Phenylalanine, Cysteine, and Sodium Selenate Alleviate Chilling Injury in Cape Gooseberry (Physalis peruviana L.) Seedlings by Enhancing Antioxidant Activities and Membrane Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Treatments
2.2. Chlorophyll and Carotenoid Contents
Carotenoids (mg g−1 FW) = [7.6 (A480) − 1.49 (A510)] × V/(W × 1000)
2.3. Stomatal Conductance
2.4. Relative Water Content
2.5. Proline Content
2.6. Malondialdehyde and H2O2 Contents
2.7. Membrane Stability Index
2.8. Total Phenol and Flavonoid Contents
2.9. Antioxidant Capacity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Stomatal Conductance
3.2. Relative Water Content
3.3. Chlorophyll and Carotenoid Contents
3.4. Proline Content
3.5. Malondialdehyde and Hydrogen Peroxide Contents
3.6. Membrane Stability Index
3.7. Total Phenol and Flavonoid Contents
3.8. Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moura, P.H.A.; Coutinho, G.; Pio, R.; Bianchini, F.G.; Curi, P.N. Plastic covering, planting density, and prunning in the production of Cape gooseberry (Physalis peruviana L.) in subtropical region. Rev. Caatinga 2016, 29, 367–374. [Google Scholar] [CrossRef]
- Zimmer, T.B.R.; Otero, D.M.; Pedra, N.S.; Bona, N.P.; Zarnott, L.; Spanevello, R.M.; Gandra, E.A.; Zambiazi, R.C. Biological potential of hydroalcoholic extracts of Physalis pubescens L. Biocatal. Agric. Biotechnol. 2021, 31, 101895. [Google Scholar] [CrossRef]
- Botta, A. Enhancing plant tolerance to temperature stress with amino acids: An approach to their mode of action. Acta Hortic. 2012, 1009, 29–35. [Google Scholar] [CrossRef]
- Yadav, S. Cold stress tolerance mechanisms in plants: A review. Agron. Sustain. Dev. 2010, 30, 515–527. [Google Scholar] [CrossRef]
- Matysiak, K.; Kierzek, R.; Siatkowski, I.; Kowalska, J.; Krawczyk, R.; Miziniak, W. Effect of exogenous application of amino acids l-arginine and glycine on maize under temperature stress. Agronomy 2020, 10, 769. [Google Scholar] [CrossRef]
- Nasibi, F.; Farahmand, H.O.; Kamyab, A.F.; Alipour, S.A. Effects of arginine, cysteine and 5-sulfosalicylic acid on vase life of tuberose cut flowers. Agric. Commun. 2014, 2, 35–41. [Google Scholar]
- Herbette, S.; Labrouhe, D.T.D.; Drevet, J.R.; Roeckel-Drevet, P. Transgenic tomatoes showing higher glutathione peroxidase antioxidant activity are more resistant to an abiotic stress but more susceptible to biotic stresses. Plant Sci. 2011, 180, 548–553. [Google Scholar] [CrossRef]
- Barzegar, T.; Fateh, M.; Razavi, F. Enhancement of postharvest sensory quality and antioxidant capacity of sweet pepper fruits by foliar applying calcium lactate and ascorbic acid. Sci. Hortic. 2018, 241, 293–303. [Google Scholar] [CrossRef]
- Eom, S.H.; Ahn, M.A.; Kim, E.; Lee, H.J.; Lee, J.H.; Wi, S.H.; Kim, S.K.; Lim, H.B.; Hyun, T.K. Plant Response to Cold Stress: Cold Stress Changes Antioxidant Metabolism in Heading Type Kimchi Cabbage (Brassica rapa L. ssp. Pekinensis). Antioxidants 2022, 11, 700. [Google Scholar] [CrossRef]
- Baninasab, B. Amelioration of chilling stress by paclobutrazol in watermelon seedlings. Sci. Hortic. 2009, 121, 144–148. [Google Scholar] [CrossRef]
- Hussain, H.A.; Hussain, S.; Khaliq, A.; Ashraf, U.; Anjum, S.A.; Men, S.; Wang, L. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Front. Plant Sci. 2018, 9, 393. [Google Scholar] [CrossRef] [PubMed]
- Turk, H.; Genisel, M. Melatonin-related mitochondrial respiration responses are associated with growth promotion and cold tolerance in plants. Cryobiology 2020, 92, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Wang, M.; Ai, X. The role of calcium in regulating photosynthesis and related physiological indexes of cucumber seedlings under low light intensity and suboptimal temperature stress. Sci. Hortic. 2009, 123, 34–38. [Google Scholar] [CrossRef]
- Yang, H.; Chen, L.; Zhou, C.; Yu, X.; Yagoub, A.E.A.; Ma, H. Improving the extraction of L-phenylalanine by the use of ionic liquids as adjuvants in aqueous biphasic systems. Food Chem. 2017, 245, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Portu, J.; Gonzalez-Arenzana, L.; Hermosín-Gutierrez, I.; Santamaria, P.; Garde-Cerdan, T. Phenylalanine and urea foliar applications to grapevine: Effect on wine phenolic content. Food Chem. 2015, 180, 55–63. [Google Scholar] [CrossRef]
- Edahiro, J.I.; Nakamura, M.; Seki, M.; Furusaki, S.H. Enhanced accumulation of anthocyanin in cultured strawberry cells by repetitive feeding of L-phenylalanine into the medium. J. Biosci. Bioeng. 2005, 99, 43–47. [Google Scholar] [CrossRef]
- Garcia, A.L.; Madrid, R.; Gimeno, V.; Rodriguez-Ortega, W.M.; Nicolas, N.; Garcia-Sanchez, F. The effects of amino acids fertilization incorporated to the nutrient solution on mineral composition and growth in tomato seedlings. Span. J. Agric. Res. 2011, 9, 852–861. [Google Scholar] [CrossRef]
- Alvarez, C.; Ángeles Bermúdez, M.; Romero, L.C.; Gotor, C.; García, I. Cysteine homeostasis plays an essential role in plant immunity. New Phytol. 2012, 193, 165–177. [Google Scholar] [CrossRef]
- Sogvar, O.B.; Razavi, F.; Rabiei, V.; Gohari, G. Postharvest application of L-cysteine to prevent enzymatic browning of “Stanley” plum fruit during cold storage. J. Food Process. Preserv. 2020, 44, 14788. [Google Scholar] [CrossRef]
- Quiterio-Gutiérrez, T.; Ortega-Ortiz, H.; Cadenas-Pliego, G.; Hernández-Fuentes, A.D.; Sandoval-Rangel, A.; Benavides-Mendoza, A.; Cabrera-de la Fuente, M.; Juárez-Maldonado, A. The application of selenium and copper nanoparticles modifies the biochemical responses of tomato plants under stress by Alternaria solani. Int. J. Mol. Sci. 2019, 20, 1950. [Google Scholar] [CrossRef]
- Puccinelli, M.; Malorgio, F.; Pezzarossa, B. Selenium enrichment of horticultural crops. Molecules 2017, 22, 933. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.M. Effects of low temperature and selenium application on growth and the physiological changes in sorghum seedlings. J. Stress Physiol. Biochem. 2012, 8, 268–286. [Google Scholar]
- Huang, C.; Qin, N.; Sun, L.; Yu, M.; Hu, W.; Qi, Z. Selenium improves physiological parameters and alleviates oxidative stress in strawberry seedlings under low-temperature stress. Int. J. Mol. Sci. 2018, 19, 1913. [Google Scholar] [CrossRef] [PubMed]
- Arnon, D.I. I. Copper enzymes in isolated chloroplasts. Poly-phenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, S.W.; Nguyen, H.T.; Holaday, A.S. Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci. 1990, 30, 105–111. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Shen, L.; Fan, B.; Liu, K.L.; Yu, M.M.; Zheng, Y.; Ding, Y.; Sheng, J.P. Physiological and genetic properties of tomato fruits from 2 cultivars differing in chilling tolerance at cold storage. J. Food Sci. 2009, 74, C348–C352. [Google Scholar] [CrossRef]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001, 24, 1337–1344. [Google Scholar] [CrossRef]
- Ezhilmathi, K.; Singh, V.P.; Arora, A.; Sairam, R.K. Effect of 5-sulfosalicylic acid on antioxidant activity in relation to vase life of Gladiolus cut flowers. Plant Growth Regul. 2007, 51, 99–108. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic—Phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Kaijv, M.; Sheng, L.; Chao, C. Antioxidatioan of flavonoids of green rhizome. Food Sci. Nutr. 2006, 27, 110–115. [Google Scholar]
- Dehghan, G.; Khoshkam, Z. Tin (II)-quercetin complex synthesis, spectral characterization and antioxidant activity. Food Chem. 2012, 131, 422–427. [Google Scholar] [CrossRef]
- Ikkonen, E.N.; Shibaeva, T.G.; Sysoeva, M.I.; Sherudilo, E.G. Stomatal conductance in Cucumis sativus upon short-term and long-term exposures to low temperatures. Russ. J. Plant Physiol. 2012, 59, 696–699. [Google Scholar] [CrossRef]
- Xu, H.; Huang, C.; Jiang, X.; Zhu, J.; Gao, X.; Yu, C. Impact of cold stress on leaf structure, photosynthesis, and metabolites in Camellia weiningensis and C. oleifera seedlings. Horticulturae 2022, 8, 494. [Google Scholar] [CrossRef]
- Geshnizjani, N.; Khosh-Khui, M. Promoted growth and improved quality of Gerbera jamesonni L. flowers using exogenous application of amino acids. Int. J. Hortic. Sci. 2016, 3, 155–166. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.B.; Raza, A.; Hawrylak-Nowak, B.; Matraszek-Gawron, R.; Al Mahmud, J.; Nahar, K.; Fujita, M. Selenium in plants: Boon or bane? Environ. Exp. Bot. 2020, 178, 104170. [Google Scholar] [CrossRef]
- Khalofah, A.; Migdadi, H.; El-Harty, E. Antioxidant enzymatic activities and growth response of quinoa (Chenopodium quinoa willd) to exogenous selenium application. Plants 2021, 10, 719. [Google Scholar] [CrossRef]
- Lu, T.; Song, Y.; Yu, H.; Li, Q.; Xu, J.; Qin, Y.; Zhang, G.; Liu, Y.; Jiang, W. Cold stress resistance of Tomato (Solanum lycopersicum) seedlings is enhanced by light supplementation from underneath the canopy. Front. Plant Sci. 2022, 13, 831314. [Google Scholar] [CrossRef]
- Xu, Q.Q.; Sami, A.; Zhang, H.; Jin, X.Z.; Zheng, W.Y.; Zhu, Z.Y.; Wu, L.L.; Lei, Y.H.; Chen, Z.P.; Li, Y.; et al. Combine influence of low temperature and drought on different varieties of rapeseed (Brassica napus L.). S. Afr. J. Bot. 2022, 147, 400–414. [Google Scholar] [CrossRef]
- Nandagopal, J.G.T.; Harinarayanan, U.N.D.; Raghavan, S.; Girija, S. Foliar selenium application mitigates low-temperature stress in chilli (Capsicum annuum L.) seedlings. Energy Nexus 2022, 6, 100079. [Google Scholar] [CrossRef]
- Reda, F.; Mandoura, H.M. Response of enzymes activities, photosynthetic pigments, proline to low or high temperature stressed wheat plant (Triticum aestivum L.) in the presence or absence of exogenous proline or cysteine. Int. J. Res. 2011, 3, 108–115. [Google Scholar]
- Takahashi, H.; Kopriva, S.; Giordano, M.; Saito, K.; Hell, R. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant Biol. 2011, 62, 157–184. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, M.; Barzegar Sadeghabad, A.; Abolghasemi, R. Effect of exogenous amino acids application on the biochemical, antioxidant, and nutritional value of some leafy cabbage cultivars. Sci. Rep. 2022, 12, 17720. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zouari, M.; Hassena, A.B.; Trabelsi, L.; Rouina, B.B.; Decou, R.; Labrousse, P. Exogenous proline-mediated abiotic stress tolerance in plants: Possible mechanisms. In Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants: Recent Advances and Future Perspectives; Springer: Cham, Switzerland, 2019; pp. 99–121. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, L.; Shi, L.; Guo, J.; Jiao, Y.; Xiong, H.; Dickson, R.W.; Shi, A. Effects of low temperature and low light on physiology of tomato seedlings. Am. J. Plant Sci. 2020, 11, 162. [Google Scholar] [CrossRef]
- Meena, M.; Divyanshu, K.; Kumar, S.; Swapnil, P.; Zehra, A. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 2019, 5, e02952. [Google Scholar] [CrossRef]
- Yang, E.Y.; Rajametov, S.N.; Cho, M.C.; Jeong, H.B.; Chae, W.B. Factors affecting tolerance to low night temperature differ by fruit types in tomato. Agronomy 2021, 11, 681. [Google Scholar] [CrossRef]
- Shekari, G.; Javanmardi, J. Effects of foliar application pure amino acid and amino acid containing fertilizer on broccoli (Brassica oleracea L. var. italica) transplant. Adv. Crop Sci. Technol. 2017, 5, 280–287. [Google Scholar] [CrossRef]
- Singh, J.; Metrani, R.; Jayaprakasha, G.K.; Crosby, K.M.; Ravishankar, S.; Patil, B.S. Multivariate analysis of amino acids and health beneficial properties of cantaloupe varieties grown in six locations in the United States. Plants 2020, 9, 1058. [Google Scholar] [CrossRef]
- Yamauchi, Y.; Sugimoto, Y. Effect of protein modification by malondialdehyde on the interaction between the oxygen-evolving complex 33 kDa protein and photosystem II core proteins. Planta 2010, 231, 1077–1088. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Moradi, M.; Razavi, F.; Rabiei, V. Exogenous phenylalanine application promotes chilling tolerance in tomato fruits during cold storage by ensuring supply of NADPH for activation of ROS scavenging systems. Sci. Hortic. 2019, 246, 818–825. [Google Scholar] [CrossRef]
- Sadak, M.S.; Abd El-Hameid, A.R.; Zaki, F.S.A.; Dawood, M.G.; El-Awadi, M.E. Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bull. Natl. Res. Cent. 2020, 44, 1. [Google Scholar] [CrossRef]
- Chu, J.; Yao, X.; Zhang, Z. Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol. Trace Element. Res. 2010, 136, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Feng, H.L.; Wang, L.Y.; Li, D.; Meng, Q.W. Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. Plant Physiol. 2012, 169, 867–877. [Google Scholar] [CrossRef] [PubMed]
- Filek, M.; Zembala, M.; Hartikainen, H.; Miszalski, Z.; Kornaś, A.; Wietecka-Posłuszny, R.; Walas, P. Changes in wheat plastid membrane properties induced by cadmium and selenium in presence/absence of 2,4-dichlorophenoxyacetic acid. Plant Cell Tissue Organ Cult. 2009, 96, 19–28. [Google Scholar] [CrossRef]
- Feng, R.; Wei, C.; Tu, S. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 2013, 87, 58–68. [Google Scholar] [CrossRef]
- Jan, M.; Iqbal Shinwari, K.; Gulmeena Sha, G.; HafeezUllah Khan, M.; Ullah, S.; Hameed, A.; Malook, I. Consequences of short term low temperature stress on physiological and biochemical aspects of rice (Oryza sativa L.). Sci. Agric. 2015, 10, 1–14. [Google Scholar] [CrossRef]
- Shah, A.; Smith, A.F. Trial sequential analysis: Adding a new dimension to meta-analysis. Anaesthesia 2020, 75, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Bhushan, S. Apple phenolics as nutraceuticals: Assessment, analysis and application. J. Food Sci. Technol. 2016, 53, 1727–1738. [Google Scholar] [CrossRef]
- Atteya, A.K.G.; El-Serafy, R.S.; El-Zabalawy, K.M.; Elhakem, A.; Genaidy, E.A.E. Exogenously supplemented proline and phenylalanine improve growth, productivity, and oil composition of salted moringa by up-regulating osmoprotectants and stimulating antioxidant machinery. Plants 2022, 11, 1553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ardebili, Z.O.; Ladan Moghadam, A.R.; Ardebili, N.O.; Pashaie, A.R. The induced physiological changes by foliar application of amino acids in Aloe vera L. plants. J. Plant Biol. Omics 2012, 5, 279–284. [Google Scholar]
- Ríos, J.J.; Rosales, M.A.; Blasco, B.; Cervilla, L.M.; Romero, L.; Ruiz, J.M. Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hortic. 2008, 116, 248–255. [Google Scholar] [CrossRef]
- Bachiega, P.; Salgado, J.M.; de Carvalho, J.E.; Ruiz, A.L.T.; Schwarz, K.; Tezotto, T.; Morzelle, M.C. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea italic) biofortified with selenium. Food Chem. 2016, 190, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Li, D.; Tang, D.; Huang, Z.; Kedbanglai, P.; Ge, Z.; Du, X.; Supapvanich, S. Effects of simultaneous ultrasonic and cysteine treatment on antibrowning and physicochemical quality of fresh-cut lotus roots during cold storage. Postharvest Biol. Technol. 2020, 168, 111294. [Google Scholar] [CrossRef]
Significance | Year | Treatment | Year × Treatment |
---|---|---|---|
Stomatal conductance | * | ** | ** |
RWC | ** | ** | ** |
Total Chlorophyll | ** | ** | ** |
Carotenoid | ** | ** | ** |
Total phenols | ** | ** | ** |
Flavonoids | ** | ** | ** |
Antioxidant capacity | ** | ** | ** |
Proline | * | ** | ** |
MDA | ** | ** | ** |
H2O2 | ns | ** | ** |
MSI | ** | ** | * |
Treatment | Stomatal Conductance (µmol m−2 s−1) | Relative Water Content (%) | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
CLT | 0.173 ± 0.0120 j | 0.290 ± 0.0030 i | 64.05 ± 5.53 d | 76.60 ± 4.76 bc |
Control | 0.827 ± 0.0260 a | 0.516 ± 0.06 b–e | 84.56 ± 2.02 ab | 87.21 ± 0.66 ab |
Phe 0.75 | 0.607 ± 0.0145 b | 0.453 ± 0.0376 d–g | 83.51 ± 3.98 ab | 85.45 ± 1.06 ab |
Phe 1.5 | 0.533 ± 0.012 bcd | 0.463 ± 0.0367 c–f | 79.88 ± 3.12 abc | 89.74 ± 2.56 a |
Phe 2.5 | 0.453 ± 0.0203 d–g | 0.573 ± 0.0285 bc | 83.69 ± 3.48 ab | 86.50 ± 0.29 ab |
Se 0.25 | 0.277 ± 0.0219 i | 0.366 ± 0.0176 f–i | 89.57 ± 2.33 a | 85.52 ± 0.79 ab |
Se 0.5 | 0.303 ± 0.0203 hi | 0.416 ± 0.0328 e–h | 88.80 ± 2.87 a | 81.59 ± 0.48 abc |
Se 1 | 0.377 ± 0.0291 f–i | 0.353 ± 0.0176 f–i | 90.40 ± 1.89 a | 90.73 ± 1.82 a |
Cys 0.25 | 0.510 ± 0.0186 b–e | 0.363 ± 0.0503 f–i | 84.26 ± 2.77 ab | 83.95 ± 3.48 ab |
Cys 0.5 | 0.340 ± 0.0115 ghi | 0.303 ± 0.0115 hi | 70.80 ± 0.92 cd | 88.62 ± 0.58 a |
Cys 0.75 | 0.600 ± 0.0176 b | 0.623 ± 0.02 b | 76.27 ± 3.56 bc | 89.98 ± 0.29 a |
Treatment | Total Chlorophyll (mg g−1 FW) | Carotenoid (mg g−1 FW) | ||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
CLT | 0.89 ± 0.027 hi | 1.49 ± 0.037 c–f | 0.355 ± 0.022 def | 0.508 ± 0.036 bc |
Control | 1.21 ± 0.034 k | 1.42 ± 0.013 efg | 0.332 ± 0.040 ef | 0.544 ± 0.023 b |
Phe 0.75 | 1.15 ± 0.016 ij | 1.58 ± 0.034 bcd | 0.351 ± 0.013 def | 0.436 ± 0.021 c |
Phe 1.5 | 1.15 ± 0.073 ij | 1.39 ± 0.021 fg | 0.324 ± 0.008 ef | 0.536 ± 0.002 b |
Phe 2.5 | 1.08 ± 0.037 ij | 1.62 ± 0.042 bc | 0.379 ± 0.010 de | 0.492 ± 0.022 bc |
Se 0.25 | 1.04 ± 0.01 j | 1.94 ± 0.052 a | 0.366 ± 0.016 def | 0.663 ± 0.035 a |
Se 0.5 | 1.17 ± 0.018 ij | 1.32 ± 0.085 gh | 0.273 ± 0.004 f | 0.472 ± 0.020 bc |
Se 1 | 1.16 ± 0.046 ij | 1.66 ± 0.039 b | 0.321 ± 0.031 ef | 0.349 ± 0.022 d |
Cys 0.25 | 1.03 ± 0.004 j | 1.47 ± 0.018 def | 0.317 ± 0.030 ef | 0.541 ± 0.020 b |
Cys 0.5 | 1.09 ± 0.049 ij | 1.56 ± 0.027 b–e | 0.362 ± 0.022 def | 0.545 ± 0.013 b |
Cys 0.75 | 1.16 ± 0.023 ij | 1.57 ± 0.010 bcd | 0.359 ± 0.009 def | 0.653 ± 0.029 a |
Treatments | Total Phenols (mg GAE g−1 FW) | Flavonoids (mg QE g−1 FW) | Antioxidant Activity (%) | |||
---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | 2022 | |
CLT | 24.19 ± 1.86 hij | 31.07 ± 1.29 def | 6.24 ± 0.23 ef | 6.17 ± 0.35 ef | 83.03 ± 1.93 ab | 49.62 ± 0.85 hi |
Control | 20.49 ± 2.502 j | 25.65 ± 0.67 ghi | 4.69 ± 0.66 f | 5.27 ± 0.12 ef | 70.07 ± 0.24 cd | 45.98 ± 0.42 i |
Phe 0.75 | 23.46 ± 1.01 hij | 33.12 ± 0.88 cde | 5.11 ± 0.43 ef | 8.93 ± 0.36 cd | 75.11 ± 0.33 bc | 76.30 ± 4.44 bc |
Phe 1.5 | 22.26 ± 1.38 ij | 28.25 ± 0.85 e–h | 4.89 ± 0.27 ef | 5.94 ± 0.11 ef | 80.40 ± 2.24 ab | 59.26 ± 2.79 efg |
Phe 2.5 | 26.25 ± 0.97 f–i | 44.68 ± 0.04 a | 7.04 ± 0.66 de | 9.23 ± 0.45 c | 79.44 ± 2.14 ab | 49.55 ± 0.99 hi |
Se 0.25 | 38.22 ± 0.43 bc | 26.25 ± 0.64 f–i | 11.59 ± 0.62 b | 4.98 ± 0.53 ef | 87.47 ± 1.45 a | 52.59 ± 0.14 f–i |
Se 0.5 | 38.18 ± 0.305 bc | 25.67 ± 0.56 ghi | 12.17 ± 0.61 ab | 5.27 ± 0.39 ef | 86.33 ± 1.88 a | 59.00 ± 0.85 efg |
Se 1 | 32.50 ± 1.42 de | 34.92 ± 0.60 bcd | 11.92 ± 0.87 b | 8.57 ± 0.38 cd | 81.96 ± 2.43 ab | 58.75 ± 4.20 e–h |
Cys 0.25 | 35.42 ± 1.74 bcd | 39.07 ± 0.82 b | 14.07 ± 0.34 a | 8.48 ± 0.13 cd | 85.90 ± 1.13 a | 60.96 ± 0.61 ef |
Cys 0.5 | 35.40 ± 1.54 bcd | 29.37 ± 0.60 efg | 12.05 ± 0.75 b | 5.93 ± 0.19 ef | 82.92 ± 3.81 ab | 50.19 ± 1.59 ghi |
Cys 0.75 | 36.25 ± 1.27 bcd | 34.77 ± 1.76 bcd | 13.27 ± 0.66 ab | 6.05 ± 0.59 ef | 80.97 ± 2.37 ab | 65.08 ± 2.49 de |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbari, A.; Barzegar, T.; Rabiei, V.; Nicola, S. Phenylalanine, Cysteine, and Sodium Selenate Alleviate Chilling Injury in Cape Gooseberry (Physalis peruviana L.) Seedlings by Enhancing Antioxidant Activities and Membrane Stability. Horticulturae 2024, 10, 978. https://doi.org/10.3390/horticulturae10090978
Akbari A, Barzegar T, Rabiei V, Nicola S. Phenylalanine, Cysteine, and Sodium Selenate Alleviate Chilling Injury in Cape Gooseberry (Physalis peruviana L.) Seedlings by Enhancing Antioxidant Activities and Membrane Stability. Horticulturae. 2024; 10(9):978. https://doi.org/10.3390/horticulturae10090978
Chicago/Turabian StyleAkbari, Arezoo, Taher Barzegar, Vali Rabiei, and Silvana Nicola. 2024. "Phenylalanine, Cysteine, and Sodium Selenate Alleviate Chilling Injury in Cape Gooseberry (Physalis peruviana L.) Seedlings by Enhancing Antioxidant Activities and Membrane Stability" Horticulturae 10, no. 9: 978. https://doi.org/10.3390/horticulturae10090978
APA StyleAkbari, A., Barzegar, T., Rabiei, V., & Nicola, S. (2024). Phenylalanine, Cysteine, and Sodium Selenate Alleviate Chilling Injury in Cape Gooseberry (Physalis peruviana L.) Seedlings by Enhancing Antioxidant Activities and Membrane Stability. Horticulturae, 10(9), 978. https://doi.org/10.3390/horticulturae10090978