Acaricidal Efficacy of Abamectin against Tetranychus urticae Populations When Combined with Entomopathogenic Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tetranychus urticae Rearing
2.2. Metarhizium robertsii and Beauveria bassiana Isolates
2.3. Insecticide
2.4. Laboratory Trials
2.5. Greenhouse Trials
2.6. Statistical Analysis
3. Results
3.1. Mortality of Tetranychus urticae Female Adults and Nymphs in the Laboratory
3.2. Establishment of Tetranychus urticae (Adults, Immatures, and Eggs) on Tomato Plants after Acaricidal Treatments in the Greenhouse
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naher, N.; Islam, T.; Haque, M.M.; Parween, S. Effects of native plants and IGRs on the development of Tetranychus urticae Koch (Acari: Tetranychidae). Univ. J. Zool. Rajshahi. Univ. 2006, 25, 19–22. [Google Scholar] [CrossRef]
- Vacante, V. The Handbook of Mites of Economic Plants: Identification, Bio-Ecology and Control; CABI International: Wallingford, UK, 2016. [Google Scholar]
- Migeon, A.; Dorkled, F. Spider Mites Web: A Comprehensive Database for the Tetranychidae. Available online: https://www1.montpellier.inrae.fr/CBGP/spmweb (accessed on 9 July 2024).
- Leppla, N.C.; Johnson, M.W.; Merritt, J.L.; Zalom, F.G. Applications and trends in commercial biological control for arthropod pests of tomato. In Sustainable Management of Arthropod Pests of Tomato; Wakil, W., Brust, G.E., Perring, T.M., Eds.; Academic Press: London, UK, 2018; pp. 283–303. [Google Scholar]
- Assouguem, A.; Kara, M.; Mechchate, H.; Korkmaz, Y.B.; Benmessaoud, S.; Ramzi, A.; Abdullah, K.R.; Noman, O.M.; Farah, A.; Lazraq, A. Current situation of Tetranychus urticae (Acari: Tetranychidae) in Northern Africa: The sustainable control methods and priorities for future research. Sustainability 2022, 14, 2395. [Google Scholar] [CrossRef]
- Johnson, W.T.; Lyon, H.H. Insects that Feed on Trees and Shrubs, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1991. [Google Scholar]
- Ghongade, D.S.; Sood, A.K. Diversity and seasonal abundance of tetranychid mites in polyhouses in Himachal Pradesh. Indian J. Entomol. 2018, 80, 1688–1695. [Google Scholar] [CrossRef]
- Namin, H.H.; Zhurov, V.; Spenler, J.; Grbic, M.; Grbic, V.; Scott, I.M. Resistance to pyridaben in Canadian greenhouse populations of two-spotted spider mites, Tetranychus urticae (Koch). Pestic. Biochem. Physiol. 2020, 170, 104677. [Google Scholar] [CrossRef] [PubMed]
- Helle, W.; Sabelis, M.W. Spider Mites: Their Biology, Natural Enemies and Control; Elsevier: Amsterdam, The Netherlands, 1986; Volume 1A. [Google Scholar]
- Tuan, S.J.; Lin, Y.H.; Yang, C.M.; Atlihan, R.; Saska, P.; Chi, H. Survival and reproductive strategies in two-spotted spider mites: Demographic analysis of arrhenotokous parthenogenesis of Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 2016, 109, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Attia, S.; Grissa, K.L.; Lognay, G.; Bitume, E.; Hance, T.; Mailleux, A.C. A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides. J. Pest Sci. 2013, 86, 361–386. [Google Scholar] [CrossRef]
- Suekane, R.; Degrande, P.E.; De Melo, E.P.; Bertoncello, T.F.; Junior, I.D.S.L.; Kodama, C. Damage level of the two-spotted spider mite Tetranychus urticae Koch (acari: Tetranychidae) in soybeans. Rev. Ceres 2012, 59, 77–81. [Google Scholar] [CrossRef]
- Estrella Santamaria, M.; Arnaiz, A.; Rosa-Diaz, I.; González-Melendi, P.; Romero-Hernandez, G.; Ojeda-Martinez, D.A.; Garcia, A.; Contreras, E.; Martinez, M.; Diaz, I. Plant Defenses against Tetranychus urticae: Mind the Gaps. Plants 2020, 9, 464. [Google Scholar] [CrossRef]
- Bensoussan, N.; Santamaria, M.E.; Zhurov, V.; Diaz, I.; Grbic, M.; Grbic, V. Plant-herbivore interaction: Dissection of the cellular pattern of Tetranychus urticae feeding on the host plant. Front. Plant Sci. 2016, 7, 1105. [Google Scholar] [CrossRef]
- Shin, T.Y.; Bae, S.M.; Kim, D.J.; Yun, H.G.; Woo, S.D. Evaluation of virulence, tolerance to environmental factors and antimicrobial activities of entomopathogenic fungi against two-spotted spider mite, Tetranychus urticae. Mycoscience 2017, 58, 204–212. [Google Scholar] [CrossRef]
- Adesanya, A.W.; Lavine, M.D.; Moural, T.W.; Lavine, L.C.; Zhu, F.; Walsh, D.B. Mechanisms and management of acaricide resistance for Tetranychus urticae in agroecosystems. J. Pest Sci. 2021, 94, 639–663. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Y.; Tian, T.; Xu, D.; Wu, Q.; Xie, W.; Zhang, Y.; Crickmore, N.; Guo, Z.; Wang, S. Assessment of the role of an ABCC transporter TuMRP1 in the toxicity of abamectin to Tetranychus urticae. Pestic. Biochem. Phys. 2023, 195, 105543. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, T.; Vontas, J.; Tsagkarakou, A.; Tirry, L. Acaricide resistance mechanism in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem. Mol. Biol. 2010, 40, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Riga, M.; Tsakireli, D.; Ilias, A.; Morou, E.; Myridakis, A.; Stephanou, E.G.; Nauen, R.; Dermauw, W.; Van Leeuwen, T.; Paine, M.; et al. Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. Insect Biochem. Mol. Biol. 2014, 46, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wu, T.; Hu, Q.; He, W.; Zheng, Y.; Xie, Y.; Rao, Q.; Liu, X. Plant essential oils: Dual action of toxicity and egg-laying inhibition on Tetranychus urticae (Acari: Tetranychidae), unveiling their potential as botanical pesticides. Plants 2024, 13, 763. [Google Scholar] [CrossRef]
- Díaz-Arias, K.V.; Rodríguez-Maciel, J.C.; Lagunes-Tejeda, Á.; Aguilar-Medel, S.; Tejeda-Reyes, M.A.; Silva-Aguayo, G. Resistance to abamectin in field population of Tetranychus urticae Koch (Acari: Tetranychidae) associated with cut rose from State of Mexico, Mexico. Fla. Entomol. 2019, 102, 428–430. [Google Scholar] [CrossRef]
- Xue, W.; Snoeck, S.; Njiru, C.; Inak, E.; Dermauw, W.; Van Leeuwen, T. Geographical distribution and molecular insights into abamectin and milbemectin cross-resistance in European field populations of Tetranychus urticae. Pest Manag. Sci. 2020, 76, 2569–2581. [Google Scholar] [CrossRef]
- Tian, T.; Wu, M.M.; Zhang, Y.; Xu, D.D.; Wu, M.Y.; Xie, W.; Su, Q.; Wang, S.L. Pesticide Resistance and Related Mutation Frequencies of Tetranychus urticae in Hainan, China. Horticulturae 2022, 8, 590. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, D.; Zhang, Y.; Wu, Q.; Xie, W.; Guo, Z.; Wang, S. Frequencies and Mechanisms of Pesticide Resistance in Tetranychus urticae Field Populations in China. Insect Sci. 2022, 29, 827–839. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, T.; Zhang, K.; Zhang, Y.J.; Wu, Q.J.; Xie, W.; Guo, Z.J.; Wang, S.L. Lack of fitness cost and inheritance of resistance to abamectin based on the establishment of a near-isogenic strain of Tetranychus urticae. J. Integr. Agric. 2023, 22, 1809–1819. [Google Scholar] [CrossRef]
- Xu, D.; Liao, H.; Li, L.; Wu, M.; Xie, W.; Wu, Q.; Zhang, Y.; Zhou, X.; Wang, S. The CYP392D8 gene is not directly associated with abamectin resistance, a case study in two highly resistant Tetranychus urticae strains. Entomol. Gen. 2023, 43, 679–687. [Google Scholar] [CrossRef]
- Ikeda, H.; Ishikawa, J.; Hanamoto, A.; Shinose, M.; Kikuchi, H.; Shiba, T.; Sakaki, Y.; Hattori, M.; Ōmura, S. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 2003, 21, 526. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W.C. Ivermectin and Abamectin; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kwon, D.H.; Yoon, K.S.; Clark, J.M.; Lee, S.H. A point mutation in a glutamate-gated chloride channel confers abamectin resistance in the two-spotted spider mite, Tetranychus urticae Koch. Insect Mol. Biol. 2010, 19, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, R.; Yang, Y.; Wu, S.; O’Reilly, A.O.; Wu, Y. A point mutation in the glutamate-gated chloride channel of Plutella xylostella is associated with resistance to abamectin. Insect. Mol. Biol. 2016, 25, 116–125. [Google Scholar] [CrossRef]
- İnak, E.; Alpkent, Y.N.; Çobanoğlu, S.; Dermauw, W.; Van Leeuwen, T. Resistance incidence and presence of resistance mutations in populations of Tetranychus urticae from vegetable crops in Turkey. Exp. Appl. Acarol. 2019, 78, 343–360. [Google Scholar] [CrossRef]
- Saber, M.; Ahmadi, Z.; Mahdavinia, G. Sublethal effects of spirodiclofen, abamectin and pyridaben on life-history traits and life-table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Exp. Appl. Acarol. 2018, 75, 55–67. [Google Scholar] [CrossRef]
- Tollerup, K.; Higbee, B. Evaluation of a “preventative” strategy to manage spider mites on almond. Insects 2020, 11, 772. [Google Scholar] [CrossRef]
- Tehri, K.; Gulati, R.; Geroh, M.; Dhankhar, S.K. Dry weather: A crucial constraint in the field efficacy of entomopathogenic fungus Beauveria bassiana against Tetranychus urticae Koch (Acari: Tetranychidae). J. Entomol. Zool. Stud. 2015, 3, 287–291. [Google Scholar]
- Al-Zahrani, J.K.; Al-Abdalall, A.H.; Osman, M.A.; Aldakheel, L.A.; AlAhmady, N.F.; Aldakeel, S.A.; AbdulAzeez, S.; Borgio, J.F.; ElNaggar, M.A.; Alabdallah, N.M.; et al. Entomopathogenic fungi and their biological control of Tetranychus urticae: Two-spotted spider mites. J. King Saud Univ. Sci. 2023, 35, 102910. [Google Scholar] [CrossRef]
- Ortiz-Urquiza, A.; Keyhani, N.O. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 2013, 4, 357–374. [Google Scholar] [CrossRef]
- Charnley, A.K. Fungal pathogens of insects: Cuticle degrading enzymes and toxins. Adv. Bot. Res. 2003, 40, 241–321. [Google Scholar]
- Revathi, N.; Ravikumar, G.; Kalaiselvi, M.; Gomathi, D.; Uma, C. Pathogenicity of three entomopathogenic fungi against Helicoverpa armigera. J. Plant. Pathol. Microbiol. 2011, 2, 114. [Google Scholar] [CrossRef]
- Mondal, S.; Baksi, S.; Koris, A.; Vatai, G. Journey of enzymes in entomopathogenic fungi. Pacific Sci. Rev. A Nat. Sci. Eng. 2016, 18, 85–99. [Google Scholar] [CrossRef]
- Elhakim, E.; Mohamed, O.; Elazouni, I. Virulence and proteolytic activity of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Egypt. J. Biol. Pest Control 2020, 30, 30. [Google Scholar] [CrossRef]
- Jaronski, S.T. Ecological factors in the inundative use of fungal entomopathogens. BioControl 2020, 55, 159–185. [Google Scholar] [CrossRef]
- Butt, T.M.; Coates, C.J.; Dubovskiy, I.M.; Ratcliffe, N.A. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions. In Advances in Genetics, 1st ed.; Lovett, B., St. Leger, R., Eds.; Elsevier: Cambridge, MA, USA, 2016; Volume 94, pp. 307–364. [Google Scholar]
- Friuli, M.; Nitti, P.; Cafuero, L.; Prete, A.; Zafar, M.S.; Madaghiele, M.; Demitri, C. Cellulose acetate and cardanol based seed coating for Intraspecific weeding coupled with natural herbicide spraying. J. Polym. Environ. 2020, 28, 2893–2904. [Google Scholar] [CrossRef]
- Jaronski, S.T.; Mascarin, G.M. Mass Production of Fungal Entomopathogens. In Microbial Control of Insect and Mite Pests; Lawrence, A.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 141–155. [Google Scholar]
- Yucel, C. Effects of local isolates of Beauveria bassiana (Balsamo) Vuillemin on the two-spotted spider mite, Tetranychus urticae (Koch) (Acari: Tetranychidae). Egypt. J. Biol. Pest Control 2021, 31, 63. [Google Scholar] [CrossRef]
- Wakil, W.; Boukouvala, M.C.; Kavallieratos, N.G.; Naeem, A.; Ghazanfar, M.U.; Alhewairini, S.S. Impact of three entomopathogenic fungal isolates on the growth of tomato plants—Ectoapplication to explore their effect on Tetranychus urticae. Agronomy 2024, 14, 665. [Google Scholar] [CrossRef]
- Hernández, M.M.; Martínez-Villar, E.; Peace, C.; Pérez-Moreno, I.; Marco, V. Compatibility of the entomopathogenic fungus Beauveria bassiana with flufenoxuron and azadirachtin against Tetranychus urticae. Exp. Appl. Acarol. 2012, 58, 395–405. [Google Scholar] [CrossRef]
- Seyed-Talebi, F.-S.; Kheradmand, K.; Talaei-Hassanloui, R.; Talebi-Jahromi, K. Synergistic effect of Beauveria bassiana and spirodiclofen on the two-spotted spider mite (Tetranychus urticae). Phytoparasitica 2014, 3, 405–412. [Google Scholar] [CrossRef]
- Nawaz, A.; Razzaq, F.; Razzaq, A.; Gogi, M.D.; Fernández-Grandon, G.M.; Tayib, M.; Ayub, M.A.; Sufyan, M.; Shahid, M.R.; Qayyum, M.A.; et al. Compatibility and synergistic interactions of fungi, Metarhizium anisopliae, and insecticide combinations against the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Sci. Rep. 2022, 12, 4843. [Google Scholar] [CrossRef] [PubMed]
- Dearlove, E.L.; Chandler, D.; Edgington, S.; Berry, S.D.; Martin, G.; Svendsen, C.; Hesketh, H. Improved control of Trialeurodes vaporariorum using mixture combinations of entomopathogenic fungi and the chemical insecticide spiromesifen. Sci. Rep. 2024, 14, 15259. [Google Scholar] [CrossRef] [PubMed]
- Golizadeh, A.; Ghavidel, S.; Razmjou, J.; Fathi, S.A.A.; Hassanpour, M. Comparative life table analysis of Tetranychus urticae Koch (Acari: Tetranychidae) on ten rose cultivars. Acarologia 2017, 57, 607–616. [Google Scholar] [CrossRef]
- Keskin, N.; Kumral, N.A. Screening tomato varietal resistance against the two-spotted spider mite [Tetranychus urticae (Koch)]. Int. J. Acarol. 2015, 41, 300–309. [Google Scholar] [CrossRef]
- Kavousi, A.; Chi, H.; Talebi, K.; Bandani, A.; Ashouri, A.; Naveh, V.H. Demographic traits of Tetranychus urticae (Acari: Tetranychidae) on leaf discs and whole leaves. J. Econ. Entomol. 2009, 102, 595–601. [Google Scholar] [CrossRef]
- Puspitarini, R.D.; Fernando, I.; Rachmawati, R.; Hadi, M.S.; Rizali, A. Host plant variability affects the development and reproduction of Tetranychus urticae. Int. J. Acarol. 2021, 47, 381–386. [Google Scholar] [CrossRef]
- Tahir, T.; Wakil, W.; Ali, A.; Sahi, S.T. Pathogenicity of Beauveria bassiana and Metarhizium anisopliae isolates against larvae of the polyphagous pest Helicoverpa armigera. Entomol. Gen. 2019, 38, 225–242. [Google Scholar] [CrossRef]
- Usman, M.; Wakil, W.; Piñero, J.C.; Wu, S.; Toews, M.D.; Shapiro-Ilan, D.I. Evaluation of locally isolated entomopathogenic fungi against multiple life stages of Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae): Laboratory and field study. Microorganisms 2021, 9, 1791. [Google Scholar] [CrossRef]
- Rasool, S.; Markou, A.; Hannula, S.E.; Biere, A. Effects of tomato inoculation with the entomopathogenic fungus Metarhizium brunneum on spider mite resistance and the rhizosphere microbial community. Front. Microbiol. 2023, 14, 1197770. [Google Scholar] [CrossRef]
- Ortucu, S.; Algur, O.F. A laboratory assessment of two local strains of the Beauveria bassiana (Bals.) Vuill. against the Tetranychus urticae (Acari: Tetranychidae) and their potential as a mycopesticide. J. Pathog. 2017, 2017, 7628175. [Google Scholar] [CrossRef]
- Wakil, W.; Tahir, M.; Al-Sadi, A.M.; Shapiro-Ilan, D. Interactions between two invertebrate pathogens: An endophytic fungus and an externally applied bacterium. Front. Microbiol. 2020, 11, 2624. [Google Scholar] [CrossRef] [PubMed]
- Rasool, S.; Cárdenas, P.D.; Pattison, D.I.; Jensen, B.; Meyling, N.V. Isolate-specific effect of entomopathogenic endophytic fungi on population growth of two-spotted spider mite (Tetranychus urticae Koch) and levels of steroidal glycoalkaloids in tomato. J. Chem. Ecol. 2021, 47, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Gulzar, S.; Wakil, W.; Wu, S.; Piñero, J.C.; Leskey, T.C.; Nixon, L.J.; Oliveira-Hofman, C.; Toews, M.D.; Shapiro-Ilan, D. Virulence of entomopathogenic fungi to Rhagoletis pomonella (Diptera: Tephritidae) and interactions with entomopathogenic nematodes. J. Econ. Entomol. 2020, 113, 2627–2633. [Google Scholar] [CrossRef] [PubMed]
- Gulzar, S.; Wakil, W.; Shapiro-Ilan, D.I. Combined effect of entomopathogens against Thrips tabaci Lindeman (Thysanoptera: Thripidae): Laboratory, greenhouse and field trials. Insects 2021, 12, 456. [Google Scholar] [CrossRef] [PubMed]
- Seiedy, M.; Moezipour, M. The entomopathogenic fungus Beauveria bassiana and its compatibility with Phytoseiulus persimilis (Acari: Phytoseiidae): Effects on Tetranychus urticae (Acari: Tetranychidae). Persian J. Acarol. 2017, 6, 329–338. [Google Scholar]
- Chaudhry, Z.; Abbas, S.; Yasmin, A.; Rashid, H.; Ahmed, H.; Anjum, M.A. Tissue culture studies in tomato (Lycopersicon esculentum) var. Moneymaker. Pak. J. Bot. 2010, 42, 155–163. [Google Scholar]
- Ijaz, A.; Khan, I.; Zareen, S.; Khan, M.I.; Khan, R.; Haroon, M. Yield and yield attributes of tomato (Lycopersicon esculentum Mill) cultivars influenced by weed management techniques. Pak. J. Weed Sci. Res. 2017, 23, 431–438. [Google Scholar]
- Wu, S.; Sarkar, S.C.; Lv, J.; Xu, X.; Lei, Z. Poor infectivity of Beauveria bassiana to eggs and immatures causes the failure of suppression on Tetranychus urticae population. BioControl 2020, 65, 81–90. [Google Scholar] [CrossRef]
- Wu, S.Y.; Xie, H.C.; Li, M.Y.; Xu, X.N.; Lei, Z.R. Highly virulent Beauveria bassiana strains against the two-spotted spider mite, Tetranychus urticae, show no pathogenicity against five phytoseiid mite species. Exp. Appl. Acarol. 2016, 70, 421–435. [Google Scholar] [CrossRef]
- Amjad, M.; Bashir, M.H.; Afzal, M.; Sabri, M.A.; Javed, N. Synergistic effect of some entomopathogenic fungi and synthetic pesticides, against two spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Pak. J. Zool. 2012, 44, 977–984. [Google Scholar]
- Castillo-Ramírez, O.; Guzmán-Franco, A.W.; Santillán-Galicia, M.; Tamayo-Mejía, F. Interaction between predatory mites (Acari: Phytoseiidae) and entomopathogenic fungi in Tetranychus urticae populations. BioControl 2020, 65, 433–445. [Google Scholar] [CrossRef]
- Golec, J.R.; Hoge, B.; Walgenbach, J.F. Effect of biopesticides on different Tetranychus urticae Koch (Acari: Tetranychidae) life stages. Crop Prot. 2020, 128, 105015. [Google Scholar] [CrossRef]
- Nishi, O.; Sushida, H.; Higashi, Y.; Iida, Y. Epiphytic and endophytic colonisation of tomato plants by the entomopathogenic fungus Beauveria bassiana strain GHA. Mycology 2021, 12, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Maniania, N.K.; Ekesi, S.; Kungu, M.M.; Salifu, D.; Srinivasan, R. The effect of combined application of the entomopathogenic fungus Metarhizium anisopliae and the release of predatory mite Phytoseiulus longipes for the control of the spider mite Tetranychus evansi on tomato. Crop Prot. 2016, 90, 49–53. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis; Pearson Education Limited: Essex, UK, 2014. [Google Scholar]
- Scheff, D.S.; Arthur, F.H. Fecundity of Tribolium castaneum and Tribolium confusum adults after exposure to deltamethrin packaging. J. Pest Sci. 2018, 91, 717–725. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry; Freeman & Company: New York, NY, USA, 1995. [Google Scholar]
- Minitab, LLC. Available online: https://www.minitab.com (accessed on 30 June 2024).
- Souza, R.K.; Azevedo, R.F.; Lobo, A.O.; Rangel, D.E. Conidial water affinity is an important characteristic for thermotolerance in entomopathogenic fungi. Biocontrol Sci. Technol. 2014, 24, 448–461. [Google Scholar] [CrossRef]
- Dogan, Y.O.; Hazir, S.; Yildiz, A.; Butt, T.M.; Cakmak, I. Evaluation of entomopathogenic fungi for the control of Tetranychus urticae (Acari: Tetranychidae) and the effect of Metarhizium brunneum on the predatory mites (Acari: Phytoseiidae). Biol. Control 2017, 111, 6–12. [Google Scholar] [CrossRef]
- Cua Basulto, M.; Ruiz Sánchez, E.; Ballina Gómez, H.; Reyes Ramírez, A.; Hernández Núñez, E.; Valencia Yah, T.; Martín Mex, R.; Chan Cupul, W. Physiological and molecular characterization of Metarhizium isolates and their acaricidal activity against Tetranychus urticae Koch (Trombidiformes: Tetranychidae). Egypt J. Biol. Pest Control 2022, 32, 30. [Google Scholar] [CrossRef]
- Mustafa, U.; Kaur, G. Extracellular enzyme production in Metarhizium anisopliae isolates. Folia Microbiol. 2009, 54, 499–504. [Google Scholar] [CrossRef]
- Zare, M.; Talaei-Hassanloui, R.; Fotouhifar, K. Relatedness of proteolytic potency and virulence in entomopathogenic fungus Beauveria bassiana isolates. J. Crop Prot. 2014, 3, 425–434. [Google Scholar]
- López-Manzanares, B.; Martínez-Villar, E.; Marco-Mancebón, V.S.; Pérez-Moreno, I. Compatibility of the entomopathogenic fungus Beauveria bassiana with etoxazole, spirodiclofen and spiromesifen against Tetranychus urticae. Biol. Control 2022, 169, 104892. [Google Scholar] [CrossRef]
- Salem, H.H.A.; Mohammed, S.H.; Eltaly, R.I.; Moustafa, M.A.M.; Fónagy, A.; Farag, S.M. Co-application of entomopathogenic fungi with chemical insecticides against Culex pipiens. J. Invertebr. Pathol. 2023, 198, 107916. [Google Scholar] [CrossRef] [PubMed]
- Bugeme, D.M.; Knapp, M.; Boga, H.I.; Ekesi, S.; Maniania, N.K. Susceptibility of developmental stages of Tetranychus urticae (Acari: Tetranychidae) to infection by Beauveria bassiana and Metarhizium anisopliae (Hypocreales: Clavicipitaceae). Int. J. Trop. Insect Sci. 2014, 34, 190–196. [Google Scholar]
- Çağatay, N.S.; Menault, P.; Riga, M.; Vontas, J.; Ay, R. Identification and characterization of abamectin resistance in Tetranychus urticae Koch populations from greenhouses in Turkey. Crop Prot. 2018, 112, 112–117. [Google Scholar] [CrossRef]
- Xu, D.; He, Y.; Zhang, Y.; Xie, W.; Wu, Q.; Wang, S. Status of pesticide resistance and associated mutations in the two-spotted spider mite, Tetranychus urticae, in China. Pestic. Biochem. Physiol. 2018, 150, 89–96. [Google Scholar] [CrossRef]
- Ekesi, S. Pathogenicity and antifeedant activity of entomopathogenic hyphomycetes to the cowpea leaf beetle, Ootheca mutabilis Shalberg. Int. J. Trop. Insect Sci. 2001, 21, 55–60. [Google Scholar] [CrossRef]
- Koehler, P.G.; Atkinson, T.H.; Patterson, R.S. Toxicity of abamectin to cockroaches (Dictyoptera: Blattellidae: Blattidae). J. Econ. Entomol. 1991, 84, 1758–1762. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Vayias, B.J.; Mihail, S.B.; Tomanović, Ž. Insecticidal efficacy of abamectin against three stored-product insect pests: Influence of dose rate, temperature, commodity, and exposure interval. J. Econ. Entomol. 2009, 102, 1352–1359. [Google Scholar] [CrossRef]
- López, J.D.; Latheef, M.A.; Hoffmann, W.C. Effect of abamectin on feeding response, mortality, and reproduction of adult bollworm (Lepidoptera: Noctuidae). Southwestern Entomol. 2011, 36, 155–166. [Google Scholar] [CrossRef]
- Park, Y.L.; Lee, J.H. Leaf cell and tissue damage of cucumber caused by two spotted spider mite (Acari: Tetranychidae). J. Econ. Entomol. 2002, 95, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Numa, S.; Rodríguez, L.; Rodríguez, D.; Coy-Barrera, E. Susceptibility of Tetranychus urticae Koch to an ethanol extract of Cnidoscolus aconitifolius leaves under laboratory conditions. Springerplus 2015, 4, 338. [Google Scholar] [CrossRef] [PubMed]
- Elsadany, M.F. Influence of host plants and some leaf contents on biological aspects of Tetranychus urticae Koch (Arachnida: Acari: Tetranychidae). JoBAZ 2018, 79, 20. [Google Scholar] [CrossRef]
- Al-Shammery, K.A.; Al-Khalaf, A.A. Effect of host preference and micro habitats on the survival of Tetranychus urticae Koch (Acari: Tetranychidae) in Saudi Arabia. J. King Saud Univ. Sci. 2022, 34, 102030. [Google Scholar] [CrossRef]
- Canassa, F.; Tall, S.; Moral, R.A.; de Lara, I.A.; Delalibera, I., Jr.; Meyling, N.V. Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites. Biol. Control 2019, 132, 199–208. [Google Scholar] [CrossRef]
- Sanyang, S.; Van Emden, H.F. The combined effects of the fungus Metarhizium flavoviride Gams & Rozsypal and the insecticide cypermethrin on Locusta migratoria migratorioides (Reiche & Fairmaire) in the laboratory. Inter. J. Pest Manag. 1996, 42, 183–187. [Google Scholar]
- Hiromori, H.; Nishigaki, J. Joint action of an entomopathogenic fungus (Metarhizium anisopliae) with synthetic insecticides against the scarab beetle, Anomala cuprea (Coleoptera: Scarabaeidae) larvae. Appl. Entomol. Zool. 1998, 33, 77–84. [Google Scholar] [CrossRef]
Source | df | F | p |
---|---|---|---|
Interval of time (Interval) | 2 | 729.2 | <0.01 |
Life stage (Stage) | 1 | 220.0 | <0.01 |
Treatment | 4 | 1865.3 | <0.01 |
Interval × stage | 2 | 8.1 | <0.01 |
Interval × treatment | 8 | 10.3 | <0.01 |
Stage × treatment | 4 | 7.5 | <0.01 |
Interval × stage × treatment | 8 | 4.5 | <0.01 |
Life Stage | Treatment | Intervals (Days) | F | p | ||
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
Nymphs | Bb WG-12 | 36.3 ± 1.4 Cd | 51.7 ± 2.9 Bc | 63.8 ± 1.4 Ac | 73.1 | <0.01 |
Mr WG-7 | 48.8 ± 1.1 Cc | 65.4 ± 2.0 Bb | 74.2 ± 2.2 Ab | 50.0 | <0.01 | |
Aba | 21.7 ± 1.3 Ce | 35.8 ± 2.0 Bd | 48.3 ± 1.4 Ad | 68.8 | <0.01 | |
Bb WG-12 + Aba | 72.9 ± 1.3 Bb | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 434.0 | <0.01 | |
Mr WG-7 + Aba | 84.6 ± 1.1 Ba | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 181.1 | <0.01 | |
F | 431.0 | 347.0 | 292.3 | |||
p | <0.01 | <0.01 | <0.01 | |||
3 | 5 | 7 | ||||
Female adults | Bb WG-12 | 23.3 ± 1.8 Cd | 38.8 ± 2.1 Bd | 56.7 ± 2.2 Ac | 69.3 | <0.01 |
Mr WG-7 | 39.2 ± 1.5 Cc | 51.3 ± 2.1 Bc | 65.0 ± 2.5 Ab | 37.9 | <0.01 | |
Aba | 16.3 ± 1.6 Ce | 24.2 ± 1.6 Be | 37.1 ± 1.7 Ad | 40.9 | <0.01 | |
Bb WG-12 + Aba | 67.1 ± 2.0 Cb | 83.8 ± 1.6 Bb | 100.0 ± 0.0 Aa | 122.1 | <0.01 | |
Mr WG-7 + Aba | 76.3 ± 1.4 Ba | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 291.0 | <0.01 | |
F | 250.1 | 353.0 | 275.1 | |||
p | <0.01 | <0.01 | <0.01 |
Source | df | F | p |
---|---|---|---|
Leaf side (abaxial or adaxial) | 1 | 3618.0 | <0.01 |
Life stage | 2 | 784.3 | <0.01 |
Treatment | 5 | 3041.5 | <0.01 |
Leaf side × life stage | 2 | 363.4 | <0.01 |
Leaf side × treatment | 5 | 1968.7 | <0.01 |
Life stage × treatment | 10 | 331.4 | <0.01 |
Leaf side × life stage × treatment | 10 | 193.7 | <0.01 |
Leaf Side | Treatment | Number of Tetranychus urticae Alive/Leaf | F | p | ||
---|---|---|---|---|---|---|
Adults | Immatures | Eggs | ||||
Abaxial (Bottom) | Bb WG-12 | 9.1 ± 1.3 Bb | 28.2 ± 2.7 Ac | 15.0 ± 1.1 Bc | 28.7 | <0.01 |
Mr WG-7 | 4.8 ± 0.8 Bc | 17.5 ± 1.8 Ac | 9.0 ± 1.3 Bcd | 23.4 | <0.01 | |
Aba | 12.0 ± 0.4 Cb | 46.1 ± 3.6 Ab | 34.9 ± 1.3 Bb | 61.9 | <0.01 | |
Bb WG-12 + Aba | 1.4 ± 0.4 Bc | 5.0 ± 1.0 Ad | 2.0 ± 0.6 Bde | 7.32 | <0.01 | |
Mr WG-7 + Aba | 1.0 ± 0.6 Ac | 1.0 ± 0.5 Ad | 1.0 ± 0.6 Ae | 0.0 | 0.99 | |
Control | 71.2 ± 1.7 Ca | 254.2 ± 5.1 Aa | 167.4 ± 3.7 Ba | 594.1 | <0.01 | |
F | 763.1 | 1132.5 | 1316.3 | |||
p | <0.01 | <0.01 | <0.01 | |||
Adaxial (Top) | Bb WG-12 | 2.2 ± 0.6 Bbc | 9.1 ± 0.6 Ac | 4.0 ± 0.5 Bb | 36.8 | <0.01 |
Mr WG-7 | 1.0 ± 0.6 Ac | 1.1 ± 0.6 Ad | 0.9 ± 0.4 Ac | 0.12 | 0.88 | |
Aba | 5.1 ± 0.8 Cb | 21.3 ± 1.6 Ab | 13.0 ± 0.8 Ba | 51.2 | <0.01 | |
Bb WG-12 + Aba | 1.0 ± 0.6 Ac | 1.0 ± 0.6 Ad | 0.9 ± 0.6 Ac | 0.16 | 0.84 | |
Mr WG-7 + Aba | 1.0 ± 0.6 Ac | 0.8 ± 0.4 Ad | 0.6 ± 0.3 Ac | 0.1 | 0.87 | |
Control | 8.5 ± 0.7 Ca | 34.1 ± 1.8 Aa | 15.2 ± 0.9 Ba | 116.0 | <0.01 | |
F | 21.6 | 163.0 | 116.1 | |||
p | <0.01 | <0.01 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wakil, W.; Boukouvala, M.C.; Kavallieratos, N.G.; Riasat, T.; Ghazanfar, M.U.; Avery, P.B. Acaricidal Efficacy of Abamectin against Tetranychus urticae Populations When Combined with Entomopathogenic Fungi. Horticulturae 2024, 10, 1019. https://doi.org/10.3390/horticulturae10101019
Wakil W, Boukouvala MC, Kavallieratos NG, Riasat T, Ghazanfar MU, Avery PB. Acaricidal Efficacy of Abamectin against Tetranychus urticae Populations When Combined with Entomopathogenic Fungi. Horticulturae. 2024; 10(10):1019. https://doi.org/10.3390/horticulturae10101019
Chicago/Turabian StyleWakil, Waqas, Maria C. Boukouvala, Nickolas G. Kavallieratos, Tahira Riasat, Muhammad Usman Ghazanfar, and Pasco B. Avery. 2024. "Acaricidal Efficacy of Abamectin against Tetranychus urticae Populations When Combined with Entomopathogenic Fungi" Horticulturae 10, no. 10: 1019. https://doi.org/10.3390/horticulturae10101019
APA StyleWakil, W., Boukouvala, M. C., Kavallieratos, N. G., Riasat, T., Ghazanfar, M. U., & Avery, P. B. (2024). Acaricidal Efficacy of Abamectin against Tetranychus urticae Populations When Combined with Entomopathogenic Fungi. Horticulturae, 10(10), 1019. https://doi.org/10.3390/horticulturae10101019