Microbial Fertilizing Products Impact on Productivity and Profitability of Organic Strawberry Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strawberry Productivity Assessment
2.1.1. Experimental Site
2.1.2. Factors of Experiments
2.1.3. Weather Conditions
2.1.4. Agricultural Management and Fruit Harvest
2.2. Economic Efficiency of Organic Strawberry Production
2.2.1. Methodology of Economic Assessment
2.2.2. Strawberry Fruit Prices and Direct Costs Evaluation
2.2.3. Statistical Analysis
3. Results and Discussion
3.1. Strawberry Yields
3.2. Economic Efficiency
3.2.1. Direct Costs
3.2.2. Yield Value and Direct Surplus
3.2.3. Profitability Index
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Communication from the Commission to the European Parliament, The European Council, The Council, The European Economic and Social Committee and The Committee of the Regions, The European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- EUR-Lex, European Union. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:ea0f9f73-9ab2-11ea-9d2d-01aa75ed71a1.0015.02/DOC_1&format=PDF (accessed on 18 September 2024).
- Parlińska, M.; Jaśkiewicz, J.; Rackiewicz, I. Challenges for Agriculture under the European Green Deal Development Strategy During the COVID-19 Pandemic Period. Sci. J. Wars. Univ. Life Sci. Probl. World Agric. 2020, 20, 22–36. [Google Scholar] [CrossRef]
- Golik, D.; Żmija, D. Organic Farming and the Prospects for Its Development in Poland in the Light of the European Union’s Experience. Krakow Rev. Econ. Manag. 2017, 1, 117–129. [Google Scholar] [CrossRef]
- The European Parliament and The Council of the European Union. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007. Off. J. Eur. Union 2018, L 150/1–L 150/92. [Google Scholar]
- Nachtman, G. Organic farming in Poland and activities undertaken for its development. Pol. Stat. 2021, 66, 24–43. [Google Scholar] [CrossRef]
- Klepacka, A.M. Selected assumptions of the European Green Deal and possibilities of development of a conventional and organic farm. Ann. Pol. Assoc. Agric. Agribus. Econ. 2023, 25, 108–123. [Google Scholar] [CrossRef]
- Brzozowski, P.; Zmarlicki, K. The changes of unicosts of strawberry organic production in the years 2009–2013. Ann. Pol. Assoc. Agric. Agribus. Econ. 2015, 17, 9–13. [Google Scholar]
- Zmarlicki, K.; Brzozowski, P. Comparison of wholesale prices of fruits from organic and conventional production. Ann. Pol. Assoc. Agric. Agribus. Econ. 2013, 15, 386–390. [Google Scholar]
- Rahmann, G.; Ardakani, M.R.; Bàrberi, P.; Boehm, H.; Canali, S.; Chander, M.; David, W.; Dengel, L.; Erisman, J.W.; Galvis-Martinez, A.C.; et al. Organic Agriculture 3.0 is innovation with research. Org. Agric. 2017, 7, 169–197. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and The Committee of the Regions, EU Biodiversity Strategy for 2030, Bringing Nature Back into Our Lives; European Commission: Brussels, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0380 (accessed on 12 June 2023).
- European Commission. Communication from the Commission to the European Parliament, The European Council, The Council, The European Economic and Social Committee and The Committee of the Regions, A New Circular Economy Action Plan for a Cleaner and More Competitive Europe; Forging a Climate-Resilient Europe—The New EU Strategy on Adaptation to Climate Change; European Commission: Brussels, Belgium, 2021; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2021:82:FIN (accessed on 27 December 2023).
- Kociszewski, K.; Śliczna, M. Development of organic food distribution system in Poland at the background of situation in the Europenan Union. Ann. Pol. Assoc. Agric. Agribus. Econ. 2010, 12, 183–189. [Google Scholar]
- Pawlak, J.; Paszko, D.; Wróblewska, W. Prospects to the sale of organic fruit and vegetables in Lublin in the opinion of retailers. Ann. Pol. Assoc. Agric. Agribus. Econ. 2016, 18, 202–206. [Google Scholar]
- Drobek, M.; Cybulska, J.; Frąc, M.; Pieczywek, P.; Pertile, G.; Chibrikov, V.; Nosalewicz, A.; Feledyn-Szewczyk, B.; Sas-Paszt, L.; Zdunek, A. Microbial biostimulants affect the development of pathogenic microorganisms and the quality of fresh strawberries (Fragaria ananassa Duch.). Sci. Hortic. 2024, 327, 112793. [Google Scholar] [CrossRef]
- Nakielska, M.; Feledyn-Szewczyk, B.; Berbeć, A.K.; Frąc, M. Microbial biopreparations and their impact on organic strawberry (Fragaria x ananassa Duch.) yields and fungal infestation. Sustainability 2024, 16, 7559. [Google Scholar] [CrossRef]
- Paszko, D. Profitability of fresh and industrial strawberry production in Poland. Sci. J. Inst. Pomol. Floric. Szczepan Pieniążek 2009, 17, 67–78. [Google Scholar]
- Paszko, D.; Krawiec, P.; Pawlak, J.; Wróblewska, W. Assess the cost and profitability of raspberry production under cover in the context of building competitive advantage on example of selected farm. Ann. Pol. Assoc. Agric. Agribus. Econ. 2017, 19, 218–223. [Google Scholar] [CrossRef]
- Paszko, D.; Pawlak, J.; Wróblewska, W. Yield of two strawberry cultivars depending on the cropping method on the example of a commercial plantation in a specialized horticultural farm. Acta Sci. Pol. Hortorum Cultus 2014, 13, 149–159. [Google Scholar]
- Pawlak, J.; Wróblewska, W.; Paszko, D. Production and economic efficiency in the cultivation of strawberry (Fragaria × ananassa Duch.) depending on the method of production—Case study. Agron. Sci. 2022, 78, 15–26. [Google Scholar] [CrossRef]
- Diel, M.I.; Pinheiro, M.V.M.; Cocco, C.; Caron, B.O.; Fontana, D.C.; Meira, D.; Thiesen, L.A.; Schmidt, D. Yield and Quality Performance of Italian and American Strawberry Genotypes in Brazil. J. Agric. Sci. 2018, 10, 139–147. [Google Scholar] [CrossRef]
- Helepciuc, F.-E.; Todor, A. EU microbial pest control: A revolution in waiting. Pest Manag. Sci. 2022, 78, 1314–1325. [Google Scholar] [CrossRef]
- Prandecki, K.; Wrzaszcz, W.; Zieliński, M. Environmental and climate challenges to agriculture in Poland in the context of objectives adopted in the European Green Deal Strategy. Sustainability 2021, 13, 10318. [Google Scholar] [CrossRef]
- Wolf, S.; Teitge, J.; Mielke, J.; Schütze, F.; Jaeger, C. The European Green Deal—More than climate neutrality. Intereconomics 2021, 2, 99–107. [Google Scholar] [CrossRef]
- Liobikienė, G.; Miceikienė, A. Contribution of the European Bioeconomy Strategy to the Green Deal Policy: Challenges and opportunities in implementing these policies. Sustainability 2023, 15, 7139. [Google Scholar] [CrossRef]
- Skarżyńska, A.; Abramczuk, Ł.; Czułowska, M. Wyniki Ekonomiczne Produktów Rolniczych w 2016 Roku; IERiGŻ-PIB: Warszawa, Poland, 2016; p. 112. [Google Scholar]
- Żekało, M. Produkcja, Koszty i Dochody Wybranych Produktów Rolniczych w Latach 2014–2015; IERiGŻ-PIB: Warszawa, Poland, 2016; 89p. [Google Scholar]
- Harasim, A. Przewodnik Ekonomiczno-Rolniczy w Zarysie; IUNG-PIB: Puławy, Poland, 2006. [Google Scholar]
- Brzozowski, P.; Zmarlicki, K. Economics of the 2009–2012 organic apple, strawberry, and sour cherry production in Poland. J. Fruit Ornam. Plant Res. 2012, 20, 63–70. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Sas-Paszt, L.; Sumorok, B.; Górnik, K.; Grzyb, Z.S.; Lisek, A.; Głuszek, S.; Trzciński, P.; Derkowska, E.; Frąc, M.; Treder, W.; et al. Influence of beneficial soil microorganisms and mineral fertilizers enriched with them on the flowering, fruiting, and physical and chemical parameters of the fruit of three-year-old strawberry plants in field cultivation. Hortic. Sci. 2023, 50, 112–126. [Google Scholar] [CrossRef]
- Drobek, M.; Cybulska, J.; Gałązka, A.; Feledyn-Szewczyk, B.; Marzec-Grządziel, A.; Sas-Paszt, L.; Gryta, A.; Trzciński, P.; Zdunek, A.; Frąc, M. The use of interactions between microorganisms in strawberry cultivation (Fragaria × ananassa Duch.). Front. Plant Sci. 2021, 12, 780099. [Google Scholar] [CrossRef]
- Mikiciuk, G.; Sas-Paszt, L.; Mikiciuk, M.; Derkowska, E.; Trzciński, P.; Głuszek, S.; Lise, A.; Wera-Bryl, S.; Rudnicka, J. Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mycorrhiza 2019, 29, 489–501. [Google Scholar] [CrossRef]
- Gendron, L.; Létourneau, G.; Cormier, J.; Depardieu, C.; Boily, C.; Levallois, R.; Caron, J. Using pulsed water applications and automation technology to improve irrigation practices in strawberry production. HortTechnology 2018, 28, 642–650. [Google Scholar] [CrossRef]
- Ariza, M.T.; Miranda, L.; Gómez-Mora, J.A.; Medina, J.J.; Lozano, D.; Gavilán, P.; Soria, C.; Martínez-Ferri, E. Yield and Fruit Quality of Strawberry Cultivars under Different Irrigation Regimes. Agronomy 2021, 11, 261. [Google Scholar] [CrossRef]
- Santos, B.M.; Salame-Donoso, T.P.; Whidden, A.J. Reducing sprinkler irrigation volumes for strawberry transplant establishment in Florida. HortTechnology 2012, 22, 224–227. [Google Scholar] [CrossRef]
- Depardieu, C.; Prémont, V.; Boily, C.; Caron, J. Sawdust and Bark-Based Substrates for Soilless Strawberry Production: Irrigation and Electrical Conductivity Management. PLoS ONE 2016, 11, e0154104. [Google Scholar] [CrossRef]
- Cormier, J.; Depardieu, C.; Letourneau, G.; Boily, C.; Gallichand, J.; Caron, J. Tensiometer-based irrigation scheduling and water use efficiency of field-grown strawberries. Agron. J. 2020, 112, 2581–2597. [Google Scholar] [CrossRef]
- Christou, A.; Maratheftis, G.; Elia, M.; Hapeshi, E.; Michael, C.; Fatta-Kassinos, D. Effects of wastewater applied with discrete irrigation techniques on strawberry plants’ productivity and the safety, quality characteristics and antioxidant capacity of fruits. Agric. Water Manag. 2016, 173, 48–54. [Google Scholar] [CrossRef]
- Renai, L.; Tozzi, F.; Scordo, C.V.A.; Giordani, E.; Bruzzoniti, M.C.; Fibbi, D.; Mandi, L.; Ouazzani, N.; Bubba, M. Productivity and nutritional and nutraceutical value of strawberry fruits (Fragaria × ananassa Duch.) cultivated under irrigation with treated wastewaters. J. Sci. Food Agric. 2021, 101, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Meszka, B.; Michalecka, M. Identification of Phytophthora spp. isolated from plants and soil samples on strawberry plantations in Poland. J. Plant Dis. Prot. 2016, 123, 29–36. [Google Scholar] [CrossRef]
- Łabanowska, B.H.; Tartanus, M.; Gruchała, M.; Masny, A. Efficacy of Beauveria Bassiana and Abamectin in the control of strawberry mite-Phytonemus pallidus (Banks) (Acari: Tarsonemidae) and the susceptibility of cultivars to pest infestation. J. Berry Res. 2015, 5, 1–7. [Google Scholar] [CrossRef]
- Gupta, S.; Anusree, T.; Harini, K.; Kumar, D.; Kumar, V.; Kulshreshtha, S.K.; Maurya, D.K.; Sonkar, S. Effect of Nitrogen, Calcium and Nano Fertilizers on Growth Yield and Quality of Strawberry (Fragaria × ananassa Duch.): A Review. Int. J. Environ. Clim. Change 2023, 13, 2299–2307. [Google Scholar] [CrossRef]
- Yu, W.; Zheng, J.; Wang, Y.; Ji, F.; Zhu, B. Adjusting the nutrient solution formula based on growth stages to promote the yield and quality of strawberry in greenhouse. Int. J. Agric. Biol. Eng. 2023, 16, 57–64. [Google Scholar] [CrossRef]
- Paszko, D. Costs of strawberries picking depending of production type. Ann. Pol. Assoc. Agric. Agribus. Econ. 2010, 12, 245–250. [Google Scholar]
- Gołębiewska, B.; Sobczak, N. Directions of use and profitability of strawberry production. The Use and Profitability of Strawberries. Sci. J. Wars. Univ. Life Sci. Econ. Organ. Agri-Food Sect. 2012, 98, 109–121. [Google Scholar]
- Masny, A.; Żurawicz, E. Season extension possibilities in two Polish june-bearing strawberry cultivars. Acta Sci. Pol. Hortorum Cultus 2015, 14, 115–127. [Google Scholar]
- Sredojević, Z.; Vlahović, B.; Maksimović, A. Economic indicators of different ways of strawberry production on family farms. Agroekonomika 2015, 44, 114–124. [Google Scholar]
- Paszko, D.; Pawlak, J.; Wróblewska, W. Seasonal Fluctuations in Berries Production in Poland and in the World. Sci. J. Wars. Univ. Life Sci. Probl. World Agric. 2016, 16, 301–312. [Google Scholar]
- Kruk, K.; Dzięgielewska, M. The influence of acetamiprid and chlorpyrifos on the biological activity entomopathogenic nematodes (Steinernematidae, Heterorhabditidae). Prog. Plant Prot. 2020, 60, 179–185. [Google Scholar] [CrossRef]
- Vultaggio, L.; Allevato, E.; Consentino, B.B.; Bellitto, P.; Napoli, S.; Cannata, C.; Ntatsi, G.; Vasto, S.; Baldassano, S.; La Bella, S.; et al. Joint Action of Trichoderma atroviride and a Vegetal Derived-Protein Hydrolysate Improves Yield, Fruit Quality and Economic Profitability of Two Woodland Strawberry Cultivars Grown under Greenhouse. Preprints 2024. [Google Scholar] [CrossRef]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Matteazzi, A.; Andreotti, C. Foliar Applications of Biostimulants Promote Growth, Yield and Fruit Quality of Strawberry Plants Grown under Nutrient Limitation. Agronomy 2019, 9, 483. [Google Scholar] [CrossRef]
- Soltaniband, V.; Brégard, A.; Gaudreau, L.; Dorais, M. Biostimulants Promote Plant Development, Crop Productivity, and Fruit Quality of Protected Strawberries. Agronomy 2022, 12, 1684. [Google Scholar] [CrossRef]
- Valentinuzzi, F.; Pii, Y.; Borruso, L.; Mimmo, T.; Puglisi, E.; Trevisan, M.; Cesco, S. Epiphytic Microbial Community and Post-Harvest Characteristics of Strawberry Fruits as Affected by Plant Nutritional Regime with Silicon. Agronomy 2021, 11, 2407. [Google Scholar] [CrossRef]
- Augustyńska, I. Production, Costs and Income of Selected Agricultural Products in 2021–2022; IERiGŻ-PIB: Warsaw, Poland, 2023; p. 120. [Google Scholar]
- Chaulagain, M.; Dhakal, A.; Adhikari, A.; Oli, D. Value chain analysis of strawberry in Nuwakot district. Rev. Food Agric. 2022, 3, 1–5. [Google Scholar] [CrossRef]
- Lapshin, V.; Yakovenko, V.; Shcheglov, S. Analysis of yield stability of strawberry cultivars and hybrids. BIO Web Conf. 2020, 25, 02014. [Google Scholar] [CrossRef]
- Rhainds, M.; Kovach, J.; English-Loeb, G. Impact of strawberry cultivar and incidence of pests on yield and profitability of strawberries under conventional and organic management systems. Biol. Agric. Hortic. 2002, 19, 333–353. [Google Scholar] [CrossRef]
- Zanin, D.S.; Fagherazzi, A.F.; Santos, A.M.; Martins, R.; Kretzschmar, A.A.; Rufato, L. Agronomic performance of cultivars and advanced selections of strawberry in the South Plateau of Santa Catarina State. Rev. Ceres Viçosa 2019, 66, 159–167. [Google Scholar] [CrossRef]
Abbreviation | Expansion of the Abbreviation |
---|---|
CAP | Common Agricultural Policy |
CFU | Colony-forming unit |
K1 | Control |
K2 | Preparation containing Bacillus sp. AF75BC and Bacillus subtilis AF75AB2 on a carrier consisting of dry humic acids, mustard, rapeseed oil, and clove oil on micorized dolomite (109 CFU/plant) |
K3 | Preparation containing Bacillus sp. AF75BC and Bacillus subtilis AF75AB2 on a carrier consisting of dry humic acids, mustard, rapeseed oil, and clove oil on micorized dolomite (109 CFU/plant), and Bacillus subtilis AF75AB2 and Bacillus sp. Sp115AD on a carrier consisting of plant extracts (nettle, horsetail, and calendula) and humic acids in micorized dolomite (105 CFU/cm2) |
K4 | Preparation containing Bacillus sp. AF75BC and Bacillus subtilis AF75AB2 on a carrier consisting of dry humic acids, mustard, rapeseed oil, and clove oil on micorized dolomite (109 CFU/plant), and Bacillus sp. Sp116AC*, Bacillus sp. Sp115AD, humic acids, and yeast culture effluent in micorized dolomite (105 CFU/cm2) |
K5 | Preparation containing Bacillus sp. AF75BC and Bacillus subtilis AF75AB2 on a carrier consisting of dry humic acids, mustard, rapeseed oil, and clove oil on micorized dolomite (109 CFU/plant) and Bacillus subtilis AF75AB2 and Bacillus sp. Sp115AD on a carrier consisting of plant extracts (nettle, horsetail, and calendula) and humic acids in micorized dolomite (105 CFU/cm2), and Bacillus sp. Sp116AC*, Bacillus sp. Sp115AD, humic acids, and yeast culture effluent in micorized dolomite (105 CFU/cm2) |
K6 | Preparation containing Bacillus subtilis AF75AB2 and Bacillus sp. Sp115AD on a carrier consisting of plant extracts (nettle, horsetail, and calendula), and humic acids in micorized dolomite (105 CFU/cm2), and Bacillus sp. Sp116AC*, Bacillus sp. Sp115AD, humic acids, and yeast culture effluent in micorized dolomite (105 CFU/cm2) |
Month | 1st Decade | 2nd Decade | 3rd Decade | Total | Multi-Year Average |
---|---|---|---|---|---|
Precipitation (mm) | |||||
April | 4.3 | 42.9 | 4.0 | 51.2 | 42.0 |
May | 14.3 | 15.0 | 20.6 | 49.9 | 53.0 |
June | 0.8 | 2.0 | 67.6 1 | 70.4 1 | 110.0 |
July | 30.0 1 | 21.6 1 | 10.1 1 | 61.7 1 | 105.0 |
Temperature (°C) | |||||
April | 5.6 | 7.2 | 7.0 | 6.6 | 7.5 |
May | 10.0 | 14.5 | 12.9 | 12.5 | 12.4 |
June | 17.3 | 19.4 | 21.7 | 19.5 | 16.7 |
July | 21.2 | 22.7 | 21.5 | 21.8 | 17.8 |
Treatment Type | Product and/or Formulation | Manufacturer | Dose per Hectare | Number of Treatments |
---|---|---|---|---|
Fertilization | Redarom Activstart | Biodevas Laboratoires ZA de l’ L’Épine, Savigné-l’Évêque, France, | 1.5 L | 2 |
Olibio | Biodevas Laboratoires ZA de l’ L’Épine, Savigné-l’Évêque, France | 2 L | 2 | |
Aminosol (N) | AZELIS POLAND Sp. z o.o., Poznań, Poland | 3 L | 2 | |
Potassium sulfate Patent Kali | K+S Polska Sp. z o.o., Poznań, Poland | 250 kg | 1 | |
Potassium salt | K+S Minerals and Agriculture GmbH, Kassel, Germany | 60 kg | 1 | |
Carbonate lime Polcalc | Polcalc Nawozy Wapniowe Sp. z o.o., Przemysłowa, Poland | 500 kg | 1 | |
Biopreparations (microbial fertilizing products) | K2 (BacilRoots) | Bacto-Tech Sp. z o.o., Toruń, Poland | 50 kg | 3 |
K3 (BacilRoots + BacilExtra) | Bacto-Tech Sp. z o.o., Toruń, Poland | 50 kg | 3 | |
K4 (BacilRoots + BacilHumus) | Bacto-Tech Sp. z o.o., Toruń, Poland | 50 kg | 3 | |
K5 (BacilRoots + BacilExtra + BacilHumus) | Bacto-Tech Sp. z o.o., Toruń, Poland | 50 kg | 3 | |
K6 (BacilExtra + BacilHumus) | Bacto-Tech Sp. z o.o., Toruń, Poland | 50 kg | 3 |
Specification | Treatment | ||||||
---|---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | K6 | Average | |
Non-irrigated | |||||||
‘Honeoye’ | 11.09 a | 15.61 ab | 17.69 ab | 19.85 b | 14.93 ab | 17.75 ab | 16.61 |
‘Rumba’ | 13.34 a | 17.39 ab | 17.28 ab | 19.87 b | 16.83 ab | 18.10 ab | 17.48 |
‘Vibrant’ | 19.93 ab | 17.32 ab | 20.69 b | 19.53 ab | 18.70 ab | 15.13 a | 18.42 |
Average | 14.79 | 16.77 | 18.55 | 19.75 | 16.82 | 16.99 | 17.51 |
Irrigated | |||||||
‘Honeoye’ | 16.53 a | 18.96 a | 22.64 a | 15.88 a | 16.74 a | 16.57 a | 18.01 |
‘Rumba’ | 14.37 a | 19.80 ab | 21.37 b | 17.94 ab | 22.07 b | 17.41 ab | 19.23 |
‘Vibrant’ | 17.18 a | 18.31 a | 21.41 a | 16.12 a | 21.72 a | 18.14 a | 18.96 |
Average | 16.03 | 19.03 | 21.81 | 16.65 | 20.18 | 17.37 | 18.74 |
Specification | Treatment | |||||
---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | K6 | |
Non-irrigated | ||||||
Man-hours | 3375.9 | 3380.4 | 3380.4 | 3380.4 | 3380.4 | 3380.4 |
Tractor-hours | 2.6 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 |
Irrigated | ||||||
Man-hours | 3422.1 | 3426.6 | 3426.6 | 3426.6 | 3426.6 | 3426.6 |
Tractor-hours | 13.1 | 16.7 | 16.7 | 16.7 | 16.7 | 16.7 |
Specification | Treatment | ||||||
---|---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | K6 | Average | |
Non-irrigated | |||||||
Direct costs (PLN) | 54,783 | 56,098 | 56,098 | 56,098 | 56,098 | 56,098 | 55,878.8 |
Yield (average, t·ha−1) | 14.79 | 16.77 | 18.55 | 19.75 | 16.82 | 16.99 | 17.28 |
Yield value (PLN) | |||||||
‘Honeoye’ | 53,177 | 74,850 | 84,824 | 95,181 | 71,589 | 85,111 | 77,455.3 |
‘Rumba’ | 63,965 | 83,385 | 82,858 | 95,277 | 80,700 | 86,790 | 82,162.5 |
‘Vibrant’ | 95,564 | 83,049 | 99,209 | 93,646 | 89,667 | 72,548 | 88,947.2 |
Average | 70,918 | 80,412 | 88,947 | 94,701 | 80,652 | 81,467 | 82,849.5 |
Direct surplus (PLN) | |||||||
‘Honeoye’ | −1606 | 18,752 | 28,726 | 39,083 | 15,492 | 29,013 | 21,576.7 |
‘Rumba’ | 9182 | 27,287 | 26,760 | 39,179 | 24,602 | 30,692 | 26,283.7 |
‘Vibrant’ | 40,781 | 26,952 | 43,111 | 37,549 | 33,569 | 16,451 | 33,068.8 |
Average | 16,135 | 24,314 | 32,849 | 38,603 | 24,554 | 25,369 | 26,970.7 |
Average direct surplus with subsidies | 19,010 | 27,189 | 35,724 | 41,478 | 27,429 | 28,244 | 29,845.7 |
Irrigated | |||||||
Direct costs (PLN) | 60,271 | 61,586 | 61,586 | 61,586 | 61,586 | 61,586 | 61,366.8 |
Yield (average, t·ha−1) | 16.03 | 19.03 | 21.81 | 16.65 | 20.18 | 17.37 | 18.51 |
Yield value (PLN) | |||||||
‘Honeoye’ | 79,118 | 91,105 | 108,367 | 76,241 | 80,077 | 79,597 | 85,750.8 |
‘Rumba’ | 69,048 | 94,941 | 102,613 | 85,831 | 105,970 | 83,433 | 90,306.0 |
‘Vibrant’ | 82,474 | 87,749 | 102,613 | 77,200 | 104,052 | 86,790 | 90,146.3 |
Medium | 76,720 | 91,105 | 104,531 | 79,597 | 96,859 | 83,433 | 88,707.5 |
Direct surplus (PLN) | |||||||
‘Honeoye’ | 18,846 | 29,519 | 46,781 | 14,654 | 18,490 | 18,011 | 24,383.5 |
‘Rumba’ | 8777 | 33,355 | 41,027 | 24,244 | 44,383 | 21,847 | 28,938.8 |
‘Vibrant’ | 22,203 | 26,162 | 41,027 | 15,613 | 42,465 | 25,203 | 28,778.8 |
Average | 16,449 | 29,519 | 42,945 | 18,011 | 35,273 | 21,847 | 27,340.7 |
Average direct surplus with subsidies | 19,323 | 32,394 | 45,820 | 20,886 | 38,148 | 24,722 | 30,215.5 |
Specification | Treatment | |||||
---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | K6 | |
Non-irrigated | ||||||
Direct costs (PLN) | 54,783 | 56,098 | 56,098 | 56,098 | 56,098 | 56,098 |
Cost structure (%) | ||||||
Materials total: | 21.6 | 23.2 | 23.2 | 23.2 | 23.2 | 23.2 |
Seedlings | 8.2 | 8.0 | 8.0 | 8.0 | 8.0 | 8.0 |
Fertilizers | 3.1 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
Biopreparations | 0.0 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 |
Water | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Other | 10.3 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 |
Fuel | 2.7 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 |
Labor (hired) | 75.7 | 73.9 | 73.9 | 73.9 | 73.9 | 73.9 |
Irrigated | ||||||
Direct costs (PLN) | 60,271 | 61,586 | 61,586 | 61,586 | 61,586 | 61,586 |
Cost structure (%) | ||||||
Material total | 28.2 | 29.5 | 29.5 | 29.5 | 29.5 | 29.5 |
Seedlings | 7.5 | 7.3 | 7.3 | 7.3 | 7.3 | 7.3 |
Fertilizers | 2.8 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 |
Biopreparations | 0.0 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 |
Water | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Other | 17.7 | 17.3 | 17.3 | 17.3 | 17.3 | 17.3 |
Fuel | 3.0 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 |
Labor (hired) | 68.8 | 67.4 | 67.4 | 67.4 | 67.4 | 67.4 |
Specification | Treatment | |||||
---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | K6 | |
Non-irrigated | ||||||
‘Honeoye’ | −0.48 | 5.55 | 8.50 | 11.56 | 4.58 | 8.58 |
‘Rumba’ | 2.72 | 8.07 | 7.92 | 11.59 | 7.28 | 9.08 |
‘Vibrant’ | 12.08 | 7.97 | 12.75 | 11.11 | 9.93 | 4.87 |
Average | 4.78 | 7.19 | 9.72 | 11.42 | 7.26 | 7.50 |
Average with subsidies | 5.63 | 8.04 | 10.57 | 12.27 | 8.11 | 8.36 |
Irrigated | ||||||
‘Honeoye’ | 5.51 | 8.61 | 13.65 | 4.28 | 5.40 | 5.26 |
‘Rumba’ | 2.56 | 9.73 | 11.97 | 7.08 | 12.95 | 6.38 |
‘Vibrant’ | 6.49 | 7.64 | 11.97 | 4.56 | 12.39 | 7.36 |
Average | 4.81 | 8.61 | 12.53 | 5.26 | 10.29 | 6.38 |
Average with subsidies | 5.65 | 9.45 | 13.37 | 6.10 | 11.13 | 7.21 |
Specification | Treatment | |||||
---|---|---|---|---|---|---|
K1 | K2 | K3 | K4 | K5 | K6 | |
Non-irrigated | ||||||
‘Honeoye’ | 97.1 | 133.4 | 151.2 | 169.7 | 127.6 | 151.7 |
‘Rumba’ | 116.8 | 148.6 | 147.7 | 169.8 | 143.9 | 154.7 |
‘Vibrant’ | 174.4 | 148.0 | 176.8 | 166.9 | 159.8 | 129.3 |
Average | 129.5 | 143.3 | 158.6 | 168.8 | 143.8 | 145.2 |
Yield offsetting direct costs (t) | 11.4 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 |
Irrigated | ||||||
‘Honeoye’ | 131.3 | 147.9 | 176.0 | 123.8 | 130.0 | 129.2 |
‘Rumba’ | 114.6 | 154.2 | 166.6 | 139.4 | 172.1 | 135.5 |
‘Vibrant’ | 136.8 | 142.5 | 166.6 | 125.4 | 169.0 | 140.9 |
Average | 127.3 | 147.9 | 169.7 | 129.2 | 157.3 | 135.5 |
Yield offsetting direct costs (t) | 12.6 | 12.8 | 12.8 | 12.8 | 12.8 | 12.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakielska, M.; Berbeć, A.K.; Madej, A.; Feledyn-Szewczyk, B. Microbial Fertilizing Products Impact on Productivity and Profitability of Organic Strawberry Cultivars. Horticulturae 2024, 10, 1112. https://doi.org/10.3390/horticulturae10101112
Nakielska M, Berbeć AK, Madej A, Feledyn-Szewczyk B. Microbial Fertilizing Products Impact on Productivity and Profitability of Organic Strawberry Cultivars. Horticulturae. 2024; 10(10):1112. https://doi.org/10.3390/horticulturae10101112
Chicago/Turabian StyleNakielska, Małgorzata, Adam Kleofas Berbeć, Andrzej Madej, and Beata Feledyn-Szewczyk. 2024. "Microbial Fertilizing Products Impact on Productivity and Profitability of Organic Strawberry Cultivars" Horticulturae 10, no. 10: 1112. https://doi.org/10.3390/horticulturae10101112
APA StyleNakielska, M., Berbeć, A. K., Madej, A., & Feledyn-Szewczyk, B. (2024). Microbial Fertilizing Products Impact on Productivity and Profitability of Organic Strawberry Cultivars. Horticulturae, 10(10), 1112. https://doi.org/10.3390/horticulturae10101112