Genome-Wide Identification of the ARF Gene Family in Three Dendrobium Species and Its Expression Pattern Analysis in D. nobile Flower
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Identification and Physicochemical Properties of ARF Gene Family
2.3. Phylogenetic Analysis of ARF Genes
2.4. Motif and Gene Structure Analysis
2.5. Prediction of Cis-Acting Elements
2.6. Collinearity and Chromosomal Localization of ARF Genes in Three Dendrobium Species
2.7. Expression Analysis
3. Results
3.1. Identification and Protein Characterization of ARF Gene Family in Three Dendrobium Species
3.2. Phylogeny and Classification of ARF Genes in Three Dendrobium Species
3.3. Chromosomal Localization and Collinearity Analysis of ARF Genes in Three Dendrobium Species
3.4. Gene Structure and Conserved Domains of ARF Genes in Three Dendrobium Species
3.5. Cis-Acting Regulatory Element Analysis of ARF Genes in Three Dendrobium Species
3.6. Expression Analysis of ARF Genes in D. nobile and D. chrysotoxum Flower
3.7. qRT-PCR Analysis of Four DnoARF Genes in D. nobile Flower
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tiwari, S.B.; Hagen, G.; Guilfoyle, T. The Roles of Auxin Response Factor Domains in Auxin-Responsive Transcription. Plant Cell 2003, 15, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Finet, C.; Berne-Dedieu, A.; Scutt, C.P.; Marlétaz, F. Evolution of the ARF Gene Family in Land Plants: Old Domains, New Tricks. Mol. Biol. Evol. 2013, 30, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, M.; Neve, J.; Kepinski, S. Defining Auxin Response Contexts in Plant Development. Curr. Opin. Plant Biol. 2010, 13, 12–20. [Google Scholar] [CrossRef]
- Guilfoyle, T.J.; Hagen, G. Auxin Response Factors. Curr. Opin. Plant Biol. 2007, 10, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-B.; OuYang, W.-Z.; Hou, X.-J.; Xie, L.L.; Hu, C.-G.; Zhang, J.-Z. Genome-Wide Identification, Isolation and Expression Analysis of Auxin Response Factor (ARF) Gene Family in Sweet Orange (Citrus sinensis). Front. Plant Sci. 2015, 6, 119. [Google Scholar] [CrossRef] [PubMed]
- Tan, S. Repressors for Auxin Responsive Transcriptional Activators. Mol. Plant 2021, 14, 8. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Feng, Q.; Qin, L.; Pan, C.; Lamin-Samu, A.T.; Lu, G. Tomato AUXIN RESPONSE FACTOR 5 Regulates Fruit Set and Development via the Mediation of Auxin and Gibberellin Signaling. Sci. Rep. 2018, 8, 2971. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, S.; Qi, Y. Advances in Structure and Function of Auxin Response Factor in Plants. J. Integr. Plant Biol. 2023, 65, 617–632. [Google Scholar] [CrossRef]
- Ulmasov, T.; Hagen, G.; Guilfoyle, T.J. Dimerization and DNA Binding of Auxin Response Factors. Plant J. 1999, 19, 309–319. [Google Scholar] [CrossRef]
- Rienstra, J.; Hernández-García, J.; Weijers, D. To Bind or Not to Bind: How Auxin Response Factors Select Their Target Genes. J. Exp. Bot. 2023, 74, 6922–6932. [Google Scholar] [CrossRef]
- Xing, H.; Pudake, R.N.; Guo, G.; Xing, G.; Hu, Z.; Zhang, Y.; Sun, Q.; Ni, Z. Genome-Wide Identification and Expression Profiling of Auxin Response Factor (ARF) Gene Family in Maize. BMC Genom. 2011, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yuan, C.; Li, H.; Lin, W.; Yang, Y.; Shen, C.; Zheng, X. Genome-Wide Identification and Characterization of Auxin Response Factor (ARF) Family Genes Related to Flower and Fruit Development in Papaya (Carica papaya L.). BMC Genom. 2015, 16, 901. [Google Scholar] [CrossRef]
- Guo, F.; Xiong, W.; Guo, J.; Wang, G. Systematic Identification and Expression Analysis of the Auxin Response Factor (ARF) Gene Family in Ginkgo biloba L. Int. J. Mol. Sci. 2022, 23, 6754. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Ma, Y.; Chang, Y.; Zhang, W.; Deng, Y.; Zhang, N.; Zhang, X.; Fan, K.; Hu, X.; Wang, S.; et al. Identification and Transcriptome Data Analysis of ARF Family Genes in Five Orchidaceae Species. Plant Mol. Biol. 2023, 112, 85–98. [Google Scholar] [CrossRef]
- Liang, Y.; Jiang, C.; Liu, Y.; Gao, Y.; Lu, J.; Aiwaili, P.; Fei, Z.; Jiang, C.-Z.; Hong, B.; Ma, C. Auxin Regulates Sucrose Transport to Repress Petal Abscission in Rose (Rosa hybrida). Plant Cell 2020, 32, 3485–3499. [Google Scholar] [CrossRef]
- Kumar, R.; Tyagi, A.K.; Sharma, A.K. Genome-Wide Analysis of Auxin Response Factor (ARF) Gene Family from Tomato and Analysis of Their Role in Flower and Fruit Development. Mol. Genet. Genom. 2011, 285, 245–260. [Google Scholar] [CrossRef]
- Ren, Z.; Liu, R.; Gu, W.; Dong, X. The Solanum Lycopersicum Auxin Response Factor SlARF2 Participates in Regulating Lateral Root Formation and Flower Organ Senescence. Plant Sci. 2017, 256, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Zhao, X.; Huang, Y.; Zhang, M.-M.; He, X.; Ke, S.; Li, Y.; Zhang, C.; Ahmad, S.; Lan, S.; et al. Genome-Wide Identification of the YABBY Gene Family in Dendrobium Orchids and Its Expression Patterns in Dendrobium Chrysotoxum. Int. J. Mol. Sci. 2023, 24, 10165. [Google Scholar] [CrossRef]
- Niu, Z.; Zhu, F.; Fan, Y.; Li, C.; Zhang, B.; Zhu, S.; Hou, Z.; Wang, M.; Yang, J.; Xue, Q.; et al. The Chromosome-Level Reference Genome Assembly for Dendrobium Officinale and Its Utility of Functional Genomics Research and Molecular Breeding Study. Acta Pharm. Sin. B 2021, 11, 2080–2092. [Google Scholar] [CrossRef]
- He, C.; Liu, X.; Teixeira Da Silva, J.A.; Liu, N.; Zhang, M.; Duan, J. Transcriptome Sequencing and Metabolite Profiling Analyses Provide Comprehensive Insight into Molecular Mechanisms of Flower Development in Dendrobium Officinale (Orchidaceae). Plant Mol. Biol. 2020, 104, 529–548. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; De Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB Bioinformatics Resource Portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef]
- Chou, K.-C.; Shen, H.-B. Plant-mPLoc: A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular Localization. PLoS ONE 2010, 5, e11335. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME Suite: Tools for Motif Discovery and Searching. Nucleic Acids Res. 2009, 37 (Suppl. S2), W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a Database of Plant Cis-Acting Regulatory Elements and a Portal to Tools for in Silico Analysis of Promoter Sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate Transcript Quantification from RNA-Seq Data with or without a Reference Genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Fontana, M.; Roosjen, M.; Crespo García, I.; van den Berg, W.; Malfois, M.; Boer, R.; Weijers, D.; Hohlbein, J. Cooperative action of separate interaction domains promotes high-affinity DNA binding of Arabidopsis thaliana ARF transcription factors. Proc. Natl. Acad. Sci. USA 2023, 120, e2219916120. [Google Scholar] [CrossRef]
- Wu, J.; Wang, F.; Cheng, L.; Kong, F.; Peng, Z.; Liu, S.; Yu, X.; Lu, G. Identification, Isolation and Expression Analysis of Auxin Response Factor (ARF) Genes in Solanum Lycopersicum. Plant Cell Rep. 2011, 30, 2059–2073. [Google Scholar] [CrossRef]
- Chen, G.Z.; Huang, J.; Lin, Z.C.; Wang, F.; Yang, S.-M.; Jiang, X.; Ahmad, S.; Zhou, Y.-Z.; Lan, S.; Liu, Z.-J.; et al. Genome-Wide Analysis of WUSCHEL-Related Homeobox Gene Family in Sacred Lotus (Nelumbo nucifera). Int. J. Mol. Sci. 2023, 24, 14216. [Google Scholar] [CrossRef] [PubMed]
- Romani, F.; Moreno, J.E. Molecular Mechanisms Involved in Functional Macroevolution of Plant Transcription Factors. New Phytol. 2021, 230, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hua, D.; He, J.; Duan, Y.; Chen, Z.; Hong, X.; Gong, Z. Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet. 2011, 7, e1002172. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Dong, L.; Deng, X.; Liu, D.; Liu, Y.; Li, M.; Hu, Y.; Yan, Y. Genome-Wide Identification, Molecular Evolution, and Expression Analysis of Auxin Response Factor (ARF) Gene Family in Brachypodium distachyon L. BMC Plant Biol. 2018, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cancé, C.; Martin-Arevalillo, R.; Boubekeur, K.; Dumas, R. Auxin response factors are keys to the many auxin doors. New Phytol. 2022, 235, 402–419. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yuan, Y.; Fu, D.; Shen, C.; Yang, Y. Identification and Expression Profiling of the Auxin Response Factors in Dendrobium Officinale under Abiotic Stresses. Int. J. Mol. Sci. 2017, 18, 927. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Chang, L.; Zhang, T.; Chen, H.; Zhang, L.; Lin, R.; Liang, J.; Wu, J.; Freeling, M.; Wang, X. Impacts of Allopolyploidization and Structural Variation on Intraspecific Diversification in Brassica Rapa. Genome Biol. 2021, 22, 166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-Q.; Xu, Q.; Bian, C.; Tsai, W.-C.; Yeh, C.-M.; Liu, K.-W.; Yoshida, K.; Zhang, L.-S.; Chang, S.-B.; Chen, F.; et al. The Dendrobium catenatum Lindl. Genome Sequence Provides Insights into Polysaccharide Synthase, Floral Development and Adaptive Evolution. Sci. Rep. 2016, 6, 19029. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-Q.; Liu, K.-W.; Li, Z.; Lohaus, R.; Hsiao, Y.-Y.; Niu, S.-C.; Wang, J.-Y.; Lin, Y.-C.; Xu, Q.; Chen, L.-J.; et al. The Apostasia Genome and the Evolution of Orchids. Nature 2017, 549, 379–383. [Google Scholar] [CrossRef]
- Jo, B.-S.; Choi, S.S. Introns: The Functional Benefits of Introns in Genomes. Genom. Inform. 2015, 13, 112–118. [Google Scholar] [CrossRef]
- Hernandez-Garcia, C.M.; Finer, J.J. Identification and Validation of Promoters and Cis-Acting Regulatory Elements. Plant Sci. 2014, 217–218, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, Y.; Cai, C.; Zhu, Q. Auxin Response Factors Fine-tune Lignin Biosynthesis in Response to Mechanical Bending in Bamboo. New Phytol. 2023, 241, 1161–1176. [Google Scholar] [CrossRef] [PubMed]
- Khaksar, G.; Sirikantaramas, S. Auxin Response Factor 2A Is Part of the Regulatory Network Mediating Fruit Ripening through Auxin-Ethylene Crosstalk in Durian. Front. Plant Sci. 2020, 11, 543747. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Xu, X.; Gong, Z.; Tang, Y.; Wu, M.; Yan, F.; Zhang, X.; Zhang, Q.; Yang, F.; Hu, X. Auxin Response Factor 6A Regulates Photosynthesis, Sugar Accumulation, and Fruit Development in Tomato. Hortic. Res. 2019, 6, 85. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Gene ID | Theoretical pI | Molecular Weight MW (kDa) | Amino Acids (aa) | GRAVY | The Instability Index (II) | Subcellular Localization |
---|---|---|---|---|---|---|---|
DchARF1 | Maker67368 | 5.19 | 111.83 | 1004 | −0.419 | 56.94 | Nucleus |
DchARF2 | Maker112730 | 8.38 | 57.70 | 522 | −0.119 | 49.80 | Nucleus |
DchARF3 | Maker78910 | 8.23 | 78.09 | 704 | −0.401 | 46.56 | Nucleus |
DchARF4 | Maker89068 | 7.50 | 87.43 | 787 | −0.291 | 47.30 | Nucleus |
DchARF5 | Maker67406 | 6.31 | 94.60 | 853 | −0.453 | 52.27 | Nucleus |
DchARF6 | Maker76677 | 8.09 | 69.22 | 622 | −0.395 | 50.52 | Nucleus |
DchARF7 | Maker68808 | 5.98 | 100.87 | 908 | −0.433 | 58.92 | Nucleus |
DchARF8 | Maker112343 | 6.34 | 94.09 | 843 | −0.464 | 57.96 | Nucleus |
DchARF9 | Maker65500 | 5.42 | 85.52 | 764 | −0.399 | 62.47 | Nucleus |
DchARF10 | Maker53290 | 5.72 | 74.75 | 669 | −0.440 | 61.88 | Nucleus |
DchARF11 | Maker90125 | 6.44 | 76.46 | 678 | −0.473 | 43.63 | Nucleus |
DchARF12 | Maker108475 | 7.64 | 80.97 | 721 | −0.298 | 48.93 | Nucleus |
DchARF13 | Maker115491 | 6.11 | 116.81 | 1043 | −0.494 | 63.94 | Nucleus |
DhuARF1 | Dhu000012013 | 5.35 | 57.59 | 516 | −0.467 | 65.49 | Nucleus |
DhuARF2 | Dhu000025273 | 6.20 | 28.46 | 248 | −0.255 | 56.14 | Nucleus |
DhuARF3 | Dhu000008258 | 6.19 | 68.49 | 601 | −0.154 | 57.69 | Nucleus |
DhuARF4 | Dhu000008039 | 8.09 | 68.69 | 615 | −0.358 | 49.31 | Nucleus |
DhuARF5 | Dhu000022632 | 6.19 | 78.10 | 694 | −0.476 | 44.13 | Nucleus |
DhuARF6 | Dhu000020562 | 5.44 | 61.27 | 542 | −0.421 | 59.71 | Nucleus |
DhuARF7 | Dhu000020741 | 6.51 | 63.38 | 561 | −0.619 | 49.42 | Nucleus |
DhuARF8 | Dhu000012552 | 6.55 | 96.10 | 867 | −0.538 | 54.79 | Nucleus |
DhuARF9 | Dhu000021532 | 6.34 | 77.78 | 700 | −0.429 | 46.22 | Nucleus |
DhuARF10 | Dhu000006783 | 8.06 | 77.75 | 702 | −0.402 | 46.72 | Nucleus |
DhuARF11 | Dhu000012252 | 8.12 | 68.80 | 616 | −0.386 | 49.91 | Nucleus |
DhuARF12 | Dhu000024660 | 5.94 | 84.48 | 762 | −0.509 | 47.13 | Nucleus |
DhuARF13 | Dhu000018860 | 6.10 | 104.93 | 947 | −0.404 | 56.02 | Nucleus |
DhuARF14 | Dhu000004687 | 5.87 | 95.96 | 864 | −0.380 | 59.04 | Nucleus |
DhuARF15 | Dhu000003428 | 5.78 | 94.91 | 850 | −0.427 | 55.88 | Nucleus |
DhuARF16 | Dhu000008590 | 5.67 | 36.28 | 324 | −0.320 | 57.26 | Nucleus |
DhuARF17 | Dhu000002910 | 8.61 | 57.65 | 523 | −0.153 | 51.02 | Nucleus |
DhuARF18 | Dhu000025920 | 5.5 | 41.19 | 366 | −0.346 | 60.46 | Nucleus |
DnoARF1 | cds-KAI0530553.1 | 5.15 | 109.41 | 982 | −0.441 | 58.12 | Nucleus |
DnoARF2 | cds-KAI0530789.1 | 6.18 | 70.90 | 634 | −0.496 | 51.64 | Nucleus |
DnoARF3 | cds-KAI0531046.1 | 8.37 | 57.63 | 523 | −0.136 | 49.78 | Nucleus |
DnoARF4 | cds-KAI0528813.1 | 8.06 | 77.70 | 702 | −0.405 | 48.03 | Nucleus |
DnoARF5 | cds-KAI0529214.1 | 6.00 | 90.82 | 809 | −0.436 | 58.68 | Nucleus |
DnoARF6 | cds-KAI0524417.1 | 6.61 | 76.33 | 685 | −0.459 | 47.84 | Nucleus |
DnoARF7 | cds-KAI0522726.1 | 6.60 | 94.12 | 846 | −0.465 | 48.18 | Nucleus |
DnoARF8 | cds-KAI0518880.1 | 8.33 | 94.27 | 845 | −0.575 | 69.76 | Nucleus |
DnoARF9 | cds-KAI0513561.1 | 8.12 | 68.73 | 616 | −0.384 | 48.95 | Nucleus |
DnoARF10 | cds-KAI0510213.1 | 6.01 | 101.42 | 912 | −0.431 | 59.59 | Nucleus |
DnoARF11 | cds-KAI0510575.1 | 6.32 | 94.41 | 843 | −0.494 | 59.22 | Nucleus |
DnoARF12 | cds-KAI0511442.1 | 5.72 | 88.99 | 803 | −0.536 | 54.27 | Nucleus |
DnoARF13 | cds-KAI0499593.1 | 5.76 | 88.69 | 791 | −0.413 | 61.70 | Nucleus |
DnoARF14 | cds-KAI0499914.1 | 8.99 | 58.20 | 508 | −0.710 | 47.62 | Nucleus |
DnoARF15 | cds-KAI0497955.1 | 6.36 | 81.25 | 724 | −0.373 | 54.26 | Nucleus |
DnoARF16 | cds-KAI0496169.1 | 5.87 | 71.76 | 640 | −0.467 | 63.25 | Nucleus |
DnoARF17 | cds-KAI0496703.1 | 6.52 | 74.64 | 662 | −0.474 | 46.41 | Nucleus |
DnoARF18 | cds-KAI0493458.1 | 6.71 | 75.35 | 674 | −0.349 | 53.49 | Nucleus |
DnoARF19 | cds-KAI0494314.1 | 5.64 | 74.52 | 672 | −0.477 | 64.59 | Nucleus |
DnoARF20 | cds-KAI0494588.1 | 6.28 | 108.38 | 962 | −0.546 | 67.51 | Nucleus |
DnoARF21 | cds-KAI0492193.1 | 6.42 | 78.40 | 718 | −0.422 | 56.29 | Nucleus |
DnoARF22 | cds-KAI0488159.1 | 7.66 | 68.69 | 605 | −0.563 | 51.85 | Nucleus |
DnoARF23 | cds-KAI0489348.1 | 6.54 | 93.72 | 843 | −0.546 | 53.97 | Nucleus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Lin, W.; Ke, S.; Chen, D.; Wang, L.; Zheng, Q.; Huang, Y.; Liu, Z.-J.; Yin, W.; Lan, S. Genome-Wide Identification of the ARF Gene Family in Three Dendrobium Species and Its Expression Pattern Analysis in D. nobile Flower. Horticulturae 2024, 10, 568. https://doi.org/10.3390/horticulturae10060568
Zhang C, Lin W, Ke S, Chen D, Wang L, Zheng Q, Huang Y, Liu Z-J, Yin W, Lan S. Genome-Wide Identification of the ARF Gene Family in Three Dendrobium Species and Its Expression Pattern Analysis in D. nobile Flower. Horticulturae. 2024; 10(6):568. https://doi.org/10.3390/horticulturae10060568
Chicago/Turabian StyleZhang, Cuili, Wenjun Lin, Shijie Ke, Deqiang Chen, Linying Wang, Qinyao Zheng, Ye Huang, Zhong-Jian Liu, Weilun Yin, and Siren Lan. 2024. "Genome-Wide Identification of the ARF Gene Family in Three Dendrobium Species and Its Expression Pattern Analysis in D. nobile Flower" Horticulturae 10, no. 6: 568. https://doi.org/10.3390/horticulturae10060568
APA StyleZhang, C., Lin, W., Ke, S., Chen, D., Wang, L., Zheng, Q., Huang, Y., Liu, Z. -J., Yin, W., & Lan, S. (2024). Genome-Wide Identification of the ARF Gene Family in Three Dendrobium Species and Its Expression Pattern Analysis in D. nobile Flower. Horticulturae, 10(6), 568. https://doi.org/10.3390/horticulturae10060568