phenolic compounds and antioxidant activity in red- and in green-fleshed kiwifruits. Food Res. Int. 2019, 116, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Park, Y. Antioxidant activity, total phenolics and vitamin C contents of the unripe and ripe fruit of hardy kiwi (Actinidia arguta) “Saehan” as honey plant. J. Apic. Sci. 2017, 32, 133–138. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, K.; Xiao, X.; Cao, S.; Chen, W.; Yang, Z.; Shi, L. Effect of 1-MCP on the regulation processes involved in ascorbate metabolism in kiwifruit. Postharvest Biol. Technol. 2021, 179, 111563. [Google Scholar] [CrossRef]
Treatment | ‘Sweet Gold’ | ‘Goldone’ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DAS | DAS | |||||||||||
0 | 7 | 14 | 21 | 28 | 35 | 0 | 7 | 14 | 21 | 28 | 35 | |
Peel L* | ||||||||||||
Control | 42.1 a | 41.5 ab | 41.1 b | 40.5 b | 39.5 b | 39.1 b | 41.5 a | 41.8 a | 41.4 a | 40.8 a | 40.5 a | 39.7 a |
MAH | 44.1 a | 42.8 ab | 42.4 ab | 41.6 ab | 41.1 ab | 40.9 ab | 42.4 a | 43.0 a | 41.9 a | 41.5 a | 41.1 a | 40.5 a |
1-MCP | 43.4 a | 44.1 a | 43.6 a | 43.0 a | 42.3 a | 41.7 a | 41.8 a | 42.7 a | 41.5 a | 41.4 a | 41.1 a | 40.7 a |
Coating | 43.5 a | 40.9 b | 41.8 ab | 41.3 ab | 41.0 ab | 40.1 ab | 42.9 a | 41.0 a | 40.7 a | 39.9 a | 39.7 a | 39.1 a |
Flesh L* | ||||||||||||
Control | 59.6 a | 55.8 b | 53.0 b | 54.8 a | 51.6 a | 51.7 a | 67.8 a | 62.5 a | 54.4 ab | 51.8 b | 46.4 b | 47.9 b |
MAH | 59.6 a | 52.4 b | 52.8 b | 49.2 a | 51.5 a | 50.5 a | 67.8 a | 57.6 b | 54 5 ab | 49.5 b | 47.4 b | 47.7 b |
1-MCP | 59.6 a | 57.9 ab | 58.6 a | 53.8 a | 53.1 a | 51.8 a | 67.8 a | 66.6 a | 60.2 a | 57.8 a | 54.1 a | 54.2 a |
Coating | 59.6 a | 62.5 a | 58.8 a | 53.6 a | 55.4 a | 51.0 a | 67.8 a | 66.5 a | 52.8 b | 50.6 b | 50.7 ab | 49.3 ab |
Treatment | ‘Sweet Gold’ | ‘Goldone’ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DAS | DAS | |||||||||||
0 | 7 | 14 | 21 | 28 | 35 | 0 | 7 | 14 | 21 | 28 | 35 | |
Peel a* | ||||||||||||
Control | 1.2 a | 1.6 a | 2.1 a | 2.4 a | 3.1 a | 3.1 a | 6.4 b | 6.3 a | 6.6 a | 6.6 a | 6.3 b | 6.8 b |
MAH | 0.5 a | 1.5 a | 1.8 a | 2.7 a | 2.8 a | 3.0 a | 7.5 a | 6.9 a | 7.3 a | 7.3 a | 7.4 a | 7.5 a |
1-MCP | 0.5 a | 0.7 a | 1.5 a | 2.1 a | 2.7 a | 3.0 a | 6.8 ab | 6.6 a | 7.0 a | 6.8 a | 6.9 ab | 6.9 b |
Coating | 0.7 a | 1.1 a | 2.0 a | 2.3 a | 3.0 a | 3.1 a | 6.2 b | 6.3 a | 6.7 a | 6.6 a | 6.7 b | 6.9 b |
Flesh a* | ||||||||||||
Control | −11.4 a | −8.3 a | −5.5 a | −6.3 a | −4.1 a | −4.9 a | −4.6 a | −3.8 a | −2.8 a | −2.9 a | −1.5 a | −2.3 a |
MAH | −11.4 a | −9.0 a | −7.3 b | −6.7 a | −5.9 b | −5.0 a | −4.6 a | −3.8 a | −3.1 a | −2.8 a | −2.0 ab | −2.2 a |
1-MCP | −11.4 a | −7.9 a | −6.8 ab | −6.4 a | −6.2 b | −5.3 a | −4.6 a | −3.9 a | −3.4 a | −3.4 a | −2.9 b | −3.1 a |
Coating | −11.4 a | −9.6 a | −7.2 b | −5.0 a | −5.4 ab | −5.1 a | −4.6 a | −4.3 a | −2.7 a | −2.8 a | −2.0 ab | −2.4 a |
Treatment | ‘Sweet Gold’ | ‘Goldone’ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DAS | DAS | |||||||||||
0 | 7 | 14 | 21 | 28 | 35 | 0 | 7 | 14 | 21 | 28 | 35 | |
Peel b* | ||||||||||||
Control | 23.2 b | 21.1 c | 20.6 b | 20.0 b | 19.2 b | 18.9 b | 20.6 a | 19.1 ab | 18.6 ab | 18.0 ab | 17.4 ab | 17.5 ab |
MAH | 24.4 ab | 21.4 bc | 20.9 b | 20.1 b | 19.4 b | 19.8 ab | 20.1 a | 17.9 b | 17.5 b | 17.4 b | 16.9 b | 16.6 b |
1-MCP | 25.2 a | 23.6 a | 23.0 a | 22.3 a | 21.5 a | 21.0 a | 20.4 a | 18.8 ab | 18.4 ab | 18.0 ab | 17.5 ab | 17.2 ab |
Coating | 24.2 b | 22.9 ab | 22.1 ab | 21.6 ab | 20.9 ab | 20.7 ab | 21.0 a | 19.8 a | 19.4 a | 18.5 a | 18.0 a | 18.1 a |
Flesh b* | ||||||||||||
Control | 35.0 a | 29.7 ab | 31.3 a | 29.5 a | 25.7 b | 26.5 a | 29.2 a | 28.3 ab | 24.0 b | 25.5 ab | 24.0 ab | 23.2 a |
MAH | 35.0 a | 28.0 b | 30.0 a | 30.6 a | 25.3 b | 27.9 a | 29.2 a | 27.3 b | 27.1 ab | 24.7 ab | 22.7 b | 24.5 a |
1-MCP | 35.0 a | 30.0 ab | 31.3 a | 30.0 a | 31.6 a | 27.4 a | 29.2 a | 31.0 a | 30.0 a | 27.3 a | 27.1 a | 25.8 a |
Coating | 35.0 a | 33.1 a | 32.4 a | 30.4 a | 26.2 b | 25.9 a | 29.2 a | 31.3 a | 24.9 ab | 24.2 b | 24.8 ab | 23.6 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.-K.; Bang, H.-W.; Hwang, H.-J.; Choi, H.-S. Effect of Plastic MAH Storage, 1-MCP, and Coating on Fruit Storability of ‘Sweet Gold’ and ‘Goldone’ Kiwifruit. Horticulturae 2025, 11, 1152. https://doi.org/10.3390/horticulturae11101152
Jung S-K, Bang H-W, Hwang H-J, Choi H-S. Effect of Plastic MAH Storage, 1-MCP, and Coating on Fruit Storability of ‘Sweet Gold’ and ‘Goldone’ Kiwifruit. Horticulturae. 2025; 11(10):1152. https://doi.org/10.3390/horticulturae11101152
Chicago/Turabian StyleJung, Seok-Kyu, Hye-Won Bang, Hyeon-Ji Hwang, and Hyun-Sug Choi. 2025. "Effect of Plastic MAH Storage, 1-MCP, and Coating on Fruit Storability of ‘Sweet Gold’ and ‘Goldone’ Kiwifruit" Horticulturae 11, no. 10: 1152. https://doi.org/10.3390/horticulturae11101152
APA StyleJung, S.-K., Bang, H.-W., Hwang, H.-J., & Choi, H.-S. (2025). Effect of Plastic MAH Storage, 1-MCP, and Coating on Fruit Storability of ‘Sweet Gold’ and ‘Goldone’ Kiwifruit. Horticulturae, 11(10), 1152. https://doi.org/10.3390/horticulturae11101152