Investigation of Atraphaxis virgata, an Unexplored Medicinal Plant Rich in Flavonoids, as a Functional Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Collection and Specimen Information
2.3. Preparation of Atraphaxis virgata Extracts
2.4. High-Performance Liquid Chromatography Analysis
2.5. Gas Chromatography–Mass Spectroscopy Analysis
2.6. Determination of Total Phenolic Contents
2.7. Determination of Antioxidant Activity
2.7.1. ABTS Cation Radical Scavenging Assay
2.7.2. DPPH Free Radical Scavenging Assay
2.7.3. Ferric Reducing Antioxidant Power (FRAP) Assay
3. Results and Discussion
3.1. Detection of Phytochemical Compounds by HPLC Analysis
3.2. Detection of Phytochemical Compounds by GC-MS Analysis
3.3. Total Phenolic Compound and Antioxidant Properties of Atraphaxis virgata Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef]
- Lee, J.; Song, Y.; Son, H.; Kim, S.; Lee, K.H.; Bazarragchaa, B.; Lee, C.; Yoo, H.Y. Phytochemical and Antioxidant Characterization of Extracts from Unexplored Medicinal Plants Salix schwerinii and Salix kochiana. Horticulturae 2023, 9, 955. [Google Scholar] [CrossRef]
- Lee, J.; Son, H.; Lee, K.H.; Kim, S.; Myagmar, G.; Kim, S.Y.; Chun, Y.; Yoo, H.Y. Identification and Characterization of Major Flavonoids in Extracts from an Unexplored Medicinal Herb Orostachys fimbriata. Horticulturae 2022, 8, 1092. [Google Scholar] [CrossRef]
- Abilkassymova, A.; Turgumbayeva, A.; Sarsenova, L.; Tastambek, K.; Altynbay, N.; Ziyaeva, G.; Blatov, R.; Altynbayeva, G.; Bekesheva, K.; Abdieva, G.; et al. Exploring Four Atraphaxis Species: Traditional Medicinal Uses, Phytochemistry, and Pharmacological Activities. Molecules 2024, 29, 910. [Google Scholar] [CrossRef]
- POWO, Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available online: http://www.plantsoftheworldonline.org/ (accessed on 22 September 2024.).
- Budancev, A.L.; Lesiovskaya, E.E. Russia's Wild Useful Plants; Izdatel’stvo SPHFA: St. Petersburg, FL, USA, 2001; p. 437. [Google Scholar]
- Grudzinskaya, L.M.; Gemedzhieva, N.G.; Nelina, N.B.; Karzhaubekova, Z.Z. Annotated List of Medicinal Plants of Kazakhstan. Almaty Kazakhstan 2014, 20, 1. [Google Scholar]
- Wang, X.; Khutsishvili, M.; Fayvush, G.; Tamanyan, K.; Atha, D.; Borris, R.P. Phytochemical investigations of Atraphaxis spinosa L (Polygonaceae). Biochem. Syst. Ecol. 2018, 77, 44–47. [Google Scholar] [CrossRef]
- Umbetova, A.K.; Beyatli, A.; Seitimova, G.A.; Yeskaliyeva, B.K.; Burasheva, G.S. Flavonoids from the Plant Atraphaxis virgata. Chem. Nat. Compd. 2021, 57, 531–533. [Google Scholar] [CrossRef]
- Kusar, S.; Saddiqe, Z.; Ali, F.; Bashir, S.; Zubairi, T. GCMS and HPLC profiling, antioxidant and anti-inflammatory activities of Crotalaria medicaginea. Lamk. S. Afr. J. Bot. 2024, 168, 196–208. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.; Son, H.; Kim, S.; Jo, S.; Janchiv, A.; Kim, S.Y.; Lee, T.; Yoo, H.Y. Phytochemical Characterization and Bioactivity Evaluation of Extracts Obtained via Ultrasound-Assisted Extraction of Medicinal Plant Phedimus aizoon. Plants 2024, 13, 1915. [Google Scholar] [CrossRef] [PubMed]
- Safafar, H.; Van Wagenen, J.; Møller, P.; Jacobsen, C. Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar. Drugs 2015, 13, 7339–7356. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Chun, Y.; Jang, Y.W.; Lee, S.K.; Kim, H.R.; Lee, J.H.; Kim, S.W.; Park, C.; Yoo, H.Y. Fabrication of functional bioelastomer for food packaging from aronia (Aronia melanocarpa) juice processing by-products. Foods 2020, 9, 1565. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, K.H.; Lee, J.; Lee, S.K.; Chun, Y.; Lee, J.H.; Yoo, H.Y. Efficient Recovery Strategy of Luteolin from Agricultural Waste Peanut Shells and Activity Evaluation of Its Functional Biomolecules. Int. J. Mol. Sci. 2023, 24, 12366. [Google Scholar] [CrossRef] [PubMed]
- Haslam, E.; Cai, Y. Plant polyphenols (vegetable tannins): Gallic acid metabolism. Nat. Prod. Rep. 1994, 11, 41–66. [Google Scholar] [CrossRef]
- Delfanian, M.; Sahari, M.A.; Barba, F.J. Effect of lipophilized gallic acid on the oxidative stability of omega-3 fatty acids rich soy and cow milk. LWT 2023, 190, 115475. [Google Scholar] [CrossRef]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci. 2019, 22, 225. [Google Scholar] [PubMed]
- Iranshahi, M.; Rezaee, R.; Parhiz, H.; Roohbakhsh, A.; Soltani, F. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin. Life Sci. 2015, 137, 125–132. [Google Scholar] [CrossRef]
- Kaur, G.; Tirkey, N.; Chopra, K. Beneficial effect of hesperidin on lipopolysaccharide-induced hepatotoxicity. Toxicology 2006, 226, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother. 2017, 96, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Biswas, S.; Al-Dayan, N.; Alhegaili, A.S.; Sarwat, M. Antioxidant role of kaempferol in prevention of hepatocellular carcinoma. Antioxidants 2021, 10, 1419. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Gulzar, M.; Akhtar, M.S.; Rashid, S.; Shamsi, A.; Hassan, M.I. Epigallocatechin-3-gallate therapeutic potential in human diseases: Molecular mechanisms and clinical studies. Mol. Biol. 2024, 5, 1–21. [Google Scholar] [CrossRef]
- Li, Z.; Feng, C.; Dong, H.; Jin, W.; Zhang, W.; Zhan, J.; Wang, S. Health promoting activities and corresponding mechanism of (–)-epicatechin-3-gallate. Food Sci. Hum. Wellness 2022, 11, 568–578. [Google Scholar] [CrossRef]
- Borjan, D.; Leitgeb, M.; Knez, Ž.; Hrnčič, M.K. Microbiological and antioxidant activity of phenolic compounds in olive leaf extract. Molecules 2020, 25, 5946. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Li, S.; Shen, B.; Zhang, J.; Liu, L.; Shen, X.; Zhao, R. The emission characteristic of VOCs and the toxicity of BTEX from different mosquito-repellent incenses. J. Hazard. Mater. 2020, 384, 121428. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Ghosh, A.; Chakraborty, S.; Bhattacharya, M. GC-MS analysis reveals Dendrobium candidum is a mosquito-attractant orchid with mosquitocidal compounds. Int. J. Mosq. Res. 2020, 7, 09–12. [Google Scholar] [CrossRef]
- Keskın, D.; Ceyhan, N.; Uğur, A.; Dbeys, A.D. Antimicrobial activity and chemical constitutions of West Anatolian olive (Olea europaea L.) leaves. J. Food Agric. Environ. 2012, 10, 99–102. [Google Scholar]
- Rasyid, A.; Putra, M.Y. Antibacterial and antioxidant activity of sea cucumber extracts collected from Lampung waters, Indonesia. Kuwait J. Sci. 2023, 50, 615–621. [Google Scholar] [CrossRef]
- Mary, A.P.F.; Giri, R.S. Phytochemical screening and GC-MS analysis in ethanolic leaf extracts of Ageratum conyzoides (L.). World J. Pharm. Res. 2016, 5, 1019–1029. [Google Scholar]
- Ibrahim, H.O.; Osilesi, O.; Adebawo, O.O.; Onajobi, F.D.; Karigidi, K.O.; Muhammad, L.B. Nutrients compositions and phytochemical contents of edible parts of Chrysophyllum albidum fruit. J. Nutr. Food Sci. 2017, 7, 1–9. [Google Scholar]
- Arora, S.; Kumar, G.; Meena, S. GC-MS analysis of bioactive compounds from the whole plant hexane extract of Cenchrus setigerus Vahl. Med. Sci. Monit. 2017, 8, 137–146. [Google Scholar]
- Arora, S.; Kumar, G. Phytochemical screening of root, stem and leaves of Cenchrus biflorus Roxb. J. Pharmacogn. Phytochem. 2018, 7, 1445–1450. [Google Scholar]
- Prasad, B.; Khalkho, A.S. GC-MS analysis and medicinal values of leaves extract of shorea robusta gaertn in jharkhand. In Emerging Research Paradigm for Sustainable Development; IARA Publication: Ghaziabad, India, 2013; p. 12. ISBN 978-81-19481-23-1. [Google Scholar]
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. Mol. Mech. Mutagen. 2005, 579, 200–213. [Google Scholar] [CrossRef]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Jaganjac, M.; Sredoja Tisma, V.; Zarkovic, N. Short Overview of Some Assays for the Measurement of Antioxidant Activity of Natural Products and Their Relevance in Dermatology. Molecules 2021, 26, 5301. [Google Scholar] [CrossRef]
- Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem. 2012, 130, 1036–1043. [Google Scholar] [CrossRef]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP decolorization assay of antioxidant capacity reaction pathways. Int. J. Mol. Sci. 2020, 21, 1131. [Google Scholar] [CrossRef]
- Akhter, P.; Bhatti, T.Y.; Shafiq, I.; Jamil, F.; Nazar, R.; Nazir, M.S.; Hassan, S.U.; Hussain, M.; Park, Y. Antioxidant activity of sea buckthorn (Hippophae rhamnoides) seed oil extracted using various organic solvents. Korean J. Chem. Eng. 2023, 40, 2914–2920. [Google Scholar] [CrossRef]
- Abilkassymova, A.; Aldana-Mejía, J.A.; Katragunta, K.; Kozykeyeva, R.; Omarbekova, A.; Avula, B.; Turgumbayeva, A.; Datkhayev, U.M.; Khan, I.A.; Ross, S.A. Phytochemical Screening Using LC-MS to Study Antioxidant and Toxicity Potential of Methanolic Extracts of Atraphaxis pyrifolia Bunge. Molecules 2024, 29, 4478. [Google Scholar] [CrossRef] [PubMed]
- Kustova, T.S.; Karpenyuk, T.A.; Goncharova, A.V.; Mamonov, L.K. Антимикробная и антиоксидантная активность экстрактов, выделенных из растений Казахстана. Қазақстанның өсімдіктерінің бөлініп алынған экстрактлерірің антимикробтық жəне антиоксиданттық белсенділігі. Вестник КазНУ. Серия биологическая 2013, 59, 137–140. [Google Scholar]
RT (min) | Phytochemical Components | Class | Content (mg/g-Extract) |
---|---|---|---|
8.055 | Hesperidin | Flavonoids (Flavan glycosides) | 13.18 |
12.779 | Rutin | Flavonoids (Flavan glycosides) | 4.49 |
15.983 | Catechin | Flavonoids (Flavanols) | 3.23 |
17.921 | Gallic acid | Phenolic acids | 2.93 |
18.975 | Epicatechin-3-gallate | Flavonoids (Flavan-3-ols) | 1.28 |
26.324 | Kaempferol | Flavonoids (Flavones) | 0.26 |
31.153 | Luteolin | Flavonoids (Flavones) | 0.09 |
No. | RT (min) | Quality (%) | Library/ID | Chemical Formula | Class | Molecular Weight (g/mol) |
---|---|---|---|---|---|---|
1 | 2.269 | 91 | Boric acid, trimethyl ester | B(OCH3)3 | Boron ester | 103.92 |
2 | 6.282 | 94 | Decane | CH3(CH2)8CH3 | Alkane | 142.28 |
3 | 7.219 | 78 | Dodecane | CH3(CH2)10CH3 | Alkane | 170.33 |
4 | 8.347 | 93 | Cyclopentasiloxane | (CH32SiO)5 | Cyclic siloxane | 370.77 |
5 | 10.792 | 80 | Cyclohexasiloxane, dodecamethyl | (CH32SiO)6 | Cyclic siloxane | 444.92 |
6 | 12.235 | 91 | Tetradecane | CH3(CH2)12CH3 | Alkane | 198.39 |
7 | 20.04 | 68 | Octadecanenitrile | CH3(CH2)17CN | Nitrile | 265.5 |
8 | 22.273 | 93 | A′-Neogammacer-22(29)-en-3-one | C30H48O | Triterpene | 424.7 |
9 | 23.84 | 95 | Lup-20(29)-en-3-one | C30H48O | Triterpene | 424.7 |
A. virgata Extracts | Ascorbic Acid | |
---|---|---|
TPC (mg GAE/g extract) | 219.5 ± 18.37 | - |
ABTS IC50 (μg/mL) | 126.57 ± 0.24 | 50.9 ± 1.00 |
DPPH IC50 (μg/mL) | 42.17 ± 1.14 | 5.78 ± 0.01 |
FRAP value (mmol/L) | 122.59 ± 8.79 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.; Kim, S.; Lee, J.; Son, H.; Paik, J.-H.; Gemejiyeva, N.G.; Karzhaubekova, Z.Z.; Lee, T.; Yoo, H.Y. Investigation of Atraphaxis virgata, an Unexplored Medicinal Plant Rich in Flavonoids, as a Functional Material. Horticulturae 2025, 11, 70. https://doi.org/10.3390/horticulturae11010070
Shin S, Kim S, Lee J, Son H, Paik J-H, Gemejiyeva NG, Karzhaubekova ZZ, Lee T, Yoo HY. Investigation of Atraphaxis virgata, an Unexplored Medicinal Plant Rich in Flavonoids, as a Functional Material. Horticulturae. 2025; 11(1):70. https://doi.org/10.3390/horticulturae11010070
Chicago/Turabian StyleShin, Soeun, Seunghee Kim, Jeongho Lee, Hyerim Son, Jin-Hyub Paik, Nadezhda Gennadievna Gemejiyeva, Zhanat Zhumabekovna Karzhaubekova, Taek Lee, and Hah Young Yoo. 2025. "Investigation of Atraphaxis virgata, an Unexplored Medicinal Plant Rich in Flavonoids, as a Functional Material" Horticulturae 11, no. 1: 70. https://doi.org/10.3390/horticulturae11010070
APA StyleShin, S., Kim, S., Lee, J., Son, H., Paik, J.-H., Gemejiyeva, N. G., Karzhaubekova, Z. Z., Lee, T., & Yoo, H. Y. (2025). Investigation of Atraphaxis virgata, an Unexplored Medicinal Plant Rich in Flavonoids, as a Functional Material. Horticulturae, 11(1), 70. https://doi.org/10.3390/horticulturae11010070