Virus-Free Sweet Potato Industry: Development Status and Production Suggestions
Abstract
:1. Introduction
2. Development Status of the Virus-Free Sweet Potato Industry
2.1. Planting Scale of Virus-Free Sweet Potato
2.2. Main Cultivars of Virus-Free Sweet Potato
2.3. Production Method for Virus-Free Seed Potato
2.4. Current Situation of World Sweet Potato Production
3. Problems in the Development of the Virus-Free Sweet Potato Industry
3.1. The Virus-Free Sweet Potato Seedling Breeding System Is Not Perfect
3.2. The Virus-Free Sweet Potato Planting Mechanization Degree Is Not High
3.3. Sweet Potato Storage Technology Still Needs to Be Improved
3.4. The Processing Capacity of Virus-Free Sweet Potato Is Not Sufficient
4. Countermeasures and Suggestions
4.1. Improve the Virus-Free Seed Potato and Improve the Seed Breeding Technology System
4.2. Strengthen the Mechanization of Virus-Free Sweet Potato Planting
4.3. Improve the Storage Level of Virus-Free Sweet Potato
4.4. Improve the Processing and Value-Added Ability of Virus-Free Sweet Potato
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alam, M.K. A comprehensive review of sweet potato (Ipomoea batatas [L.] Lam): Revisiting the associated health benefits. Trends Food Sci. Technol. 2021, 115, 512–529. [Google Scholar] [CrossRef]
- Xing, S.H.; Li, R.J.; Zhao, H.Q.; Zhai, H.; He, S.Z.; Zhang, H.; Zhou, Y.Y.; Zhao, N.; Gao, S.P.; Liu, Q.C. The transcription factor IbNAC29 positively regulates the carotenoid accumulation in sweet potato. Hortic. Res. 2023, 10, uhad010. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Khan, M.S.S.; Xue, S.; Islam, F.; Ikram, A.U.; Abdullah, M.; Liu, S.; Tappiban, P.; Chen, J. A comprehensive overview of omics-based approaches to enhance biotic and abiotic stress tolerance in sweet potato. Hortic. Res. 2024, 11, uhae014. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.Z.; Dai, X.B.; Zhao, L.X.; Zhou, Z.L.; Zhao, L.K.; Xu, P.; Gao, B.Q.; Zhang, A.; Zhao, D.L.; Yuan, R.; et al. Resequencing of sweetpotato germplasm resources reveals key loci associated with multiple agronomic traits. Hortic. Res. 2023, 10, uhac234. [Google Scholar] [CrossRef]
- Liu, T.; Xie, Q.; Zhang, M.; Gu, J.; Huang, D.; Cao, Q. Reclaiming Agriceuticals from Sweet-potato (Ipomoea batatas [L.] Lam.) By-Products. Foods 2024, 13, 1180. [Google Scholar] [CrossRef]
- Kiemo, F.W.; Salamon, P.; Jewehan, A.; Tóth, Z.; Szabó, Z. Detection and elimination of viruses infecting sweet potatoes in Hungary. Plant Pathol. 2022, 71, 1001–1009. [Google Scholar] [CrossRef]
- Untiveros, M.; Fuentes, S.; Salazar, L.F. Synergistic interaction of Sweet potato chlorotic stunt virus (Crinivirus) with Carla-, Cucumo-, Ipomo-, and Potyviruses infecting sweet potato. Plant Dis. 2007, 91, 669–676. [Google Scholar] [CrossRef]
- Zhang, K.; Lu, H.; Wan, C.; Tang, D.B.; Zhao, Y.; Luo, K.; Li, S.X.; Wang, J.C. The spread and transmission of sweet potato virus disease (SPVD) and its effect on the gene expression profile in sweet potato. Plants. 2020, 9, 492. [Google Scholar] [CrossRef]
- Andreason, S.A.; Reynolds, P.M.; Whitley, K.M.; Coffey, J.; Simmons, A.M.; Wadl, P.A. Tracking sweet potato leaf curl virus through field production: Implications for sustainable sweet potato production and breeding practices. Plants 2024, 13, 1267. [Google Scholar] [CrossRef]
- Yoo, K.R.; Lee, S.Y. Growth characteristics and yield of sweet potato cultivars between virus-free and farmer’s slips in late season cultivation. Korean J. Crop Sci. 2013, 58, 43–49. [Google Scholar] [CrossRef]
- AlMaarri, K.; Massa, R.; AlBiski, F. Evaluation of some therapies and meristem culture to eliminate Potato Y potyvirus from infected potato plants. Plant Biotechnol. 2012, 29, 237–243. [Google Scholar] [CrossRef]
- Adikini, S.; Mukasa, S.B.; Mwanga, R.O.M.; Gibson, R.W. Effects of sweet potato feathery mottle virus and sweet potato chlorotic stunt virus on the yield of sweetpotato in Uganda. J. Phytopathol. 2016, 164, 242–254. [Google Scholar] [CrossRef]
- Kibiki, C.; Mutabazi, K.D.; Tairo, F. Profit analysis of virus free sweet potato and vine multiplication by smallholder farmers in selected regions of Tanzania. Int. J. Agric. Econ. 2020, 9, 99–105. [Google Scholar] [CrossRef]
- Chen, L.C.; Xu, C.T.; Du, Z.S.; Hamaguchi, T.; Sugita, T.; Nagata, R.; Guan, L.M. Establishment of an efficient and practical virus-free seedling supply system by means of culture of shoot apexes, RT-PCR and clonal propagation in sweet potato (Ipomoea batatas). Br. Biotechnol. J. 2013, 4, 51–63. [Google Scholar] [CrossRef]
- Wondimu, T.; Feyissa, T.; Bedadav, G. Meristem culture of selected sweet potato (Ipomoea batatas L. Lam.) cultivars to produce virus-free planting material. J. Hortic. Sci. Biotechnol. 2012, 87, 255–260. [Google Scholar] [CrossRef]
- Yu, Y.C.; Pan, Z.Y.; Wang, X.; Bian, X.F.; Wang, W.C.; Liang, Q.; Kou, M.; Ji, H.T.; Li, Y.J.; Ma, D.F.; et al. Targeting of SPCSV-RNase3 via CRISPR-Cas13 confers resistance against sweet potato virus disease. Mol. Plant Pathol. 2022, 23, 104–117. [Google Scholar] [CrossRef]
- Bugajim, C.; Groves, K.; Henderson, C.W.L.; Brown, P. Yield performance of virus free sweetpotato (Ipomoea batatas) cultivars in the highlands of Papua New Guinea. N. Z. J. Crop Hortic. Sci. 2024, 2, 1–9. [Google Scholar] [CrossRef]
- Liu, H.J.; Hunt, S.; Yencho, G.C.; Pecota, K.V.; Mierop, R.; Williams, C.M.; Jones, D.S. Predicting sweetpotato traits using machine learning: Impact of environmental and agronomic factors on shape and size. Comput. Electron. Agric. 2024, 225, 109215. [Google Scholar] [CrossRef]
- Yang, J.W.; Kim, J.M.; Lee, H.U.; Han, S.K.; Lee, J.S.; Nam, S.S.; Chung, M.N.; Song, Y.S.; Ahn, S.H.; Choi, I.H. Effect of virus free stocks of sweetpotato cultivated at different regions. Korean J. Crop Sci. 2015, 60, 54–62. [Google Scholar] [CrossRef]
- Mu, T.-H.; Li, P.G. Sweet potato: Origin and production. In Sweet Potato; Academic Press: Cambridge, MA, USA, 2019; pp. 5–25. [Google Scholar]
- Rukarwa, R.J.; Mashingaidze, A.B.; Kyamanywa, S.; Mukasa, S.B. Detection and elimination of sweetpotato viruses. Afr. Crop Sci. J. 2010, 18, 223. [Google Scholar] [CrossRef]
- Chen, L.; Du, Z.; Hamaguchi, T. Clonal propagation and quick detection of virus-free plants of sweet potato, Ipomoea batatas. Bull. Minamikyushu Univ. 2008, 3, 1–5. [Google Scholar]
- Zagipa, S.; Nurgul, R.; Dias, D.; Kuanysh, Z.; Ainash, D.; Andrey, Z.; Kabyl, Z.; Malika, K. Sweet potato as a key crop for food security under the conditions of global climate change: A Review. Plants 2023, 12, 2516. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Puentes, A.A.; Palomo, I.; Rodríguez, L.; Fuentes, E.; Villegas-Ochoa, M.A.; González-Aguilar, G.A.; Olivas-Aguirre, F.J.; Wall-Medrano, A. Sweet potato (Ipomoea batatas L.) phenotypes: From agroindustry to health effects. Foods 2022, 11, 1058. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Yifu, G.; Pinbo, Z. Production and deployment of virus-free sweetpotato in China. Crop Prot. 2000, 19, 105–111. [Google Scholar] [CrossRef]
- Daurov, D.; Daurova, A.; Karimov, A. Determining Effective methods of obtaining virus-free potato for cultivation in Kazakhstan. Am. J. Potato Res. 2020, 97, 367–375. [Google Scholar] [CrossRef]
- Villalba, A.; Martínez-Ispizua, E.; Morard, M.; Sempere, A.C.; Marti, M.R.A.; Calatayud, A.; Penella, C. Optimizing sweet potato production: Insights into the interplay of plant sanitation, virus influence, and cooking techniques for enhanced crop quality and food security. Front. Plant Sci. 2024, 15, 1357611. [Google Scholar] [CrossRef]
- Kassali, R. Economics of sweet potato production. Int. J. Veg. Sci. 2011, 17, 313–321. [Google Scholar] [CrossRef]
- Wang, Q.C.; Valkonen, J.P.T. Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. J. Virol. Methods 2008, 154, 135–145. [Google Scholar] [CrossRef]
- Ngailo, S.; Shimelis, H.; Sibiya, J. Sweet potato breeding for resistance to sweet potato virus disease and improved yield: Progress and challenges. Afr. J. Agric. Res. 2013, 8, 3202–3215. [Google Scholar]
- Ssamula, A.; Okiror, A.; Avrahami-Moyal, L.; Tam, Y.; Gaba, V.; Gibson, R.W.; Gal-On, A.; Mukasa, S.B.; Wasswa, P. Factors influencing reversion from virus infection in sweetpotato. Ann. Appl. Biol. 2020, 176, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Antunez, R.J.; Lorenci, W.A.; Magalhães, J.A.I.; Zevallos, T.L.A.; Ricardo, S.C. The potential of sweet potato biorefinery and development of alternative uses. SN Appl. Sci. 2021, 3, 347. [Google Scholar]
- Li, H.; Wang, B.Q.; Shi, S.; Zhou, J.L.; Shi, Y.P.; Liu, X.C.; Liu, H.; He, T.F. Response of crop performance and yield of spring sweet potato (Ipomoea batatas [L.] Lam) as affected by mechanized transplanting properties. Agronomy 2023, 13, 1611. [Google Scholar] [CrossRef]
- Abdullah, A.; Karim, N.; Jusoh, M. Design and development of a new mechanization system for sweet potato planting material production. Int. J. Agric. For. Plant. 2020, 10, 338–344. [Google Scholar]
- Zhou, X.Z.; Yan, W.; Wang, Y.X.; Liu, H.J.; Zhang, W.Y. Research status and prospect of sweet potato mechanized transplanting technology. J. Chin. Agric. Mech. 2023, 44, 35. [Google Scholar]
- Wang, J.; Yan, W.; Ji, Y.; Qi, B.; Hu, S.Y.; Zhang, W.Y. Research status and prospects of sweet potato fertilization and pesticide application machinery. J. Chin. Agric. Mech. 2021, 42, 68. [Google Scholar]
- Abrham, T.; Beshir, H.M.; Haile, A. Sweetpotato production practices, constraints, and variety evaluation under different storage types. Food Energy Secur. 2021, 10, e263. [Google Scholar] [CrossRef]
- Krochmal-Marczak, B.; Sawicka, B.; Krzysztofik, B.; Danilčenko, H.; Jariene, E. The effects of temperature on the quality and storage stalibity of sweet potato (Ipomoea batatas L. [Lam]) grown in Central Europe. Agronomy 2020, 10, 1665. [Google Scholar] [CrossRef]
- Sanchez, P.D.C.; Hashim, N.; Shamsudin, R.; Mohd, N.M.Z. Effects of different storage temperatures on the quality and shelf life of Malaysian sweet potato (Ipomoea Batatas L.) varieties. Food Packag. Shelf Life 2021, 28, 100642. [Google Scholar] [CrossRef]
- Lu, P.; Li, X.; Janaswamy, S.; Chi, C.D.; Chen, L.; Wu, Y.J.; Liang, Y. Insights on the structure and digestibility of sweet potato starch: Effect of postharvest storage of sweet potato roots. Int. J. Biol. Macromol. 2020, 145, 694–700. [Google Scholar] [CrossRef]
- Akello, R.; Turinawe, A.; Wauters, P.; Naziri, D. Factors influencing the choice of storage technologies by smallholder potato farmers in eastern and southwestern Uganda. Agriculture 2022, 12, 240. [Google Scholar] [CrossRef]
- Laveriano-Santos, E.P.; López-Yerena, A.; Jaime-Rodríguez, C.; González-Coria, J.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Romanyà, J.; Pérez, M. Sweet potato is not simply an abundant food crop: A comprehensive review of its phytochemical constituents, biological activities, and the effects of processing. Antioxidants 2022, 11, 1648. [Google Scholar] [CrossRef] [PubMed]
- Vithu, P.; Dash, S.K.; Rayaguru, K.; Panda, M.K.; Nedunchezhiyan, M. Optimization of starch isolation process for sweet potato and characterization of the prepared starch. J. Food Meas. Charact. 2020, 14, 1520–1532. [Google Scholar] [CrossRef]
- Wang, Q.M.; Zhang, L.M.; Wang, B.; Yin, Z.F.; Feng, C.H.; Wang, Q.C. Sweetpotato viruses in China. Crop Prot. 2010, 29, 110–114. [Google Scholar] [CrossRef]
- Ling, K.S.; Jackson, D.M.; Harrison, H.; Simmons, A.M.; Pesic-VanEsbroeck, Z. Field evaluation of yield effects on the USA heirloom sweetpotato cultivars infected by sweet potato leaf curl virus. Crop Prot. 2010, 29, 757–765. [Google Scholar] [CrossRef]
- Lindqvist, K.H.; Bonierbale, M.; Grüneberg, W.J.; Mendes, T.; De, B.B. Campos, H. Potato and sweetpotato breeding at the international potato center: Approaches, outcomes and the way forward. Theor. Appl. Genet. 2023, 137, 12. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.F.; Wu, P.I.; Liou, J.L.; Yang, S.L. Contract owner’s best commanding for sweet potato farming based on the theory of planned behavior. Agriculture 2022, 12, 1221. [Google Scholar] [CrossRef]
- Iftekhar, A.; Akhtar, S.S.; Kamrun, N.M.; Jahangir, A.M.; Mohammad, A.; Firoz, A.M. Elimination and detection of viruses in meristem-derived plantlets of sweetpotato as a low-cost option toward commercialization. 3 Biotech 2013, 3, 153–164. [Google Scholar]
- Yu, T.; Ma, X.; Liu, Z.; Feng, X.H.; Wang, Z.Y.; Ren, J.; Cao, R.; Zhang, Y.C.; Nie, F.L.; Song, X.M. TVIR: A comprehensive vegetable information resource database for comparative and functional genomic studies. Hortic. Res. 2022, 9, uhac213. [Google Scholar] [CrossRef]
- Yada, B.; Alajo, A.; Ssemakula, N.G.; Mwanga, R.O.M.; Brown-Guedira, G.; Yencho, G.C. Selection of simple sequence repeat markers associated with inheritance of sweetpotato virus disease resistance in sweetpotato. Crop Sci. 2017, 57, 1421–1430. [Google Scholar] [CrossRef]
Virus Species | Particle Morphology | Mode of Virus Transmission |
---|---|---|
Sweet potato feathery mottle virus (SPFMV) | Bent long rod-shaped length 830–850 nm | Mechanical and aphid transmission |
Sweet potato latent virus (SPLV) | Bent long rod-shaped length 700–750 nm | Mechanical and root spreading |
Sweet potato yellow dwarf virus (SPYDV) | Long rod-shaped length 750 nm | Mechanical and whitefly transmission |
Sweet potato vein clearing virus (SPVCV) | Filamentous length 850 nm | Whitefly transmission |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Wang, L.-X.; Chen, C.; Ma, S.-S.; Zhou, R.; Xiong, A.-S. Virus-Free Sweet Potato Industry: Development Status and Production Suggestions. Horticulturae 2024, 10, 979. https://doi.org/10.3390/horticulturae10090979
Xu Y, Wang L-X, Chen C, Ma S-S, Zhou R, Xiong A-S. Virus-Free Sweet Potato Industry: Development Status and Production Suggestions. Horticulturae. 2024; 10(9):979. https://doi.org/10.3390/horticulturae10090979
Chicago/Turabian StyleXu, Ying, Li-Xiang Wang, Chen Chen, Shao-Shan Ma, Rui Zhou, and Ai-Sheng Xiong. 2024. "Virus-Free Sweet Potato Industry: Development Status and Production Suggestions" Horticulturae 10, no. 9: 979. https://doi.org/10.3390/horticulturae10090979
APA StyleXu, Y., Wang, L. -X., Chen, C., Ma, S. -S., Zhou, R., & Xiong, A. -S. (2024). Virus-Free Sweet Potato Industry: Development Status and Production Suggestions. Horticulturae, 10(9), 979. https://doi.org/10.3390/horticulturae10090979