Fishpond Water Potential on Vineyard Soil Health: An Exploratory Study of a Circular System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location, Field Layout, and Soil Sampling
2.2. Soil Analysis
3. Exploratory Results
3.1. Grape Yields
3.2. Soil pH, Organic Matter, and Carbon
3.3. Soil Nitrate and Ammonium
3.4. Soil Phosphorus
3.5. Soil Microbial Respiration and Total Microbial Biomass
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albornoz, F. Crop responses to nitrogen overfertilization: A review. Sci. Hortic. 2016, 205, 79–83. [Google Scholar] [CrossRef]
- Hendricks, G.; Shukla, S.; Roka, F.; Sishodia, R.; Obreza, T.; Hochmuth, G.; Colee, J. Economic and environmental consequences of overfertilization under extreme weather conditions. J. Soil Water Conserv. 2019, 74, 160–171. [Google Scholar] [CrossRef]
- Innes, R. Economics of Agricultural Residuals and Overfertilization: Chemical Fertilizer Use, Livestock Waste, Manure Management, and Environmental Impacts. In Encyclopedia of Energy, Natural Resource, and Environmental Economics; Elsevier Science: Waltham, MA, USA, 2013; pp. 50–57. [Google Scholar] [CrossRef]
- Andersen, J.H.; Conley, D.J.; Hedal, S. Palaeoecology, reference conditions and classification of ecological status: The EU Water Framework Directive in practice. Mar. Pollut. Bull. 2004, 49, 283–290. [Google Scholar] [CrossRef]
- Bouwman, L.; Goldewijk, K.K.; Van Der Hoek, K.W.; Beusen, A.H.W.; van Vuuren, D.P.; Willems, J.; Rufino, M.C.; Stehfest, E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 2013, 110, 20882–20887. [Google Scholar] [CrossRef]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130164. [Google Scholar] [CrossRef]
- Yang, X.E.; Wu, X.; Hao, H.L.; He, Z.L. Mechanisms and assessment of water eutrophication. Zhejiang Da Xue Xue Bao Li Xue Ban 2008, 9, 197–209. [Google Scholar] [CrossRef]
- Shah, T.; Lateef, S.; Noor, M.A. Carbon and Nitrogen Cycling in Agro-ecosystems: An Overview. In Carbon and Nitrogen Cycling in Soil; Datta, R., Meena, R.S., Pathan, S.I., Ceccherini, M.T., Eds.; Summerer Singapore: Singapore, 2020; Volume 348, pp. 1–15. [Google Scholar]
- Helgason, K.S.; Iversen, K.; Julca, A. Circular Agriculture for Sustainable Rural Development. UN/DESA Policy, 2021, Brief #105. Available online: https://www.un.org/development/desa/dpad/publication/un-desa-policy-brief-105-circular-agriculture-for-sustainable-rural-development/ (accessed on 10 December 2021).
- Mpanga, I.K.; Schuch, U.K.; Schalau, J. Adaptation of resilient regenerative agricultural practices by small-scale growers towards sustainable food production in north-central Arizona. Curr. Res. Environ. Sustain. 2021, 3, 100067. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X.; Yang, X. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil Tillage Res. 2019, 187, 85–91. [Google Scholar] [CrossRef]
- Cardoso, E.J.B.N.; Vasconcellos, R.L.F.; Bini, D.; Miyauchi, M.Y.H.; dos Santos, C.A.; Alves, P.R.L.; de Paula, A.M.; Nakatani, A.S.; Pereira, J.d.M.; Nogueira, M.A. Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci. Agricola 2013, 70, 274–289. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Mpanga, I.K.; Tronstad, R.; Guo, J.; LeBauer, D.S.; Idowu, O.J. On-farm land management strategies and production challenges in United States organic agricultural systems. Curr. Res. Environ. Sustain. 2021, 3, 100097. [Google Scholar] [CrossRef]
- Wang, M.; Pendall, E.; Fang, C.; Li, B.; Nie, M. A global perspective on agroecosystem nitrogen cycles after returning crop residue. Agric. Ecosyst. Environ. 2018, 266, 49–54. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, W.; Liang, G.; Wang, X.; Sun, J.; He, P.; Li, L. Effects of Different Organic Manures on the Biochemical and Microbial Characteristics of Albic Paddy Soil in a Short-Term Experiment. PLoS ONE 2015, 10, e0124096. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.T.; Voroney, R.P. Recycling Soil Nitrate Nitrogen by Amending Agricultural Lands with Oily Food Waste. J. Environ. Qual. 2003, 32, 1881–1886. [Google Scholar] [CrossRef]
- Adjei, E.; Santo, K.G.; Poku, I.A.; Alexander, D.-A.; Antwi, A.O. Garden Egg (Solanum melongena L.) Performance under Different Sources of Animal Manure as a Sustainable Alternative Fertilizer for Farmers. Agric. Sci. 2023, 14, 1053–1067. [Google Scholar] [CrossRef]
- Spiegal, S.; Kleinman, P.J.; Endale, D.M.; Bryant, R.B.; Dell, C.; Goslee, S.; Meinen, R.J.; Flynn, K.C.; Baker, J.M.; Browning, D.M.; et al. Manuresheds: Advancing nutrient recycling in US agriculture. Agric. Syst. 2020, 182, 102813. [Google Scholar] [CrossRef]
- Tsuruta, T.; Yamaguchi, M.; Abe, S.-I.; Iguchi, K. Effect of fish in rice-fish culture on the rice yield. Fish. Sci. 2011, 77, 95–106. [Google Scholar] [CrossRef]
- Oehme, M.; Frei, M.; Razzak, M.A.; Dewan, S.; Becker, K. Studies on nitrogen cycling under different nitrogen inputs in integrated rice-fish culture in Bangladesh. Nutr. Cycl. Agroecosystems 2007, 79, 181–191. [Google Scholar] [CrossRef]
- Mpanga, I.K.; Idowu, O.J. A Decade of Irrigation Water use trends in Southwestern USA: The Role of Irrigation Technology, Best Management Practices, and Outreach Education Programs. Agric. Water Manag. 2021, 243, 106438. [Google Scholar] [CrossRef]
- Mpanga, I.K.; Gaikpa, D.S.; Koomson, E.; Dapaah, H.K. Innovations in Water Management: Agriculture. In The Palgrave Handbook of Global Sustainability; Palgrave Macmillan: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Haney, R.L.; Haney, E.B.; Smith, D.R.; Harmel, R.D.; White, M.J. The soil health tool—Theory and initial broad-scale appli-cation. Appl. Soil Ecol. 2018, 125, 162–168. [Google Scholar] [CrossRef]
- Hamel, C.; Hanson, K.; Selles, F.; Cruz, A.F.; Lemke, R.; McConkey, B.; Zentner, R. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 2006, 38, 2104–2116. [Google Scholar] [CrossRef]
- Luo, S.-P.; He, B.-H.; Zeng, Q.-P.; Li, N.-J.; Yang, L. Effects of seasonal variation on soil microbial community structure and enzyme activity in a Masson pine forest in Southwest China. J. Mt. Sci. 2020, 17, 1398–1409. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, J.Q.; Li, G. The nutrients in the fertile water from fish pond assimilated and utilized by paddy field. In Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection (ISWREP), Xi’an, China, 20–22 May 2011; pp. 2695–2698. [Google Scholar]
- Abdelraouf, R.; Ragab, R. The Benefit of Using Drainage Water of Fish Farms for Irrigation: Field and Modelling Study Using the SALTMED Model. Irrig. Drain. 2017, 66, 758–772. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J. A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture 2017, 9, 120. [Google Scholar] [CrossRef]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil Health and Sustainable Agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Rietz, D.; Haynes, R. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol. Biochem. 2003, 35, 845–854. [Google Scholar] [CrossRef]
- Chen, L.; Feng, Q.; Li, C.; Wei, Y.; Zhao, Y.; Feng, Y.; Zheng, H.; Li, F.; Li, H. Impacts of aquaculture wastewater irrigation on soil microbial functional diversity and community structure in arid regions. Sci. Rep. 2017, 7, 11193. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.P.; Ferris, H.; Shrestha, A.; Larney, F.; Sposito, G. Managing irrigation for soil health in arid and semi-arid regions. In Managing Soil Health for Sustainable Agriculture; Reicosky, D., Ed.; Burleigh Dodds Series in Agricultural Science; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; Volume 2, pp. 149–162. [Google Scholar]
Ditchwater | Fishpond Water | |
---|---|---|
pH | 8.5 | 8.1 |
Sodium absorption ratio | 0.2 | 0.3 |
Electrical conductivity (mmho/cm) | 0.4 | 0.3 |
Cations (me/L) | 4.0 | 4.1 |
Anions (me/L) | 4.1 | 3.4 |
Sodium (mg/L) | 7.0 | 8.0 |
Calcium (mg/L) | 36.1 | 30.8 |
Magnesium (mg/L) | 22.0 | 26.0 |
Potassium (mg/L) | 3.0 | 4.0 |
Total hardness (mg/L) | 182.0 | 186.0 |
Nitrate (mg/L) | 0.1 | 0.1 |
Sulfur (mg/L) | 2.0 | 1.0 |
CO3 (mg/L) | 3.7 | <1.0 |
HCO3 (mg/L) | 227.0 | 185.0 |
Chloride (mg/L) | 4.0 | 10.0 |
Total alkalinity (mg/L) | 192.0 | 154.0 |
Soil pH | Organic Matter (%) | Total Organic C (mg C/kg Soil) | |
---|---|---|---|
Summer soil samples | |||
Ditchwater-irrigated field | 8.1 a | 3.9 b | 138.7 b |
Fishpond-water-irrigated field | 8.1 a | 4.6 a | 193.7 a |
t-test (p = 0.05) | na | 0.0 | 0.0 |
Winter soil samples | |||
Ditchwater-irrigated field | 8.1 a | 3.7 a | 123.3 a |
Fishpond-water-irrigated field | 8.0 a | 4.0 a | 145.7 a |
t-test (p = 0.05) | na | 0.6 | 0.8 |
Organic Nitrogen (mg N/k Soil) | Inorganic Nitrogen (mg N/kg Soil) | Nitrate (mg N/kg Soil) | Ammonium (mg N/kg Soil) | |
---|---|---|---|---|
Summer soil samples | ||||
Ditchwater-irrigated field | 24.0 a | 47.6 a | 46.5 a | 1.1 a |
Fishpond-water-irrigated field | 32.7 a | 53.7 a | 50.7 a | 3.0 a |
t-test (p = 0.05) | 0.1 | 0.1 | 0.1 | 0.1 |
Winter soil samples | ||||
Ditchwater-irrigated field | 19.2 a | 30.9 a | 30.2 a | 1.3 a |
Fishpond-water-irrigated field | 21.2 a | 34.9 a | 33.0 a | 1.9 a |
t-test (p = 0.05) | 0.3 | 0.1 | 0.1 | 0.4 |
Inorganic Phosphorus (mg P/kg Soil) | Organic Phosphorus (mg P/kg Soil) | |
---|---|---|
Summer soil samples | ||
Ditchwater-irrigated field | 23.3 b | 9.0 a |
Fishpond-water-irrigated field | 34.3 a | 8.6 a |
t-test (p = 0.05) | 0.0 | 0.8 |
Winter soil samples | ||
Ditchwater-irrigated field | 14.4 b | 7.4 b |
Fishpond-water-irrigated field | 17.1 a | 8.7 a |
t-test (p = 0.05) | 0.00 | 0.0 |
Total Microbial Biomass (PLFA ng/g) | Total Bacterial Biomass (PLFA ng/g) | Total Fungal Biomass (PLFA ng/g) | Soil Respiration (mg CO2-C /kg Soil) | |
---|---|---|---|---|
Summer soil samples | ||||
Ditchwater-irrigated field | 1807.0 a | 652.7 a | 101.5 a | 88.7 b |
Fishpond-water-irrigated field | 2041.2 a | 826.1 a | 131.0 a | 141.0 a |
t-test (p = 0.05) | 0.6 | 0.1 | 0.1 | 0.0 |
Winter soil samples | ||||
Ditchwater-irrigated field | 1064.1 a | 340.1 a | 5.9 a | 38.2 b |
Fishpond-water-irrigated field | 1189.9 a | 378.4 a | 7.7 a | 56.2 a |
t-test (p = 0.05) | 0.5 | 0.5 | 0.8 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpanga, I.K.; Ijato, T.; Dapaah, H.K.; Tronstad, R. Fishpond Water Potential on Vineyard Soil Health: An Exploratory Study of a Circular System. Horticulturae 2024, 10, 390. https://doi.org/10.3390/horticulturae10040390
Mpanga IK, Ijato T, Dapaah HK, Tronstad R. Fishpond Water Potential on Vineyard Soil Health: An Exploratory Study of a Circular System. Horticulturae. 2024; 10(4):390. https://doi.org/10.3390/horticulturae10040390
Chicago/Turabian StyleMpanga, Isaac Kwadwo, Toyosi Ijato, Harrison Kwame Dapaah, and Russell Tronstad. 2024. "Fishpond Water Potential on Vineyard Soil Health: An Exploratory Study of a Circular System" Horticulturae 10, no. 4: 390. https://doi.org/10.3390/horticulturae10040390
APA StyleMpanga, I. K., Ijato, T., Dapaah, H. K., & Tronstad, R. (2024). Fishpond Water Potential on Vineyard Soil Health: An Exploratory Study of a Circular System. Horticulturae, 10(4), 390. https://doi.org/10.3390/horticulturae10040390