Using Bokashi and Cow Urine as Organic Low-Cost Amendments Can Enhance Arugula (Eruca sativa L.) Agronomic Traits but Not Always Total Polyphenols and Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tripodi, P.; Francese, G.; Mennella, G. Rocket salad: Crop description, bioactive compounds and breeding perspectives. Adv. Hortic. Sci. 2017, 31, 107–114. [Google Scholar]
- Cecílio Filho, A.B.; Maia, M.M.; Mendoza-Cortez, J.W.; Rodrigues, M.A.; Nowaki, R.H.D. Épocas de cultivo e parcelamento da adubação nitrogenada para rúcula. Comun. Sci. 2014, 40, 252–258. [Google Scholar]
- Thanh, D.T.; Ty, N.M.; Hien, N.V.; Berg, H.; Nguyen, T.K.O.; Vu, P.T.; Minh, V.Q.; Da, C.T. Effects of organic fertilizers produced from fish pond sediment on growth performances and yield of Malabar and Amaranthus vegetables. Front. Sustain. Food Syst. 2023, 7, 1045592. [Google Scholar] [CrossRef]
- Ribera, L.M.; Cecílio Filho, A.B.; Peres, N.D.; Santana, D.C.; Silva, M.L.D. Lettuce and arugula production in intercropping and organic fertilization. Rev. Caatinga 2023, 36, 794–801. [Google Scholar] [CrossRef]
- Cardarelli, M.; El Chami, A.; Iovieno, P.; Rouphael, Y.; Bonini, P.; Colla, G. Organic fertilizer sources distinctively modulate productivity, quality, mineral composition, and soil enzyme activity of greenhouse lettuce grown in degraded soil. Agronomy 2023, 13, 194. [Google Scholar] [CrossRef]
- Ávila, G.T.; Boetto, M.N.; Menduni, M.F.; Beccaria, V. Effect of bokashi and supermagro on yield of the agroecological crop of garlic. Hortic. Argent. 2023, 42, 46–58. [Google Scholar]
- Fruscella, L.; Kotzen, B.; Paradelo, M.; Milliken, S. Investigating the effects of fish effluents as organic fertilisers on onion (Allium cepa) yield, soil nutrients, and soil microbiome. Sci. Hortic. 2023, 321, 112297. [Google Scholar] [CrossRef]
- Siqueira, A.P.P.; Siqueira, M.F.B. Bokashi: Adubo orgânico fermentado. Man. Técnico 2013, 40, 1–16. [Google Scholar]
- Quiroz, M.; Céspedes, C. Bokashi as an amendment and source of nitrogen in sustainable agricultural systems: A review. J. Soil Sci. Plant Nutr. 2019, 19, 237–248. [Google Scholar] [CrossRef]
- González-Rodríguez, G.; Preciado-Rangel, P.; Lizárraga-Bernal, C.G.; Espinosa-Palomeque, B. Bibliometric analysis of scientific literature on the Bokashi organic fertilizer: Alternative in sustainable agriculture. Biotecnia 2023, 25, 181–193. [Google Scholar]
- Vicente, N.F.P.; Marafeli, É.A.M.; de Castro Oliveira, J.A.; Tomita, J.L.C.; Piccoli, R.H. Uma revisão bibliográfica sobre bokashi dos últimos 20 anos. Res. Soc. Dev. 2020, 9, e279108339. [Google Scholar] [CrossRef]
- Santos, C.C.; Vieira, M.D.C.; Zárate, N.A.H.; Carnevali, T.D.O.; Gonçalves, W.V. Organic residues and bokashi influence in the growth of Alibertia edulis. Floresta Ambiente 2020, 27, e20171034. [Google Scholar] [CrossRef]
- Guse, L.G.; Leão, A.C.D.; Parra-Serrano, L.J.; Furtado, M.B.; de Farias, M.F. Production of teak seedlings in different organic substrates. Res. Soc. Dev. 2021, 10, e0910514611. [Google Scholar] [CrossRef]
- Ghuidotti, G.C.; Wenneck, G.S.; Saath, R.; De Araújo, L.L.; Pereira, G.L.; de Oliveira Sá, N.; Ziglioli, A.W.; Bertolo, R.P. Resíduos orgânicos e composto fermentado bokashi no desenvolvimento de mudas de couve-flor. Comun. Sci. 2023, 14, e3900. [Google Scholar] [CrossRef]
- Shingo, G.Y.; Ventura, M.U. Collard greens yield with mineral and organic fertilization. Semin. Ciências Agrárias 2009, 30, 589–594. [Google Scholar] [CrossRef]
- Hata, F.T.; Ventura, M.U.; Sousa, V.; Fregonezi, G.A.F. Low-cost organic fertilizations and bioactivator for arugula-radish intercropping. Emir. J. Food Agric. 2019, 31, 773–778. [Google Scholar] [CrossRef]
- Sarmiento Sarmiento, G.J.; Amézquita, M.A.; Mena, L.M. Uso de bocashi y microorganismos eficaces como alternativa ecológica en el cultivo de fresa en zonas áridas. Sci. Agropecu. 2019, 10, 55–61. [Google Scholar]
- Maass, V.; Céspedes, C.; Cárdenas, C. Effect of bokashi improved with rock phosphate on parsley cultivation under organic greenhouse management. Chil. J. Agric. Res. 2020, 80, 444–451. [Google Scholar] [CrossRef]
- Hata, F.T.; da Silva, D.C.; Yassunaka-Hata, N.N.; de Queiroz Cancian, M.A.; Sanches, I.A.; Poças, C.E.P.; Ventura, M.U.V.; Spinosa, W.A.; Macedo, R.B. Leafy Vegetables’ Agronomic Variables, Nitrate, and Bioactive Compounds Have Different Responses to Bokashi, Mineral Fertilization, and Boiled Chicken Manure. Horticulturae 2023, 9, 194. [Google Scholar] [CrossRef]
- El-Hamied, S.A.A. Effect of multi-ingredient of Bokashi on productivity of mandarin trees and soil properties under saline water irrigation. J. Agric. Vet. Sci. 2014, 7, 79–87. [Google Scholar] [CrossRef]
- Hoshino, R.T.; Alves, G.A.C.; Bertoncelli, D.J.; Zeffa, D.M.; Stulzer, G.C.G.; Takahashi, L.S.A.; Faria, R.T. Bokashi, simple superphosphate, and fertigation for the growth and nutrition of hybrid Cattleya (Orchidaceae). Semin. Ciências Agrárias 2021, 42, 2703–2716. [Google Scholar] [CrossRef]
- Boemeke, L.R. A urina de vaca como fertilizante, fortificante e repelente de insetos. Agroecol. Desenvolv. Rural Sustentável 2002, 3, 41–42. [Google Scholar]
- Jesus, D.; Bianchi, V.; Carbonera, R.; Silva, J.A.G. Urina de vaca como biopesticida e biorrepelente: Revisão sistemática de literatura. Res. Soc. Dev. 2020, 9, e48191211494. [Google Scholar] [CrossRef]
- Oliveira, N.L.C.; Puiatti, M.; Santos, R.H.S.; Cecon, P.R.; Bhering, A.S. Efeito da urina de vaca no estado nutricional da alface. Rev. Ceres 2010, 57, 506–515. [Google Scholar] [CrossRef]
- Freire, J.L.O.; Silva, J.E.; Lima, J.M.; Arruda, J.A.; Rodrigues, C.R. Desempenho fitotécnico e teores clorofilianos de cultivares de alfaces crespas produzidas com fertilização à base de urina de vaca no Seridó paraibano. Agropecuária Científica Semiárido 2017, 12, 258–267. [Google Scholar]
- Freire, J.L.O.; Nascimento, G.S. Produção de mudas de maracujazeiros amarelo e roxo irrigadas com águas salinas e uso de urina de vaca. Rev. Ciências Agrárias 2018, 41, 981–988. [Google Scholar]
- Freire, J.L.O.; Silva, G.D.D.; Medeiros, A.L.D.S.; Silva, J.E. Teores clorofilianos, composição mineral foliar e produtividade da couve-Manteiga adubada com urina de vaca. Braz. J. Anim. Environ. Res. 2019, 2, 836–845. [Google Scholar]
- Cojocaru, A.; Vlase, L.; Munteanu, N.; Stan, T.; Teliban, G.C.; Burducea, M.; Stoleru, V. Dynamic of phenolic compounds, antioxidant activity, and yield of rhubarb under chemical, organic and biological fertilization. Plants 2020, 9, 355. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Alves-Pereira, I.; Lourenço, D.; Ferreira, R.M.A. Effect of organic compost and inorganic nitrogen fertigation on spinach growth, phytochemical accumulation and antioxidant activity. Heliyon 2020, 6, e05085. [Google Scholar] [CrossRef]
- Sunaryo, Y. Effect of vermicompost and bokashi on nutrient content of mustard green and lettuce. In Proceedings of the International Seminar on Horticulture to Support Food Security, Bandar Lampung, Indonesia, 22–23 June 2010; pp. 22–23. [Google Scholar]
- Mbouobda, H.D.; Fotso, F.O.T.S.O.; Djeuani, C.A.; Baliga, M.O.; Omokolo, D.N. Comparative evaluation of enzyme activities and phenol content of Irish potato (Solanum tuberosum) grown under EM and IMO manures Bokashi. Int. J. Biol. Chem. Sci. 2014, 8, 157–166. [Google Scholar] [CrossRef]
- Bentamra, Z.; Medjedded, H.; Nemmiche, S.; Benkhelifa, M.; Dos Santos, D.R. Effect of NPK fertilizer on the biochemical response of tomatoes (Solanum lycopersicum L.). Not. Sci. Biol. 2023, 15, 11516. [Google Scholar] [CrossRef]
- Aparecido, L.E.O.; Rolim, G.S.; Richetti, J.; Souza, P.S.; Johann, J.A. Köppen, Thornthwaite and Camargo climate classifications for climatic zoning in the State of Paraná, Brazil. Ciência Agrotecnolog. 2016, 40, 405–417. [Google Scholar] [CrossRef]
- Bobo-García, G.; Davidov-Pardo, G.; Arroqui, C.; Vírseda, P.; Marín-Arroyo, M.R.; Navarro, M. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J. Sci. Food Agric. 2015, 95, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Paleontological statistics software package for education and data analyses. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Shimizu, G.D.; Marubayashi, R.Y.P.; Gonçalves, L.S.A. AgroR: Experimental Statistics and Graphics for Agricultural Sciences. R Package Version 1.3.1. 2022. Available online: https://cran.r-project.org/web/packages/AgroR/index.html (accessed on 22 September 2023).
- de Oliveira, N.L.C.; Puiatti, M.; Santos, R.H.S.; Cecon, P.R.; Rodrigues, P.H.R. Soil and leaf fertilization of lettuce crop with cow urine. Hortic. Bras. 2009, 27, 431–437. [Google Scholar] [CrossRef]
- Goulart, R.G.T.; dos Santos, C.A.; de Oliveira, C.M.; Costa, E.S.P.; de Oliveira, F.A.; de Andrade, N.F.; do Carmo, M.G.F. Desempenho agronômico de cultivares de alface sob adubação orgânica em Seropédica, RJ. Rev. Bras. Agropecuária Sustentável 2018, 8, 66–72. [Google Scholar] [CrossRef]
- Hata, F.T.; Spagnuolo, F.A.; Paula, M.T.; Moreira, A.A.; Ventura, M.U.; Fregonezi, G.A.F.; Oliveira, A.L.M. Bokashi compost and biofertilizer increase lettuce agronomic variables in protected cultivation and indicates substrate microbiological changes. Emir. J. Food Agric. 2020, 32, 640–646. [Google Scholar] [CrossRef]
- de Souza Junior, J.B.; Guerra, J.G.M.; Goulart, J.M.; da Silva, L.O.; Espindola, J.A.A.; Araújo, E.D.S. Agronomic efficiency of fermented composts in organic fertilization management of butterhead lettuce and green leaf lettuce. Hortic. Bras. 2023, 41, e2609. [Google Scholar] [CrossRef]
- Hata, F.T.; Paula, M.T.; Moreira, A.A.; Ventura, M.U.; Lima, R.F.; Fregonezi, G.A.F.; Oliveira, A.L.M. Adubos orgânicos e fertirrigação com esterco aviário fervido para o cultivo de morangueiro. Rev. Fac. Agron. Univ. Zulia 2021, 38, 342–359. [Google Scholar]
- Hata, F.T.; Ventura, M.U.; Fregonezi, G.A.F.; de Lima, R.F. Bokashi, boiled manure and penergetic applications increased agronomic production variables and may enhance powdery mildew severity of organic tomato plants. Horticulturae 2021, 7, 27. [Google Scholar] [CrossRef]
- Scotton, J.C.; Homma, S.K.; Costa, W.L.F.; Pinto, D.F.P.; Govone, J.S.; Attili-Angelis, D. Transition management for organic agriculture under citrus cultivation favors fungal diversity in soil. Renew. Agric. Food Syst. 2020, 35, 120–127. [Google Scholar] [CrossRef]
- Luo, Y.; Lopez, J.B.G.; van Veelen, H.P.J.; Sechi, V.; ter Heijne, A.; Bezemer, T.M.; Buisman, C.J. Bacterial and fungal co-occurrence patterns in agricultural soils amended with compost and bokashi. Soil Biol. Biochem. 2022, 174, 108831. [Google Scholar] [CrossRef]
- Maki, Y.; Soejima, H.; Kitamura, T.; Sugiyama, T.; Sato, T.; Watahiki, M.K.; Yamaguchi, J. 3-Phenyllactic acid, a root-promoting substance isolated from Bokashi fertilizer, exhibits synergistic effects with tryptophan. Plant Biotechnol. 2021, 38, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Daiss, N.; Lobo, M.G.; Socorro, A.R.; Brückner, U.; Heller, J.; Gonzalez, M. The effect of three organic pre-harvest treatments on Swiss chard (Beta vulgaris L. var. cycla L.) quality. Eur. Food Res. Technol. 2008, 226, 345–353. [Google Scholar] [CrossRef]
- Sharma, A.; Kaur, I.; Malik, Y.S. Cowpathy: A novel and potential source of new anti-microbial agents/strategies. Int. J. Cow Sci. 2022, 6, 6–9. [Google Scholar]
- Kumar, R.; Kaushik, J.K.; Mohanty, A.K.; Kumar, S. Identification of bioactive components behind the antimicrobial activity of cow urine by Peptide and metabolite profiling. Anim. Biosci. 2023, 36, 1130–1142. [Google Scholar] [CrossRef] [PubMed]
- Frías-Moreno, M.N.; Parra-Quezada, R.A.; González-Aguilar, G.; Ruíz-Canizales, J.; Molina-Corral, F.J.; Sepulveda, D.R.; Salas-Salazar, N.; Olivas, G.I. Quality, bioactive compounds, antioxidant capacity, and enzymes of raspberries at different maturity stages, effects of organic vs. Conventional fertilization. Foods 2021, 10, 953. [Google Scholar] [CrossRef]
- Endo, M.; Fukuda, N.; Yoshida, H.; Fujiuchi, N.; Yano, R.; Kusano, M. Effects of light quality, photoperiod, CO2 concentration, and air temperature on chlorogenic acid and rutin accumulation in young lettuce plants. Plant Physiol. Biochem. 2022, 186, 290–298. [Google Scholar] [CrossRef]
- Kołton, A.; Długosz-Grochowska, O.; Wojciechowska, R.; Czaja, M. Biosynthesis regulation of folates and phenols in plants. Sci. Hortic. 2022, 291, 110561. [Google Scholar] [CrossRef]
- Martins-Gomes, C.; Steck, J.; Keller, J.; Bunzel, M.; Santos, J.A.; Nunes, F.M.; Silva, A.M. Phytochemical Composition and Antioxidant, Anti-Acetylcholinesterase, and Anti-α-Glucosidase Activity of Thymus carnosus Extracts: A Three-Year Study on the Impact of Annual Variation and Geographic Location. Antioxidants 2023, 12, 668. [Google Scholar] [CrossRef] [PubMed]
- Pagliaccia, D.; Ortiz, M.; Rodriguez, M.V.; Abbott, S.; De Francesco, A.; Amador, M.; Lavagi, V.; Maki, B.; Hopkins, F.; Kaplan, J.; et al. Enhancing soil health and nutrient availability for Carrizo citrange (X Citroncirus sp.) through bokashi and biochar amendments: An exploration into indoor sustainable soil ecosystem management. Sci. Hortic. 2024, 326, 112661. [Google Scholar] [CrossRef]
- Kruker, G.; Guidi, E.S.; Santos, J.M.S.; Mafra, Á.L.; Almeida, J.A. Quality of Bokashi-Type Biofertilizer Formulations and Its Application in the Production of Vegetables in an Ecological System. Horticulturae 2023, 9, 1314. [Google Scholar] [CrossRef]
Source of Variation | Mean Square | ||||
---|---|---|---|---|---|
df | LFB | LDB | PH | CLO | |
Factor 1 (cow urine) | 1 | 1.218 | 0.002 | 39.006 * | 12.100 |
Factor 2 (bokashi) | 3 | 13.536 * | 0.101 ** | 76.556 ** | 44.067 ** |
Interaction | 3 | 0.548 | 0.006 | 4.273 | 10.700 |
Error | 32 | 0.389 | 0.003 | 5.736 | 4.438 |
CV | 13.46 | 15.33 | 7.50 | 5.98 | |
Mean | 4.64 | 0.37 | 31.75 | 35.17 |
Source of Variation | Mean Square | ||||
---|---|---|---|---|---|
df | LFB | LDB | PH | CLO | |
Factor 1 (cow urine) | 1 | 0.471 | 0.139 | 2.256 | 4.579 |
Factor 2 (bokashi) | 3 | 22.105 ** | 0.2189 ** | 128.523 ** | 11.755 |
Interaction | 3 | 1.587 * | 0.024 * | 24.523 * | 20.970 * |
Error | 32 | 0.322 | 0.006 | 7.003 | 3.389 |
CV | 13.73 | 18.36 | 9.9 | 5.8 | |
Mean | 4.14 | 0.44 | 26.74 | 31.73 |
Source of Variation | Mean Square | ||||
---|---|---|---|---|---|
df | TPC Area 1 | TPC Area 2 | DPPH Area 1 | DPPH Area 2 | |
Factor 1 (cow urine) | 1 | 0.001 | 0.006 * | 0.078 | 46.171 |
Factor 2 (bokashi) | 3 | 0.006 | 0.018 * | 14.525 * | 29.958 |
Interaction | 3 | 0.001 | 0.005 * | 3.506 | 1.845 |
Error | 32 | 0.003 | 0.001 | 3.848 | 16.400 |
CV | 12.08 | 5.23 | 14.97 | 16.401 | |
Mean | 0.43 | 0.48 | 13.10 | 16.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hata, F.T.; da Silva, D.C.; Yassunaka Hata, N.N.; Pavinatto, M.d.S.; de Queiroz Cancian, M.A.; Macedo, R.B.; Ventura, M.U.; Resende, J.T.V.d.; Spinosa, W.A. Using Bokashi and Cow Urine as Organic Low-Cost Amendments Can Enhance Arugula (Eruca sativa L.) Agronomic Traits but Not Always Total Polyphenols and Antioxidant Activity. Horticulturae 2024, 10, 155. https://doi.org/10.3390/horticulturae10020155
Hata FT, da Silva DC, Yassunaka Hata NN, Pavinatto MdS, de Queiroz Cancian MA, Macedo RB, Ventura MU, Resende JTVd, Spinosa WA. Using Bokashi and Cow Urine as Organic Low-Cost Amendments Can Enhance Arugula (Eruca sativa L.) Agronomic Traits but Not Always Total Polyphenols and Antioxidant Activity. Horticulturae. 2024; 10(2):155. https://doi.org/10.3390/horticulturae10020155
Chicago/Turabian StyleHata, Fernando Teruhiko, Diego Contiero da Silva, Natália Norika Yassunaka Hata, Michelle da Silva Pavinatto, Mariana Assis de Queiroz Cancian, Rogério Barbosa Macedo, Maurício Ursi Ventura, Juliano Tadeu Vilela de Resende, and Wilma Aparecida Spinosa. 2024. "Using Bokashi and Cow Urine as Organic Low-Cost Amendments Can Enhance Arugula (Eruca sativa L.) Agronomic Traits but Not Always Total Polyphenols and Antioxidant Activity" Horticulturae 10, no. 2: 155. https://doi.org/10.3390/horticulturae10020155
APA StyleHata, F. T., da Silva, D. C., Yassunaka Hata, N. N., Pavinatto, M. d. S., de Queiroz Cancian, M. A., Macedo, R. B., Ventura, M. U., Resende, J. T. V. d., & Spinosa, W. A. (2024). Using Bokashi and Cow Urine as Organic Low-Cost Amendments Can Enhance Arugula (Eruca sativa L.) Agronomic Traits but Not Always Total Polyphenols and Antioxidant Activity. Horticulturae, 10(2), 155. https://doi.org/10.3390/horticulturae10020155