Development and Evaluation of a New Spectral Index to Detect Peanut Southern Blight Disease Using Canopy Hyperspectral Reflectance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Experiment Site
2.2. Data Collection
2.2.1. Disease Severity Assessment
2.2.2. Canopy Spectral Collection
2.3. Relief-F Algorithm
- (a)
- Initialization: Randomly select a sample from the training set and calculate the distance between it and the nearest similar samples and the nearest dissimilar samples.
- (b)
- For each feature , calculate its corresponding weight , in which denotes the average of the distance difference between adjacent similar samples and adjacent dissimilar samples calculated by feature . The formula is as follows:
- (c)
- Rank the features according to the calculated weights and select the top important features.
2.4. Construction of the Hyperspectral Index
2.5. Extraction of the Spectral Features
2.6. Classification Methods
2.7. Evaluation Indicators
3. Results
3.1. Original Spectral Characterization Analysis under Pathogen Stress
3.2. Extraction of the Spectral Features
3.2.1. Sensitive Wavelengths Selection
3.2.2. Comparison of New Spectral Features and Traditional Spectral Features
3.3. Disease Severity Level Detecting Model
4. Discussion
4.1. Canopy Spectral Analysis of Peanut Southern Blight
4.2. Traditional Spectral Features and the NSISB
4.3. Models Comparison Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guclu, V.; Aydogdu, M.; Basak, M.; Kizil, S.; Uzun, B.; Yol, E. Characterization of a groundnut collection to stem rot disease caused by Sclerotium rolfsii. Australas. Plant Pathol. 2020, 49, 691–700. [Google Scholar] [CrossRef]
- Ahmad, R.; Hussain, B.; Ahmad, T. Fresh and dry fruit production in Himalayan Kashmir, Sub-Himalayan Jammu and Trans-Himalayan Ladakh, India. Heliyon 2021, 7, e05835. [Google Scholar] [CrossRef] [PubMed]
- Minarni; Warman, I.; Yuhendra. Implementation of Case-Based Reasoning and Nearest Neighbor Similarity for Peanut Disease Diagnosis. J. Phys. Conf. Ser. 2019, 1196, 012053. [Google Scholar] [CrossRef]
- Xu, M.L.; Zhang, X.; Yu, J.; Guo, Z.Q.; Wu, J.X.; Li, X.G.; Chi, Y.C.; Wan, S.B. Biological control of peanut southern blight (Sclerotium rolfsii) by the strain Bacillus pumilus LX11. Biocontrol Sci. Technol. 2020, 30, 485–489. [Google Scholar] [CrossRef]
- Xie, C.Z.; Huang, C.H.; Vallad, G.E. Mycelial Compatibility and Pathogenic Diversity Among Sclerotium rolfsii Isolates in the Southern United States. Plant Dis. 2014, 98, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.Y.; Cui, K.D.; Wang, M.K.; Jiang, C.F.; Zhao, T.; Wang, M.Z.; Du, P.Q.; He, L.M.; Zhou, L. Bioactivity of the DMI fungicide mefentrifluconazole against Sclerotium rolfsii, the causal agent of peanut southern blight. Pest Manag. Sci. 2023, 79, 2126–2134. [Google Scholar] [CrossRef] [PubMed]
- Le, C.N.; Mendes, R.; Kruijt, M.; Raaijmakers, J.M. Genetic and Phenotypic Diversity of Sclerotium rolfsii in Groundnut Fields in Central Vietnam. Plant Dis. 2012, 96, 389–397. [Google Scholar] [CrossRef]
- Lu, J.Z.; Ehsani, R.; Shi, Y.Y.; Abdulridha, J.; de Castro, A.I.; Xu, Y.J. Field detection of anthracnose crown rot in strawberry using spectroscopy technology. Comput. Electron. Agric. 2017, 135, 289–299. [Google Scholar] [CrossRef]
- Fazari, A.; Pellicer-Valero, O.J.; Gómez-Sanchis, J.; Bernardi, B.; Cubero, S.; Benalia, S.; Zimbalatti, G.; Blasco, J. Application of deep convolutional neural networks for the detection of anthracnose in olives using VIS/NIR hyperspectral images. Comput. Electron. Agric. 2021, 187, 106252. [Google Scholar] [CrossRef]
- Tomaszewski, M.; Nalepa, J.; Moliszewska, E.; Ruszczak, B.; Smykała, K. Early detection of Solanum lycopersicum diseases from temporally-aggregated hyperspectral measurements using machine learning. Sci. Rep. 2023, 13, 7671. [Google Scholar] [CrossRef]
- Ray, S.S.; Jain, N.; Arora, R.K.; Chavan, S.; Panigrahy, S. Utility of Hyperspectral Data for Potato Late Blight Disease Detection. J. Indian Soc. Remote Sens. 2011, 39, 161–169. [Google Scholar] [CrossRef]
- Jing, X.; Huang, W.J.; Wang, J.H.; Wang, J.D.; Wang, K.R. Hyperspectral Inversion Models on Verticillium Wilt Severity of Cotton Leaf. Spectrosc. Spectr. Anal. 2009, 29, 3348–3352. [Google Scholar] [CrossRef]
- Liu, W.; Sun, C.F.; Zhao, Y.N.; Xu, F.; Song, Y.L.; Fan, J.R.; Zhou, Y.L.; Xu, X.M. Monitoring of Wheat Powdery Mildew under Different Nitrogen Input Levels Using Hyperspectral Remote Sensing. Remote Sens. 2021, 13, 3753. [Google Scholar] [CrossRef]
- Rai, A.K.; Reddy, K.R.; Singh, J.P. Photoacoustic study of nutritional deficiencies in cotton plants. Instrum. Sci. Technol. 2003, 31, 231–247. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Solovchenko, A.E.; Gitelson, A.A. Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol. Technol. 2003, 27, 197–211. [Google Scholar] [CrossRef]
- Lins, E.C.; Belasque, J.; Marcassa, L.G. Detection of citrus canker in citrus plants using laser induced fluorescence spectroscopy. Precis. Agric. 2009, 10, 319–330. [Google Scholar] [CrossRef]
- le Maire, G.; François, C.; Dufrêne, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 2004, 89, 1–28. [Google Scholar] [CrossRef]
- Beget, M.E.; Di Bella, C.M. Flooding: The effect of water depth on the spectral response of grass canopies. J. Hydrol. 2007, 335, 285–294. [Google Scholar] [CrossRef]
- Guo, J.M.; Trotter, C.M. Estimating photosynthetic light-use efficiency using the photochemical reflectance index: Variations among species. Funct. Plant Biol. 2004, 31, 255–265. [Google Scholar] [CrossRef]
- Muhammed, H.H. Hyperspectral crop reflectance data for characterising and estimating fungal disease severity in wheat. Biosyst. Eng. 2005, 91, 9–20. [Google Scholar] [CrossRef]
- Ren, K.H.; Dong, Y.Y.; Huang, W.J.; Guo, A.T.; Jing, X. Monitoring of winter wheat stripe rust by collaborating canopy SIF with wavelet energy coefficients. Comput. Electron. Agric. 2023, 215, 108366. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Y.; Kuerbanguli, D.; Zeng, F.L.; Mayiran, M.; Awaguli, M.; Maidinuerhan, A.; Guo, J.X. Ensemble Learning Model Incorporating Fractional Differential and PIMP-RF Algorithm to Predict Soluble Solids Content of Apples During Maturing Period. Spectrosc. Spectr. Anal. 2023, 43, 3059–3066. [Google Scholar]
- Reis-Pereira, M.; Tosin, R.; Martins, R.C.; Dos Santos, F.N.; Tavares, F.; Cunha, M. Enhancing Kiwi Bacterial Canker Leaf Assessment: Integrating Hyperspectral-Based Vegetation Indexes in Predictive Modeling. Eng. Proc. 2023, 48, 22. [Google Scholar]
- Haboudane, D.; Tremblay, N.; Miller, J.R.; Vigneault, P. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 423–437. [Google Scholar] [CrossRef]
- Luo, J.H.; Huang, W.J.; Zhao, J.L.; Zhang, J.C.; Zhao, C.J.; Ma, R.H. Detecting Aphid Density of Winter Wheat Leaf Using Hyperspectral Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 690–698. [Google Scholar] [CrossRef]
- Sow, M.; Mbow, C.; Hély, C.; Fensholt, R.; Sambou, B. Estimation of Herbaceous Fuel Moisture Content Using Vegetation Indices and Land Surface Temperature from MODIS Data. Remote Sens. 2013, 5, 2617–2638. [Google Scholar] [CrossRef]
- Wang, H.; Qin, F.; Qi, L.; Liu, R.; Rui, W.; Ma, Z.; Li, X.; Pei, C.; Wang, H. Identification and Disease Index Inversion of Wheat Stripe Rust and Wheat Leaf Rust Based on Hyperspectral Data at Canopy Level. J. Spectrosc. 2015, 2015, 651810. [Google Scholar] [CrossRef]
- Huang, W.; Lamb, D.W.; Niu, Z.; Zhang, Y.; Liu, L.; Wang, J. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 2007, 8, 187–197. [Google Scholar] [CrossRef]
- Feng, W.; Shen, W.Y.; He, L.; Duan, J.Z.; Guo, B.B.; Li, Y.X.; Wang, C.Y.; Guo, T.C. Improved remote sensing detection of wheat powdery mildew using dual-green vegetation indices. Precis. Agric. 2016, 17, 608–627. [Google Scholar] [CrossRef]
- Luo, L.L.; Chang, Q.R.; Wang, Q.; Huang, Y. Identification and Severity Monitoring of Maize Dwarf Mosaic Virus Infection Based on Hyperspectral Measurements. Remote Sens. 2021, 13, 4560. [Google Scholar] [CrossRef]
- Liang, H.; He, J.; Lei, J.J. Monitoring of Corn Canopy Blight Disease Based on UAV Hyperspectral Method. Spectrosc. Spectr. Anal. 2020, 40, 1965–1972. [Google Scholar]
- Xiao, W.; Cao, Y.L.; Feng, S.; Liu, Y.D.; Jiang, K.L.; Yu, Z.X.; Yan, L. Detection of Rice Sheath Blight Disease Index Based on Split-Window Gram-Schmidt Transformation and PSO-SVR Algorithm. Spectrosc. Spectr. Anal. 2021, 41, 2181–2187. [Google Scholar]
- He, Y.; Du, P.Q.; Zhao, T.; Gao, F.; Wang, M.Z.; Zhang, J.J.; He, L.M.; Cui, K.D.; Zhou, L. Baseline sensitivity and bioactivity of tetramycin against Sclerotium rolfsii isolates in Huanghuai peanut-growing region of China. Ecotoxicol. Environ. Saf. 2022, 238, 113580. [Google Scholar] [CrossRef] [PubMed]
- Ruszczak, B.; Smykala, K.; Dziubanski, K. The detection of Alternaria solani infection on tomatoes using ensemble learning. J. Ambient Intell. Smart Environ. 2020, 12, 407–418. [Google Scholar] [CrossRef]
- Robnik-Sikonja, M.; Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69. [Google Scholar] [CrossRef]
- Guan, Q.; Song, K.; Feng, S.; Yu, F.H.; Xu, T.Y. Detection of Peanut Leaf Spot Disease Based on Leaf-, Plant-, and Field-Scale Hyperspectral Reflectance. Remote Sens. 2022, 14, 4988. [Google Scholar] [CrossRef]
- Zhang, J.C.; Huang, Y.B.; Reddy, K.N.; Wang, B. Assessing crop damage from dicamba on non-dicamba-tolerant soybean by hyperspectral imaging through machine learning. Pest Manag. Sci. 2019, 75, 3260–3272. [Google Scholar] [CrossRef]
- Huang, W.J.; Guan, Q.S.; Luo, J.H.; Zhang, J.C.; Zhao, J.L.; Liang, D.; Huang, L.S.; Zhang, D.Y. New Optimized Spectral Indices for Identifying and Monitoring Winter Wheat Diseases. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2516–2524. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Merton, R.; Huntington, J. Early simulation results of the ARIES-1 satellite sensor for multi-temporal vegetation research derived from AVIRIS. In Proceedings of the Eighth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 9–11 February 1999. [Google Scholar]
- Daughtry, C.S.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey Iii, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. Interdiscip. J. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Huang, W.; Huang, M.; Liu, L.; Wang, J.; Wang, J. Inversion of the severity of winter wheat yellow rust using proper hyper spectral index. Trans. Chin. Soc. Agric. Eng. 2005, 21, 97–103. [Google Scholar]
- Gamon, A.; Serrano, L.; Surfus, S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
- CARTER; Gregory, A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int. J. Remote Sens. 1994, 15, 697–703. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogramm. Eng. Remote Sens. 2002, 68, 607–621. [Google Scholar]
- Gong, P.; Pu, R.; Heald, R.C. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. Int. J. Remote Sens. 2010, 23, 1827–1850. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Meng, Q. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the NIPS’17 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Li, J.; Wu, J.P.; Lin, J.Q.; Li, C.; Lu, H.Z.; Lin, C.X. Nondestructive Identification of Litchi Downy Blight at Different Stages Based on Spectroscopy Analysis. Agriculture 2022, 12, 402. [Google Scholar] [CrossRef]
- Pontes, F.J.; Amorim, G.F.; Balestrassi, P.P.; Paiva, A.P.; Ferreira, J.R. Design of experiments and focused grid search for neural network parameter optimization. Neurocomputing 2016, 186, 22–34. [Google Scholar] [CrossRef]
- Genc, L.; Nalpulat, M.; Kizil, U.; Mirik, M.; Smith, S.E.; Mendes, M. Determination of water stress with spectral reflectance on sweet corn (Zea mays L.) using classification tree (CT) analysis. Zemdirb. Agric. 2013, 100, 81–90. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, H.; Zhang, X.B.; Zhu, L.F.; Zheng, K.F.; Jin, Q.Y.; Zeng, F.P. Estimation of rice neck blasts severity using spectral reflectance based on BP-neural network. Acta Physiol. Plant. 2011, 33, 2461–2466. [Google Scholar] [CrossRef]
- Chen, B.; Li, S.K.; Wang, K.R.; Wang, F.Y.; Xiao, C.H.; Pan, W.C. Study on Hyperspectral Estimation of Pigment Contents in Leaves of Cotton Under Disease Stress. Spectrosc. Spectr. Anal. 2010, 30, 421–425. [Google Scholar] [CrossRef]
- Guo, J.B.; Huang, C.; Wang, H.G.; Sun, Z.Y.; Ma, Z.H. Disease Index Inversion of Wheat Stripe Rust on Different Wheat Varieties with Hyperspectral Remote Sensing. Spectrosc. Spectr. Anal. 2009, 29, 3353–3357. [Google Scholar] [CrossRef]
- Xu, W.C.; Hou, Y.H.; Hung, Y.S.; Zou, Y.X. A comparative analysis of Spearman’s rho and Kendall’s tau in normal and contaminated normal models. Signal Process. 2013, 93, 261–276. [Google Scholar] [CrossRef]
- Chen, T.T.; Zhang, J.L.; Chen, Y.; Wan, S.B.; Zhang, L. Detection of peanut leaf spots disease using canopy hyperspectral reflectance. Comput. Electron. Agric. 2019, 156, 677–683. [Google Scholar] [CrossRef]
- Luo, Z.L.; Cui, R.J.; Chavarro, C.; Tseng, Y.C.; Zhou, H.; Peng, Z.; Chi, Y.; Yang, X.P.; Lopez, Y.; Tillman, B.; et al. Mapping quantitative trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea). Theor. Appl. Genet. 2020, 133, 1201–1212. [Google Scholar] [CrossRef]
- Guo, W.; Sun, H.G.; Qiao, H.B.; Zhang, H.; Zhou, L.; Dong, P.; Song, X.Y. Spectral Detection of Peanut Southern Blight Severity Based on Continuous Wavelet Transform and Machine Learning. Agriculture 2023, 13, 1504. [Google Scholar] [CrossRef]
- Devadas, R.; Lamb, D.W.; Simpfendorfer, S.; Backhouse, D. Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precis. Agric. 2009, 10, 459–470. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, A.; Hekmatmehr, H.; Atashrouz, S.; Madani, S.A.; Pourmahdi, M.; Nedeljkovic, D.; Hemmati-Sarapardeh, A.; Mohaddespour, A. Insights into modeling refractive index of ionic liquids using chemical structure-based machine learning methods. Sci. Rep. 2023, 13, 11966. [Google Scholar] [CrossRef]
- Harsányi, E.; Bashir, B.; Arshad, S.; Ocwa, A.; Vad, A.; Alsalman, A.; Bácskai, I.; Rátonyi, T.; Hijazi, O.; Széles, A.; et al. Data Mining and Machine Learning Algorithms for Optimizing Maize Yield Forecasting in Central Europe. Agronomy 2023, 13, 1297. [Google Scholar] [CrossRef]
Disease Severity Level of This Study | Infestation Symptoms | Disease Severity Level |
---|---|---|
Healthy | No disease symptoms | 0 |
Slight | Lesions only on the stem of the plant | 1 |
Disease symptoms (e.g., stem base shrinking and wilting) < 1/3 of the plant | 3 | |
Moderate | Disease symptoms on 1/3–2/3 of the plant | 5 |
Disease symptoms > 2/3 of the plant | 7 | |
Severe | Complete wilting and plant death | 9 |
Disease Severity Level | Number |
---|---|
Healthy | 150 |
Slight | 110 |
Moderate | 120 |
Severe | 210 |
Total | 590 |
No. | Spectral Features | Calculation Formula | Reference |
---|---|---|---|
1 | NDVI | (R840 – R675)/(R840 + R675) | [39] |
2 | RVSI | [(R712 + R752)/2] – R732 | [40] |
3 | MCARI | [(R700 – R670) – 0.2 × (R700 + R550)] × (R700/R670) | [41] |
4 | TCARI | 3 × [(R700 – R670) – 0.2 × (R700 + R550) × (R700/R670)] | [42] |
5 | PRI | (R570 – R531)/(R531 + R570) | [43] |
6 | SR | R695/R420 | [44] |
7 | GNDVI | (R747 – R537)/(R747 + R537) | [45] |
8 | TVI | 0.5 × [120 × (R750 – R550) – 200 × (R670 – R550)] | [46] |
9 | NBNDVI | (R850 – R680)/(R850 + R680) | [47] |
10 | Db | Maximum first-order differential value of blue edge (490~530 nm) | [48] |
11 | Dy | Maximum first-order differential value of yellow edge (550~582 nm) | |
12 | Dr | Maximum first-order differential value of red edge (670~737 nm) | |
13 | λb | Db corresponding wavelength | |
14 | λy | Dy corresponding wavelength | |
15 | λr | Dr corresponding wavelength | |
16 | SDb | Blue edge first-order differential sum | |
17 | SDy | Yellow edge first-order differential sum | |
18 | SDr | Red edge first-order differential sum | |
19 | NDSISB | ((R769 – R678)/(R769 + R678)) + ((R769 – R544)/(R769 + R544)) | This study |
20 | NSISB | R769 + R544/R678 | This study |
Actual Class | Predicted Class | |
---|---|---|
Positive | Negative | |
Positive | TP | FN |
Negative | FP | TN |
No. | Spectral Features | R | R2 | Rank |
---|---|---|---|---|
1 | NDVI | −0.892 | 0.796 | 2 |
2 | RVSI | 0.817 | 0.667 | 10 |
3 | MCARI | −0.676 | 0.457 | 15 |
4 | TCARI | −0.676 | 0.457 | 16 |
5 | PRI | 0.839 | 0.704 | 9 |
6 | SR | 0.506 | 0.256 | 17 |
7 | GNDVI | −0.767 | 0.588 | 12 |
8 | TVI | −0.860 | 0.740 | 6 |
9 | NBNDVI | −0.892 | 0.796 | 3 |
10 | Db | −0.757 | 0.573 | 13 |
11 | Dy | 0.769 | 0.591 | 11 |
12 | Dr | −0.854 | 0.729 | 7 |
13 | λb | 0.01 | 0 | 20 |
14 | λy | −0.39 | 0.152 | 18 |
15 | λr | −0.381 | 0.145 | 19 |
16 | SDb | −0.72 | 0.518 | 14 |
17 | SDy | 0.863 | 0.745 | 5 |
18 | SDr | −0.851 | 0.724 | 8 |
19 | NDSISB | −0.873 | 0.762 | 4 |
20 | NSISB | −0.904 | 0.817 | 1 |
Spectral Features | SVM | LightGBM | CatBoost | ANN | ||||
---|---|---|---|---|---|---|---|---|
OA (%) | Kappa (%) | OA (%) | Kappa (%) | OA (%) | Kappa (%) | OA (%) | Kappa (%) | |
TVI | 73.45 | 62.94 | 73.45 | 62.54 | 72.88 | 62.34 | 70.62 | 59.37 |
SDy | 73.45 | 62.66 | 71.75 | 60.89 | 73.45 | 63.16 | 71.75 | 60.12 |
NDSISB | 72.32 | 61.50 | 75.71 | 66.02 | 73.45 | 63.08 | 72.32 | 61.50 |
NBNDVI | 75.71 | 65.64 | 69.49 | 58.15 | 72.88 | 62.69 | 70.62 | 58.70 |
NDVI | 75.71 | 65.64 | 72.32 | 62.20 | 75.14 | 65.61 | 74.58 | 64.00 |
NSISB | 80.79 | 73.68 | 81.36 | 74.25 | 84.18 | 78.31 | 80.79 | 73.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, T.; Liu, J.; Fu, Y.; Yue, J.; Li, Y.; Guo, W. Development and Evaluation of a New Spectral Index to Detect Peanut Southern Blight Disease Using Canopy Hyperspectral Reflectance. Horticulturae 2024, 10, 128. https://doi.org/10.3390/horticulturae10020128
Wen T, Liu J, Fu Y, Yue J, Li Y, Guo W. Development and Evaluation of a New Spectral Index to Detect Peanut Southern Blight Disease Using Canopy Hyperspectral Reflectance. Horticulturae. 2024; 10(2):128. https://doi.org/10.3390/horticulturae10020128
Chicago/Turabian StyleWen, Tiantian, Juan Liu, Yuanyuan Fu, Jibo Yue, Yuheng Li, and Wei Guo. 2024. "Development and Evaluation of a New Spectral Index to Detect Peanut Southern Blight Disease Using Canopy Hyperspectral Reflectance" Horticulturae 10, no. 2: 128. https://doi.org/10.3390/horticulturae10020128
APA StyleWen, T., Liu, J., Fu, Y., Yue, J., Li, Y., & Guo, W. (2024). Development and Evaluation of a New Spectral Index to Detect Peanut Southern Blight Disease Using Canopy Hyperspectral Reflectance. Horticulturae, 10(2), 128. https://doi.org/10.3390/horticulturae10020128